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Abstract — In this article, a new upper bound for
linear binary block codes based on Gallager’s first
bounding technique and an argument similar to ran-
dom coding argument is proposed. This bound is very
simple to calculate as it only requires the spectrum of
the code. Also, it is particularly tight at low SNR’s
and for codes with large codebooks. Without much
added complexity, the union bound is tightened.

I. INTRODUCTION

The problem of performance evaluation of linear binary
block codes with soft decision Maximum-Likelihood (ML)
decoding has long been a central problem in coding theory
and practice [2]-[12]. In most of the cases the derivation of
a closed-form expression for, or even calculation of, the bit
or word error probabilities are intractable, if not impossible.
Thus, we usually resort to bounding techniques for the afore-
mentioned probabilities.

The most commonly used upper bound on the error prob-
ability of a digital communication system is the union bound.
Union bound is in fact an inequality from the class of
Bonferroni-type [1] inequalities in probability theory. These
are inequalities that are universally true regardless of the un-
derlying probability space and for all choices of the basic
events. For the calculation of the union bound on the er-
ror probability of a binary block code, one only needs to have
the weight enumerating function (spectrum) of the code which
results in much simplicity of calculation. The price to pay is,
of course, accuracy. The union bound is quite accurate for
high signal-to-noise ratios (SNR). For lower SNR’s, however,
union bound is a very poor upper bound.

For some applications such as concatenated coding schemes
where the inner code is a binary block code, the low-SNR
asymptotic coding gain of the code is needed for the perfor-
mance evaluation of the overall scheme which explains the
need to have tighter bounds at low SNR regions of the per-
formance.

We present a new upper bound on the word error probabil-
ity of binary block codes for all ranges of SNR. This is a very
low-complexity bound based on an expansion of error proba-
bility similar to what Divsalar [2] refers to as “Gallager’s first
bounding technique”. A random coding argument methodol-
ogy is applied to the Gallager’s method which results in an
upper bound.
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Consider a binary code! C = {co,c1,...,cor_; } with pa-
rameters (n,k,d), to be used along with Binary Phase Shift
Keying (BPSK) modulation (antipodal signaling) on an Ad-

ditive White Gaussian Noise (AWGN) channel. The re-
sulting signal set will be § = {so,s1,...,805_1}, where
si = m(c;) € R”. For ¢; = (ci1,Cizy .y Cior_y ), Mc;) =

(m(cil), m(ciz), ..., m(cmk_l)). In the antipodal signaling
case, m(a) = V/E,(2a — 1), where E, is the symbol energy.

As binary codes and binary modulation are “matched” in
the sense of Loeliger [13], Euclidean distance which is the
performance measure in the AWGN case will be proportional
to Hamming distance®. In particular for BPSK, denoting the
Fuclidean distance between two signal points s; and s; by
d(si, sj), we have:

52(5;, Sj) = ||S1 — Sj||2 =4F, ~d(ci,cj‘) =4RE, - d(cg,cj‘) (1)

where R = k/n is the binary code rate, |.|| is the usual
Euclidean norm, and d(,) is Hamming distance. Assuming
AWGN interference, the output of the channel will be a vec-
tor r = s; + n, where n is an n-dimensional vector whose
elements are independent zero-mean Gaussian random vari-
ables with a variance of % = No/2. Probability of word error
for communicating one of 2¥ messages in S through an AWGN
channel will be:

2% _1
Pu(E)= ) P(E|si)P(si) (2)
=0
If the resulting “Geometrically-Uniform” (GU) signal set
is equiprobable, the Maximum-Likelihood (ML) optimum de-
coding rule will actually reduce to minimum FEuclidean dis-
tance decoding strategy and

Pu(E) = P(E | i) (3)

where s; can be any signal point. We assume that sg, signal
corresponding to the all-zero codeword, has been transmitted.

The difficulty in calculating P(E | s;) is due to the com-
plexity of the decision or Voronoi regions of the signal points;
that of sg in particular for this matter. Voronoi region of any
signal point in an n-dimensional signal constellation is the set
of points or vectors in R™ that are closer to that point than
any other point in the constellation. i.e.,

Vi={z e R": (z, si) < I(x,s),Vs € §} (4)

Tn this correspondence by a binary code we mean a linear bi-
nary block code.
2This proportionality does not hold in general for other signal

sets.



