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Abstract— Long-range prediction of fading in mobile systems is the key
element for many fading-compensation techniques. A linear approach,
which is usually used to model the time evolution of the fading process,
does not perform well for long-range prediction. In this article, we
propose an adaptive channel prediction algorithm by using a novel state-
space model for the fading process. Our simulations show that this
algorithm significantly outperforms the conventional linear method, for
both stationary and non-stationary fading processes, especially for long-
range predictions1 .

I. INTRODUCTION

The problem of channel fading modeling and prediction is ad-
dressed in this article. Channel fading prediction can be used to
improve the performance of the telecommunication systems. Having
some estimates of future samples of the fading coefficients enhances
the performance of many tasks of the receiver or the transmitter,
such as channel equalization, the decoding process of data symbols,
antenna beamforming, and adaptive coding and modulation.

Many processes can be represented with a linear model, i.e. an
auto-regressive moving-average (ARMA) model. However, linear
models fail to show the true time behavior of the fading process.
On the other hand, a linear model is easy to use, and has a low
complexity. Therefore, an approximate low-order AR model is widely
used which can capture most of the fading dynamics [1], [2]. For
example, an MMSE linear predictor for mobile fading is proposed
in [3].

A linear approach does not perform well for long-range predictions
[4]. Also, a linear approach has a poor performance for high mobility
channels as it is solely dependent on the correlation properties of the
fading process. In this article, a novel channel model is utilized for
the prediction of the channel fading. This model is adaptively updated
and used in a Kalman filter to introduce a powerful fading prediction
algorithm. The simulation results demonstrate the effectiveness of
this approach in comparison with the conventional linear approach.

Assuming a two-dimensional isotropic scattering and an omni-
directional receiving antenna, it is known that the autocorrelation
function of the fading process can be written as [5]

Rh(t, t − τ ) =
E[h(t)h∗(t − τ )]

σ2
h

= J0(2πfdτ ), (1)

where fd is the maximum doppler frequency, J0(·) is the first-kind
Bessel function of the zero order, and τ is the time difference. A
Rayleigh fading process with the above correlation property is called
Jakes fading [5]. We use a wide-sense stationary (WSS) version of
the Jakes fading [6] (which uses 14 low-frequency sinusoids) to
examine the performance of the underlying algorithms. Also, we
generate a more realistic and non-stationary mobile fading using a
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ray-tracing approach. The algorithms are examined with this non-
stationary fading as well.

The rest of this article is organized as follows. In the next section,
first the fading assumptions and notations are introduced. Then, a
general fading formulation is explained which is used to propose
a state-space model. Section III describes both the linear and our
adaptive prediction algorithms. Finally, the algorithms are compared
in the simulation results.

II. CHANNEL MODELING

In this article, we consider a fading channel from a transmit antenna
to a receive antenna. A single path flat fading is assumed for the
channel. In the case that the path delay variations are not negligible
in comparison to the symbol period, the same analysis could apply
to each resolvable multipath component [7].

The channel fading coefficient, hn, is zero mean, and has the
variance of σ2

h = 1. The hn is estimated at the receiver using
the available pilots, training sequence, etc. This could be shown as
hn = hn + vn, where hn is the estimate of the channel fading, and
vn is the estimation error modeled as a zero mean Gaussian noise [8]
with the variance σ2

v . As an indicator for the estimation quality, the
observation SNR is defined as SNRz = σ2

h/σ2
v = 1/σ2

v .

