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Abstract: In the quantization of a non-uniform source,
the entropy coding of the quantizer output can result
in a substantial decrease in bit rate. A straight-forward
entropy coding scheme faces us with the problem of vari-
able data rate. A solution in a space of dimensionality N
is to select a subset of elements in the N-fold cartesian
product of a scalar quantizer and represent them with
code-words of the same length. For a memoryless source,
a reasonable rule is to select the N-fold symbols with the
lowest additive self-information. The search/addressing
of this scheme can no longer be achieved independently
along the one-D subspaces. Fortunately, the selected
subset has a high degree of structure which can be used
to substantially decrease the complexity. We discuss
a method based on dynamic programming to facilitate
the search/addressing operations. We build our recur-
sive structure required for the dynamic programming in
a hierarchy of steps. This results in several benefits over
the conventional trellis-based approaches. Using this
structure, we develop efficient rules (based on merging
the states) to substantially reduce the search/addressing
complexities while keeping the degradation negligible.
We choose the quantizer points from a lattice resulting
in a higher granular gain in comparison with simply us-
ing the Cartesian product of a set of scalar quantizers.
We introduce a special class of lattices which have a low
decoding complexity, and at the same time result in a
noticeable granular gain.

1 Introduction

Consider the problem of quantizing a source with a
nonuniform probability density function. In the N-D
space, as N becomes large, the N-D probability den-
sity function concentrates in a region where the density
function is almost uniform (typical set). In a fixed-rate
entropy coding scheme, the typical set is selected as the
subset of the N-D symbols to be quantized, and the
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corresponding quantizer partitions are represented with
code-words of the same binary length. In this case, as
some of the elements in the N-fold Cartesian product
space are not allowed, the search for the quantizer par-
tition (decoding) and also the corresponding addressing,
reconstruction processes can no longer be achieved inde-
pendently along the one-dimensional (one-D) subspaces.

We choose the elements of the quantizer from a lattice
resulting in a higher quantization gain in comparison
with simply using the Cartesian product of a set of scalar
quantizers. We make use of a special class of lattices
which have a low decoding complexity, and at the same
time result in a noticeable quantization gain. We com-
bine the procedure of the lattice decoding with that of
quantizer shaping using hierarchical dynamic program-
ming. In addition, by using appropriate partitioning and

‘merging rules, we obtain sub-optimum schemes of very

low complexity and small performance degradation.

2 Lattice-based quantization

A real lattice A is a discrete set of vectors in real Eu-
clidean N-space, RY, that forms a group under ordinary
vector addition. Fundamental region of a lattice is a
building block which when repeated many times fills the
whole space with just one lattice point in each copy.

Assume that there are M quantizer points, say
Q1,Q2,...,Qar, which have been chosen according to
a specific rule in R™. For a quantizer input z, which
is an arbitrary point of RY, the quantizer output is the
point ; which has the smallest distance to . In other
words, the space RY is partitioned into the Voronoi cells
V(Q1),V(Q2),... around the Q;’s. If the input z be-
longs to V(Q);), the quantizer output will be @;.

A lattice quantizer is based on using the points of a
lattice to partition the space into the quantization re-
gions. In this case, the structure of the lattice is used
to facilitate the quantization operation. In the present
work, we introduce a special class of lattices which are
constructed from the structure of the Hadamard matrix.

A square matrix with rank L = 2 is a Hadamard ma-
trix if all of its elements are equal to 1 or —1, and the
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set of all its L rows and L columns form an orthogo-
nal basis for the L-D space. We define a set of vectors
V = {v1,v2,...,vr} such that v; represents the ith row
of an L x L Hadamard matrix. The vector v{ € V° (com-
plement of the vector v; € V) is obtained by replacing
all the 1’s in v; by —1, and vice versa.

Consider the set W = V U V*° which is composed of
2L vectors in an L-D space. We define a new set called
W) whose members are obtained by concatenating the
members of W for ¢ times, subject to:

1. Each vector can be concatenated with itself or with
its complement.

2. All the possible combinations of vectors and its
complements are allowed.

For example w = (vq, v§, v1,v§) is 2 member of W®).

It should be mentioned that W () is of dimensionality
iL, and has 2' members. We use the elements of W) to
define the fundamental region of an ¢L-D Lattices called
AY.

LAssume that in the element of W), all the 1’s are
substituted by e(even) and all —1’s are substituted by
o(odd). Now assume that there are M threshold points
along each dimension of the space. The lattice A} is de-
fined as the set of points in an (i x L)-D space consisting
of the points obtained from W () by replacing all the e’s
with the set of threshold points with an even index, and
all the o’s with the set of threshold points with an odd
index. The final vector quantizer is selected as a subset
of the points from Af/ L composed of T' elements, where
each N-D point is represented by a code-word composed
of [log, T bits.

3 Basic structure

The core idea in the schemes of [1] is to use a state di-
agram with the transitions corresponding to the one-D
symbols. This results in a trellis composed of N stages
where N is the space dimensionality. The states s and
s+c in two successive stages are connected by a link
corresponding to the one-D symbol(s) of cost ¢. Conse-
quently, the states in the nth stage, n=0,...,N -1,
represent the accumulative cost over the set of the
first n dimensions. The links connecting two successive
stages are labeled by the corresponding one-D distor-
tions. Then, the Viterbi algorithm is used to find the
path of the minimum overall additive distortion through
the trellis.