V; in general is the volume bounded by M = 28 _ 1 in-
equalities in 4, each of which specifying a half-space located
on one side of a hyper-plane defined by the inequalities of 4.
The resulting region is a convex polytope in R"™ and

P(E|si)=P(reVi|si)=1—P(r € Vi| si). (5)

In order to find the exact probability of error, one needs
to integrate an n-dimensional Gaussian probability density
function over the polytope V;. This can be a challenging
problem if the angles between the facets of the polytope are
not right angles. For the 2-dimensional case Craig [3] cleverly
rephrased the resulting double integral and came up with an
exact expression for the error probability in terms of a sum
of a few single integrals of elementary functions with finite
ranges.

The amount of work done on lower and upper bounding
techniques and approximations to the the word and bit error
probabilities in specific SNR ranges is overwhelming.

Union bound is a Bonferroni-type inequality capping the
probability of union of any arbitrary set of events like

Av, As, ..., A, as P (Uj‘il Aj) <M P(A4)).

The word error probability, P, (E) =P (Uj\il Ej), where
E; = {|Ir — sjll < |Ir = solllso}, for j = 1,2,...,M; is then
bounded by,

M M 5
.\ L jO
P <> E=Y Q%)
i=1 j=1
where d;0 = 8(s;, s0), and Q(.) is the well known Q-function:

Q) = \/% /:O e~ 2y,

The above union (or additive) bound is asymptotically tight.
The Euclidean weight enumerator of the signal set comes di-
rectly from the Hamming weight enumerator of the underlying
binary code as:

ewe(w) = ZAjw(;JD (6)

in which n < M is the number of Euclidean layers or shells
(simply the number of distinct Euclidean distances from any
reference point, say sp) of the signal set and Aj is the number
of signal points in the j-th shell.

Then,

Pap <Y a0 (3). ")

For low probability of error (high SNR) region, sometimes
only the first term of the spectrum, i.e., the term correspond-
ing to the minimum distance of the code, suffices to provide a
good approximation to Py (E). For higher error probabilities,
this bound becomes too poor to be acceptable.

One of the first works devoted to the performance of bi-
nary codes at low signal-to-noise ratios is that of Posner [4]
which mainly revolves around quantized channel, i.e., with
hard decision. A belated continuation to the work of Posner
for the un-quantized channel output (soft decision) is that of

Chao et. al [5]. In [5], a power series expansion of the prob-
ability of correct decision around zero SNR is used to climax
at a relatively accurate, albeit complex, approximation to the
word error probability. The complexity of their result is due
to the fact that their expression for the error probability is a
function of a parameter which depends on the “global” geo-
metrical properties of the code.

One other approach to bounding is to approximate the
polytope decision region by a simpler region; usually spherical
or conical. These two “work” because the probability density
function, Pu(z), of a Gaussian vector n is monotonically de-
creasing with ||z|| and is independent of the angle orientation
of the #. A spherical approximation leads to the minimum
distance bound [6] which is only good for small values of n (di-
mensionality). One important improvement to the minimum
distance and union bound is that of Hughes [7]. In Hughes’
work a conical approximation is used. The complement of
the decision region for the reference point is decomposed into
the union of a set of disjoint polyhedral cones. Approximat-
ing these polyhedral cones with circular cones with the same

solid angle results in an upper bound.

Hughes work launched a number of similar works with ap-
plications from linear binary block codes to coded modula-
tion and concatenated codes both in AWGN and fading en-
vironments. Many other bounds, as noted by Divsalar [2],
“essentially use a general bounding technique developed by
Gallager” [8]. Namely, given a transmitted signal,

Py (E) = P{word error,r € R} + P{word error,r ¢ R}

=P{E,reR}+P{E|r ¢ R} -P{r ¢ R} (8)
< P{E,r € R} + P{r ¢ R}

where r is the received vector signal and R is an appropriate

region around the transmitted signal point. Divsalar [2] refers

to this as “Gallager’s first bounding technique”. In original

Gallager’s work & is a complicated region in R™. Simpler

bounds are developed where this region is approximated by

polyhedral or circular cones or even hyper-spheres.