A. A General Fading Model

When the receiver, the transmitter, and/or the scatterers are moving,
each scattered component undergoes a Doppler frequency shift given
approximately by [9], [10]

f(k) = fd cos(θ(k)) (2)

where θ(k) is the incident angle of the k’th component with respect
to the motion direction of the mobile and fd is the maximum doppler
frequency defined as fd = V

c
fc, where fc is the carrier frequency,

V is the mobile speed and c is the speed of light. Assuming Nsc

scatterers, the complex envelop of the flat fading signal at the receiver
is

h(t) =

Nsc
∑

k=1

a(k) ej(ω(k) t+φ(k)) (3)

where for the k’th scatterer, a(k) is the (real) amplitude, φ(k) is the
initial phase, and ω(k) = 2πf(k). The phase φ(k) can be absorbed
in the amplitude as α(k) = a(k) ejφ(k). Assuming a sampling rate
of fs = 1/Ts, the fading samples can be written as

hn =

Nsc
∑

k=1

α(k) ejω(k)nTs (4)

where hn = h(nTs), and n is the time index. In the realistic mobile
environments, there are usually a few main scatterers which construct
the fading signal [4]. Note that Jakes model is a special case of the
general fading model, and is mathematically valid for a rich-scattering
environment.
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1) Estimation of the General Fading Parameters: Many channel
fading models result from the statistical modeling of the fading shown
in (4), including Jakes fading. However, the fading model (4) could be
observed as a deterministic equation. Assuming Nsc scatterers, there
are 2 Nsc unknown parameters to be determined in the model given
in (4). Using 2 Nsc fading samples, an equation set could be solved
to find ω(k) and α(k), for k = 1, . . . , Nsc (refer to [11] for details).
This approach uses only a few noisy measurements of the fading
process, hence it could result in poor estimation of the parameters.
Reference [12] uses an improved method to find the parameters. It
finds the doppler frequencies using an ESPIRIT algorithm. Then,
it solves a set of linear equations by the Least-Squares method to
estimate the complex amplitudes. Alternatively, reference [13] uses
Root-MUSIC method to find the doppler frequencies. In this paper,
we propose a new method to find the parameters. The details of the
method follows.

Assuming a constant scattering model, Fourier transform of the
fading signal shown in (4) is

H(ω) =

Nsc
∑

k=1

α(k) δ(ω − ω(k)) (5)

This means that different scattering components are decoupled in
the frequency domain and consequently could be estimated. The
Fourier analysis provides an accurate estimation of ω(k)’s if the
doppler frequencies do not change significantly over the observation
window. In practice, the ω(k)’s change slowly with time. Therefore,
an adaptive algorithm is used to track the fine changes of the doppler
frequencies after the initial estimation. A sudden change in the
frequencies may occasionally happen, for example, if the mobile path
abruptly changes. In this case, the frequencies should be estimated
again.

As it can be seen in (5), the α(k)’s also may be estimated from the
Fourier analysis. However, α(k)’s usually change faster than ω(k)’s
as mobile moves around and the scattering environment changes.
These changes may even be significant over a short observation
window. Therefore, the estimates of the α(k)’s should be kept up-to-
date by using the most recent fading samples. Knowing ω(k)’s, we
use a Kalman filter to efficiently follow the α(k) variations.

B. State-Space Representation

A time evolution model is a useful tool for the prediction of a
process. A well-known form of an evolution model is known as the
state-space model, which can be written as

{

xn = An xn−1 + qn

zn = mn xn + vn

(6)

where xn is an Nray ×1 state vector at time n, An is an Nray×Nray

matrix which controls the transition of the state vector in time, and
qn is a noise vector with the covariance Q = E[qn qH

n ], which
represents the model error. The mn is known as the measurement
matrix, vn is the observation noise, and zn is the system output. In
cases of interest, An, Q and mn are usually constant or slowly time-
varying. A well-known state-space representation of an AR model can
be found in [11]. We propose a new state-space model for the mobile
fading in the next section.

C. Proposed State-Space Model

Considering the general fading process given in (4), we propose
the following state-space model:

An = diag
[

ejωn(1) Ts , ejωn(2) Ts , . . . , ejωn(Nray) Ts

]

(7)

and
mn = [1, 1, . . . , 1]1×Nray , (8)

where Nray is the model order which is the number of the assumed
scatterers here (ideally, Nray = Nsc). The zn in (6) is substituted
with the available measurement of the fading sample, i.e., zn = hn.
Therefore, the state vector xn consists of the complex envelops of
the scattering components. A Kalman filter can utilize the state-space
model to estimate the state xn at each time.