Unlike [1] which are based on a componeni-by-
component analysis, we build our recursive structure in
a hierarchy of levels where each level involves the Carte-
sian product of two lower dimensional subspaces. To
explain this structure, let Fy(C) denotes the set of the

N-D points of the overall (additive) cost C (shell of cost
C). We have the following recursive relationship:

Fy(C) = |J[Fn,(C1) ® Fy, (C2)] (1)
where ® denotes the Cartesian product, N = Nj + Nj,
and the union is computed over all the pairs (Cy, C3)
satisfying C1 4 C2 =C. We are specially interested in
the case that Ny = N, = N/2. We refer to each Cartesian
product element in Eq. 1 as a cluster.

As we are selecting the points from a lattice, we should
impose another constraint on the Cartesian products of
the shells when we are building the clusters in the next
level of the hierarchy. These constraints are closely re-
lated to the recursive structure of the Hadamard ma-
trix, and determine which subset of the elements in the
Cartesian product of the lower dimensional subspaces
are allowed.

3.1 Recursive decoding

For a given input vector x, by decoding of a shell we
mean the process of finding the element of the shell
which has the minimum distance to x. We make use
of Eq. 1 to develop a recursive method for the de-
coding of the shells. To do this, the N-D input vec-
tor x is split into two parts x; and x» each of length
N/2. Assume that the nearest vectors of the shells
Fny2(Ci), Fnyz(Cs) to x1,x2 are equal to X3,%X2 with
the distances dj, ds, respectively. The nearest vector of
the cluster Fiv/5(C1)® Fiy2(C2) to x is equal to (X3, X2)
with the distortion dy + d3. The distortion of a shell is
equal to the smallest of the distortions of its clusters.
Note that if we know the distortion and the nearest vec-
tor for all the shells of the N/2-D subspaces, we can
decode all the N-D shells. In other words one is able
to decode an N = 2" dimensional space in u steps by
starting from the one-D subspaces and progressing in a
recursive way [2]. In this process, the space dimension
at the k’th stage, k = 0,...,u — 1, of the hierarchy are
grouped into 2*~* groups which we call blocks. The
structure of the lattice imposes some constraints on the
way the shells are formed in the Cartesian product of the
subspaces at the different levels of the hierarchy. This
procedure is explained in the following:

We have N blocks at the first stage of the hierarchy
where each of these blocks consists of two sub-blocks,
called e(even) and ofodd). To build the shells and the
sub-blocks in the next stage, two shells from different
blocks can build a shell for the next stage, iff they are
from the same sub-block or from sub-blocks which are
complement of each other. For instance, there are four
sub-blocks in the second level of the hierarchy which
are labeled as ee, oo, eo, ve. The Cartesian product of
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the shells of ee sub-block and oo sub-block is allowed
and result in the shells of the eeoo sub-block, while for
example, the Cartesian product of the shells of eo and
oe are not allowed.

If the rank of the Hadamard matrix is equal to L = 2/,
in the (I + 1)th stage of the hierarchy, the merging rule
changes. At this level, the complement sub-blocks are
merged together, and as a result, the number of the sub-
blocks remains the same as in the previous level. After
this stage, there will be always L sub-blocks in each
block in the remaining stages of the hierarchy.

One can also use the recursive structure of the shells to
develop an algorithmic addressing, reconstruction proce-
dures. The basic idea is that the addressing within each
cluster can be achieved independently along its lower di-
mensional shells and sub-blocks. This comes from the
same decomposition principle as discussed in [3], [4], [5],
accompanied with some extra considerations due to the
existence of the lattice structure.

4 State space quantization

The straight-forward approach is to assign an indepen-
dent state to each possible value of cost at a given level.
If two different combinations of costs result in the same
value for their sum, we say that the the corresponding
states have merged together. This is denoted as a nat-
ural merge. Let K denote the number of the distinct
values of cost along a dimension. Even for a moderate
value of K, the number of distinct states in N-D can
be impractically large. The solution is to synthetically
aggregate distinct states into a smaller number. This is
denoted as the state-space quantization.

In the following, we propose a rule for the state-space
quantization which is specially effective and results in a
simple addressing procedure.

4.1 Aggregation on a sequential basis

Consider an N = 2¥-dimensional space and assume that
there are K;=2% macro-shells of equal cardinality in
each sub-blocks at each level of hierarchy. In the Carte-
sian product of two of the N; = 2'-D subspaces, we
obtain 2%*: clusters of equal cardinality. The clusters
are arranged in the order of increasing average costs.
A number equal to 22¥:=%i+1 of subsequent clusters are
aggregated into a higher level (2N; = N;;1-D) macro-
shell. Then, the whole process is repeated recursively.
The final subset is obtained by keeping some of the N-D
clusters of the lowest average cost. Note that this whole
operation is done just once and the result is stored for
subsequent uses. In this case, the total number of states
(macro-shells) in the i’th level of the hierarchy is equal
to: (N/27) x 2% = 2utki=i where N/2' is the number

of 2¢-dimensional subspaces (blocks) involved in the i’th
level.