Herzberg and Poltyrev [9] use Gallager’s first bounding
technique in 8 to derive one of the tightest upper bounds.
R is chosen to be a hyper-sphere with radius r and then
the bound is tightened over r. They apply their method to
Block-Coded Modulation (BCM) schemes communicated over
AWGN channel.

The Tangential Sphere Bound (TSB) proposed for binary
codes in [10] and for MPSK BCM schemes in [11] also uses
Gallager’s first bounding technique where R is a conical re-
gion.

Another line of attack to the bounding problem of er-
This
method accounts for a number of tight upper as well as lower
bounds on the error probability.

ror probability is use of Bonferroni-type inequalities.

A lot of the proposed bounds are either too complex or too
loose at low SNR’s. Their complexity is due to-among many
others-dependence on global properties of the underlying code
or complex optimization over one or more parameters or even
a complex equation to be solved.

IT. Our RanDoM-HYPER-PLANE (RHP) UPPER
Bounp

Our upper bound is primarily based on the Gallager’s first
bounding technique given in 8. The choice of region & is



of utmost significance in this bounding method. Different
choices of this region have resulted in various different tight
bounds in different ranges of signal-to-noise ratio. In the pro-
posed bound, we define ¢ as the union of £ regions such that
Re = Ule Hj ie, R = ﬂle H?; where regions Hj are each
a half n-dimensional space defined as the set of all the points
in the space which are closer (in Euclidean sense) to a random
point v; than sg. i.e.,

Hj={r € R" :[Ir — vj|| <|lr — sol[} 9)

The perpendicular bisector of the line joining the points
vj and so is an (n — 1)-dimensional hyper-plane in the n-
space and therefore P(H;) is simply the probability that the
received vector r has passed this hyper-plane.

We randomly select vectors v; whose n coordinates are
binary distributed over {—1, +1}, i.e., P(vij; = +1) = P(vij =
—1) = 1/2. That is, all the signal points as well as the random
vectors are on an n-sphere with Euclidean radius n.

Then,

o

‘ ‘ -
Pv¢m=mUHﬁSZQ<ﬁﬁﬂﬂ) (10)

=1

where d(so7 Uj) is the hamming distance between so and vj,

that is the number of coordinates that so and v; are different.

For the sake of brevity of the bound, we impose one other
constraint on the random vectors v;: Vj,d(so,v;) = w,, i.e.,
all the random vectors are at the same FEuclidean distance
from the transmitted signal. Also, as £ = Uf\il Fi,

i=1 j=1

M £
P{E,re R} =P E,, () HS } =

and,

M £ M £ M
P{U@anﬂ}szP%mmHﬁszpwﬂmm}
=1 =1 =1

where for each i , jopt,i € {1,2,...,£} is the index of the hyper-

plane for which P {Ei7 H; } is minimum. The joint probability
P {E;7 HJC} is a 2-dimensional Gaussian probability and is
shown to be (see appendix):

2
= L 0 exp (— gty ) 06
1 (fmax —b2
<_ 202 cos2(¢p—0) ) dé

T o2m Jo—m)2
where a = §(so0,si)/2, b = 8(s0,v;)/2, ¢ = arccos(p), and
b—acos ¢
asin ¢

shown to be equal to:

P{E: 1) )

exp

Omez = arctan The correlation coefficient p is

d(co, i) + d(co, m™" (v;)) — d(ss, m ™!
2+/d(co, c;) - d(eg, m=1(v;))

Representing d(co,c;) = d; and d(co, m_l(vj)) = w,,
p = (di + w, — d(si,m_l(z}j))/(%/di -w,) will be a posi-
tive value (as Hamming distance satisfies the triangular in-
equality) whose larger values would result is smaller values
of P {Ei,Hjc} as desired because for fixed a and b, the 2-
dimensional Gaussian integral in 12 is a monotonically de-
creasing function of p. As vectors v; are random, so are the

0<p= ) <1 (13)

— = RHP bound
—— union bound
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Figure 1: Symbol error probability for BCH(63,51).

correlation coefficients. The distribution of p for kpin

ooy (1))
)

where kmin = max(0,d; + w, — n) and kmae = min(d;, w,).