III. PREDICTION ALGORITHMS

A. The Linear Prediction Algorithm (LP)

A linear predictor of order NAR, with the prediction depth of D
is shown as follows

ĥn = aD hn−D + · · · + aD+NAR−1 hn−D−NAR+1 (9)

=

NAR−1
∑

i=0

aD+i hn−D−i. (10)

Minimizing the mean square error (MSE) provides the prediction
coefficients, i.e.,

min E
[

∣

∣hn − ĥn

∣

∣

2
]

=

min
a

E





∣

∣

∣

∣

∣

hn −

(

NAR−1
∑

i=0

aD+i hn−D−i

)∣

∣

∣

∣

∣

2


 . (11)

where a = [aD aD+1 · · · aD+NAR−1]
T is the prediction coefficients

vector. The solution of (11) can be found by solving the Yule-Walker
equations [14], resulting in

a = R
−1

r0, (12)

where R = [Rji]NAR×NAR is the data correlation matrix and

Rji = E[hn−D−i+1 h
∗
n−D−j+1], (13)

and r0 = [r0j ]NAR×1 where

r0j = E[hn h
∗
n−D−j+1]. (14)

For Jakes fading, the problem is analytically solved, resulting in

Rji = σ2
h J0(2πfdT |j − i|) + σ2

v δ(j − i), (15)

r0j = σ2
h J0(2πfdT |j + D − 1|) + σ2

v δ(D + j − 1), (16)

where

δ(k) =

{

1, k = 0

0, k 6= 0
(17)

In practical situations, R and r0 are estimated using the fading
samples. There are other methods to find the prediction coefficients
as well. In a non-stationary environment, the coefficients should be
frequently updated to follow the model variations.

Here, the linear coefficients are estimated using a Least-Squares
approach and solving the equations by the Levinson-Durbin recur-
sion. This method provides the best results for the linear prediction
in our simulations. These estimates are frequently updated.

B. Proposed Fading Prediction Algorithm (KF)

We propose an adaptive fading prediction algorithm here. Fig. 1
shows the flowchart of the algorithm, and a description of the main
blocks follows.
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Fig. 1. Block Diagram of our Prediction Algorithm (KF)

Q The covariance matrix of the model noise
zn The observation sample

xn|n−1 The a priori estimate of the state xn (i.e., the estima-
tion of the state at the time n given the observations
upto the time n − 1)

xn|n The a posteriori estimate of the state xn (i.e., the esti-
mation of the state at the time n given the observations
upto the time n)

Pn|n−1 The covariance matrix of the a priori error
Pn|n The covariance matrix of the a posteriori error

TABLE I
VARIABLES USED IN KALMAN FILTER

1) Kalman Filtering: Kalman Filtering is now commonly used
in communication systems (for example, see [1], [15]). Assuming a
state-space model, Kalman filter efficiently estimates the state vector
xn using the observation samples. The estimation of the state vector
given the observations at the time n, shown as xn|n, is optimal in the
MMSE sense. This state vector is used to predict the future samples
of the fading signal later.

Table I defines the variables used in the Kalman equations, which
follow:

Prediction part:

xn|n−1 = An xn−1|n−1 (18)

Pn|n−1 = An Pn−1|n−1A
T
n + Q (19)

Update part:

xn|n = xn|n−1 + kn

(

zn −mn xn|n−1

)

(20)