Using macro-shells of integral, equal bit rate results in
a specially simple addressing scheme. This is discussed
in the following: Consider the case that the macro-shells
in a given level of our hierarchy, say at dimensionality
N', are composed of 2°* elements. Also, assume that
a higher level macro-shell (dimensionality 2N') is ob-
tained by aggregating 2°* clusters in the two-fold Carte-
sian product of the N’-D macro-shells. The addressing
of the 2N’-D macro-shells requires 2¢; + ¢4 bits. The ad-
dress of an 2N'-D element is computed by concatenating
the addresses of its constituent components in the N'-D
macro-shells and concatenating the result with an ad-
ditional ¢ bits which are selected as the label of the
cluster within its corresponding 2N’-D macro-shell.

4.2 Merging of clusters using a binary

tree

Assume that there are 2% macro-shells of equal cardi-
nality at a given stage of our hierarchy. In the 2-fold
Cartesian product space, we obtain 2%* clusters which
are merged into 2’ macro-shells of integer bit rate. De-
fine 27% to be the fraction of the number of clusters
in the ith macro-shell, 1=0,...,2' — 1. The £;’s satisfy-
ing 3, 27% =1. A simple argument shows that the £;’s
can be selected as the lengths of different paths in any
binary tree with 2/ — 1 intermediate nodes (resulting in
2! final nodes). As the number of such trees is usually
quite small, one can use an exhaustive search to find the
best tree for a specific tradeoff between complexity and
performance. This configuration allows to use a set of
prefix codes for the addressing of the macro-shells.

This nonuniform merging rule is applied in the
(u—2)th stage (stage indexed by u —3) of the hierar-
chy. The corresponding merging rule for the (u— 1)th
stage is as follows: If there are an integral power of two
of successive macro-shells with equal cardinality, these
are merged into a single, larger macro-shell. One can
also apply this rule successively several times.

4.2.1 Numerical results

In the following, we present some numerical resulfs con-
cerning the performance and the complexity of the pro-
posed method. Figures (1), (2) represent the result of
quantizing the 256 x 256 lenna image using the pro-
posed methd as compared to using an optimized scalar
quantizer (the dimensions of the quantizer are selected
along the dimensions of the Discrete Cosine Transform).
Tables (1) and (2) presents the performance of the pro-
posed method in the quantization of a memoryless Gaus-
sian source. In all cases, a sequence of 30000 source
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vectors is used to design the quantizer and a different
sequence of the same length is used to measure the re-
sulting performance. It is observed that the proposed
method results in about 2 to 3 dB improvement with
respect to the previously known methods at the price of
a reasonable increase in the complexity.
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Figure 1: Lattice-based fixed-rate entropy-coded
vector quantization of Lenna image, 0.5 bit/pixel,
PSNR=27.14 dB

Figure 2: Scalar (LBG) Quantization of Lenna Image,
0.5 bit /pixel, PSNR=23.81 dB (bit allocation is achieved
optimally).
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Method N M (ki,i=0,u=1) R Masm Mrom Mgam + Mrom Computation SNR (dB)
Prop. method 16 8 (2,4,5,7) 1.5 4.8 24 28.8 10500 10.8
Ref. [2] 16 4 (1,2,4,8) 1.5 06 08 14k 50 7.43
Ref. [1] 16 4 —— 15 — — 8k 6 x 10° 7.47
Prop. method 16 16 (3,5,5,7) 2.5 80 26 34k 1760 16.18
Ref. [2] 16 8 (2,4,5,8) 25 1.0 2.0 3.0k 220 12.91
Ref. [1] 16 8 — 25 — — 21 k 2 x 10° 13.00
Prop. method 16 32 (3,5,6,6,10) 3.5 64 127 191 k 45056 21.85
Ref. [2] 32 16 (3,5,6,6, 10) 3.5 8 13 21 k 1100 18.7
Ref. [1] 32 16 — 35 — 300 k 1x 10* 18.8
Table 1: Comparison between the proposed method
with the scheme of [1] and [2] for a memoryless Gaus-
sian source. The quantities N, M and R are the space
dimensionality, the number of points per dimension and
the rate (in bits) per dimension, respectively. It is also
assumed that L (rank of the Hadamard matrix) is 8 for
all three conditions. The memory size is in byte (8 bits)
per N dimensions and the computational complexity is
the number of additions/comparisons per dimension.
Rate N M L (k,i=0,x—2) RAM ROM ROM+RAM Computation SNR(dB)
071 32 4 8 (1,2,4,5) 1.5 1.6 3.1 690 5.59
178 32 8 8 (2,4,5,5) 1.8 2.9 4.7 1190 11.04
278 32 16 8 (3,4,5,5) 2.2 2.9 5.1 1214 16.41

Table 2: Signal to noise ratio vs. the rate of the proposed
scheme for N = 32 (using non-uniform merging).
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