<k<

kmasz 18,

(14)

Denoting P[k] = Ps (pm(m = Glf'“—wr), the best p (i.e., pmaaz)
out of the £ possibilities will have the following distribution:

k £ k—1 £
Ppmam[k]=( > Pp[q]) —( > Pp[q]) (15)
9=Fmin 9=kmin

Therefore, the overall random hyper-plane upper bound will

be:

P (FE) < min <£ -Q (@) + f:P {Ei,Hjom)l}pmaj (16)

wy, L

where the bar is an averaging on pmaz. This optimization
is done over 1 < w, < n and £. The tradeoff regarding ¢ is
obvious from the above bound. Higher values of £ will result
in an increase in the first term in 16 but as they increase the
probability of higher pmq.’s they would subside the second
term in 16. One significant advantage of the proposed bound
is that the optimization must be done in the specific SNR of
interest which in return will result in a tight bound for that
point of interest.

I11. NUMERICAL RESULTS AND DISCUSSION

The random hyper-plane bound proposed is specifically tight
for higher dimensional codes. For smaller codebooks the first
term of the bound in 16 becomes so significant that it com-
pletely cancels out the advantage gained in the second term.

The proposed bound applied to the BCH(63, 51) code along
with the union bound are shown in Fig. 1. Optimizing values
at a symbol error probability of 1072 are w, = 19 and £ = 3 x
108. Different values of w, and £ result is slight improvement
at other SNR’s with respect to the shown RHP bound in Fig.
1.



IV. ApPENDIX: PROOF OF 12
P {Ei, HJC} is a 2-dimensional Gaussian probability as in:

oo 550/2
P(E,OH;) =P(r e RI):/ / F(2iy2530%, pij)dzidz;
5;0/2 o0
’ (17)
where Ry is the shaded infinite sector in Fig. 2 and,

1 < 22+ zj2 — 2p{j2{2j)
exp| ————2———

f(zi7zj;a27pij):7 2(1_ 2\ 2
2702, /1 — p?j Pi;)o

and ;0 = 8(si, s0), dj0 = 8(vj, so), and the Gaussian variables
z; and z; are the components of noise in the (si — so) and
(vj — s0) directions, respectively(see Figure 2). i.e.,

zi =<m,(si —s0) > , zj =<m,(v;—s0)> (18)
where n is the Gaussian noise vector and < . > is the inner

product operator. The correlation coefficient between z; and

zj, pij is

pij = = (S% — %), (UJ: —s0) > (19)
llsi = soll-llvi — sl
It is trivial to see that
d; djo — di; .
pij = dio +djo — dij (20)

2/ d;o0.djo

where d;; 1s, as defined before, the Hamming distance between
the underlying codewords of the binary code or equivalently
the “time diversity” between the corresponding signals s; and
s; or between s; and v; in the case of a hyper-plane, i.e., dijo =
d(c':7 00)7 djO = d(m_l (Uj)v 00)7 and dij = d(civ m_l (UJ))

Using a method similar to that of [3] and [12], we can
change the double integral with infinite limits to a single
integral with finite limits. We start with writing the 2-
dimensional Gaussian integral in 17 in terms of the polar form
of the 2-dimensional Gaussian function, i.e.,

P(r € Ry) = //fp(g,e;a2,p)d5d9 (21)
N——
Ry
where
fo(€ 9;6° )= #ex —L(l— sin 26)
P » Y 7P _271'0'2 1—p2 P 202(1_p2) p

and therefore it is easy to see from the geometry of the prob-
lem that

P(re Ry = [% , [X% f,(¢650°, p)deds

22
_|_fecmaa: .5612 Io(&,6; 0%, p)dédd (22)

where f{om AACsyoand ABDsy we find & = soA = ﬁ and
& = soB = ﬁ, respectively. The maximum possible
angle can be obtained from the equation ¢ = {3 as maea =
tan™! (w) With these in hand, 22 can be simplified

asin ¢
to 12.
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