Pn|n = Pn|n−1 − kn mn Pn|n−1 (21)

where

kn = Pn|n−1 m
H
n

(

mn Pn|n−1 m
H
n + σ2

v

)−1
. (22)

fc 2.15 GHz
fs 1500 Hz

SNRz 10 dB

TABLE II
SIMULATION PARAMETERS

2) Model Acquisition: The current parameters for the fading model
are estimated according to Section II-A.1. We apply the Fourier
method to estimate the ω(k), k = 1, . . . , Nray by performing FFT
over an observation window of Nwin recent samples, H = FFT[h].
We have used an FFT length of NFFT = 2 Nwin to increase the
frequency resolution. Therefore, each sinusoid can be projected upto
3 samples in H . First the peak of H is found, and then ω(1) is
calculated by averaging over the amplitudes of the three adjacent
frequency samples. An initial estimate of α(1) is also obtained in this
way. Other ω(k) and α(k)’s are found by continuing this procedure.

Acquisition could be done frequently to keep the doppler frequency
estimates updated. However, to decrease the required computations,
it may be done only if the error trend exceeds a threshold (see
Section III-B.5 for details). Furthermore, the algorithm does not
allow two consecutive acquisitions to happen too close to each other
because after each acquisition, other blocks of the algorithm should
have enough time to catch up with the new model parameters.

3) Tracking: An adaptive algorithm is used to track the fine
changes of the doppler frequencies. Using a gradient-based approxi-
mate, the following LMS algorithm can be applied

wn+1(k) = wn(k) + µx
H
n|n(k)mH

n (k) en, (23)

where

en = zn − hn|n, (24)

hn|n = mn xn|n. (25)

4) Prediction: Given the current state xn, which carries all the
information about the past, the future channel state should be pre-
dicted. It has been shown in [16] that given the state transition matrix
An, the MMSE estimate of the D-step prediction is

xn+D|n = A
D
n xn|n. (26)

where xn+D|n is the estimate of the state vector at the time n +
D given the observations until time n. Hence, the predicted fading
sample can be obtained as hn+D|n = mn xn+D|n.

5) Calculation of the Error Trend: We use an exponential window
for calculation of the error trend from the sample errors, as follows

En+1 = λEn + (1 − λ) |en|
2 , (27)

where λ is the forgetting factor (0 � λ < 1).

IV. SIMULATION RESULTS

Table II shows the simulation parameters. The two prediction
algorithms (LP and KF) are compared here, with respect to the
average MSE versus the prediction depth. The results are reported
for various linear orders NAR, and various scattering orders Nray ,
respectively (Nray is an estimate of Nsc in (4)). Fig. 2 shows the
results for the Jakes fading for the mobile speeds of V = 25 and
V = 100 kmph. It is observed that KF significantly outperforms LP
if Nray is large enough (here, for Nray ≥ 8), while LP fails at high
prediction depths regardless of the linear order.

Jakes fading is a valid model for a rich scattering area. Further-
more, because the Jakes fading is stationary, it can not model the
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Fig. 2. Comparison of MSE versus prediction depth for Jakes fading at
V = 25 and V = 100

changes in the scattering environment. We want to test the algorithms
with a more realistic fading signal. So we use the Ray-Tracing
simulation environment explained in [11] to generate the “RT fading”.
The mobile is randomly moving vertically and horizontally in the
scattering area and experiences different combination of signal rays.
At each point of the mobile path, it undergoes a different doppler
frequency and a different signal power for each ray. Therefore, the
generated fading can closely resemble the fading in a real mobile
environment.

Fig. 3 shows the results for RT fading for V = 25 and V = 100
kmph. It is observed that KF can always outperform LP. As RT fading
represents not a very rich scattering environment, it is observed
that increasing Nray does not necessarily improves the performance.
Note that LP is sensitive to the linear order at high mobile speeds.
In fact, it is observed in our simulations that a linear model is
not dependable for higher mobile speeds because the pattern of
the performance fluctuation follows the correlation properties of the
fading, i.e., a lower correlation results in a higher MSE. In conclusion,
the simulations show that the proposed prediction algorithm can
perform very well in real mobile environments, and it is significantly
more efficient than the linear algorithm.
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