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Abstract— For a wide class of multi-user systems, a subset of
capacity region which includes the corner points and the sum-
capacity facet has a special structure known as polymatroid.
Any interior point of the sum-capacity facet can be achieved by
time-sharing among corner points or by an alternative method
known as rate-splitting. The main purpose of this paper is to
find a point on the sum-capacity facet which satisfies a notion
of fairness among active users. In one case, the corner point for
which the minimum rate of the active users is maximized (max-
min corner point) is computed for signaling. In another case,
the polymatroid properties are exploited to locate a rate-vector
on the sum-capacity facet which is optimally fair in the sense
that the minimum rate among all users is maximized (max-min
rate). It is shown that the problems of deriving the time-sharing
coefficients or rate-spitting scheme can be solved by decomposing
the problem to some lower-dimensional subproblems. In addition,
a fast algorithm to compute the time-sharing coefficients to attain
a general point on the sum-capacity facet is proposed.

I. INTRODUCTION

In the multi-user scenarios, multiple transmitters/receivers
share a common communication medium, and therefore there
is an inherent competition in accessing the channel. Informa-
tion theoretic results for such systems imply that in order to
achieve a high spectral efficiency, the users with stronger chan-
nel should have a higher portion of the resources. Apparently,
the drawback is losing the fairness among the users. Providing
fairness among users, while achieving high-spectral efficiency,
emerges as a challenging problem.

A lot of research works have addressed this problem and
suggested different criteria to design a fair system. One of the
first criteria is known as max-min measure. In this method, the
main effort is to maximize the minimum rate of the users.

By relaxing the strict condition on fairness, the spectral
efficiency can be increases. As compromising solution be-
tween fairness and throughput, the proportional fairness is
proposed in [1]. In [2], a criterion based on Nash Bargaining
solution in the context of Game Theory is proposed. This
method generalizes the proportional fairness and increases the
efficiency of the system.

All of the aforementioned methods deal with a general
multi-user system. However, for a wide class of multi-user
systems, the capacity region has special structure that we can
exploit to provide fairness. Particularly, in some multiuser
systems, the boundary of the capacity region includes a facet

on which the sum-rate is maximum (Sum-capacity facet). In
such systems, one can benefit from the available degrees of
freedom, and determine the fairest rate vector on the sum-
capacity facet.

As a special case, we consider a class of multi-user systems,
in which the whole or a subset of the capacity region which
includes the corner points and the sum-capacity facet forms a
structure known as polymatroid. For this class of multi-user
systems, the sum-capacity facet has a! corner points, where a
is the number of users with non-zero power (active users). The
sum-capacity facet is the convex hull of these corner points.
This means that the interior points of the sum-capacity facet
can be attained by time-sharing among such corner points.

In [3], the optimal dynamic power allocation strategy for
time-varying single-antenna multiple-access channel is estab-
lished. To this end, the polymatroid properties of the capacity
region for fixed multiple-access channel with fixed input distri-
bution have been exploited. In [4], the polymatroid properties
have been used to find a fair power allocation strategy. This
problem is formulated by representing a point on the face of
the contra-polymatroid (see [3], [5]) as a convex combination
of its extreme points.

This article aims at finding a point on the sum-capacity
facet which satisfies a notion of fairness among active users by
exploiting the properties of polymatroids. In order to provide
fairness, the minimum rate among all users is maximized
(max-min rate). In the case that the rate of some users can not
increase anymore (attain the max-min value), the algorithm
recursively maximizes the minimum rate among the rest of
the users. Since this rate-vector is in the face of polymatroid,
it can be achieved by time sharing among the corner points.
It is shown that the problem of deriving the time-sharing
coefficients to attain this point can be decomposed to some
lower-dimensional subproblems. An alternative approach to
attain an interior point for multiple access channel is rate
splitting [6], [7]. This method is based on splitting the power of
all users except one user into two parts, and treating each spilt
user as two virtual users. By splitting the powers appropriately
and successive decoding of virtual users in a suitable order, any
point on the sum-capacity facet can be attained [6], [7]. Similar
to the time-sharing procedure, we show that the problem of
rate-splitting can be decomposed to some lower dimensional



subproblems.
There are cases that the complexity of achieving interior

points is not feasible. This motivates us to compute the corner
point for which the minimum rate of the active users is
maximized (max-min corner point). A simple greedy algorithm
is introduced to find the max-min corner point.

The rest of the paper is organized as follows. In Section II,
the structure of the polymatroid is presented. In addition, the
relationship between the capacity region and the polymatroid
structure is described. Section III discusses the case in which
the optimal fair corner point is computed. In Section IV, the
optimal fair rate-vector on the sum-capacity facet is computed
by exploiting polymatroid structures. In addition, it is shown
that the problem of deriving the time-sharing coefficients and
rate-splitting can be solved by decomposing the problem into
some lower-dimensional subproblems.

Notation: All boldface letters indicate vectors (lower case)
or matrices (upper case). det(H) denotes determinant and H

†

denotes transpose conjugate of the matrix H. M � 0 repre-
sents that the matrix M is positive semi-definite. 1n represents
an n dimensional vector with all entries equal to one. E is
a set of integers E = {1, · · · , |E|}, where |E| denotes the
cardinality of the set E. The set function f : 2E −→ R+ is a
mapping from a subset of E (there are a total of 2|E| subsets)
to the positive real numbers. A permutation of the set E is
denoted by π and π(i), 1 ≤ i ≤ |E|, represents the element
of the set E located in the ith position after the permutation.
For an a-dimensional vector x = {x1, x2, . . . , xa} ∈ R

a and
S ⊂ E, x(S) denotes

∑

i∈S xi. Also, for a set of positive
semi-definite matrices Di, D(S) represents

∑

i∈S Di.

II. PRELIMINARIES

Definition [8, Ch. 18]: Let E = {1, 2, . . . , a} and
f : 2E −→ R+ be a set function. The polyhedron

B(f,E) = {(x1, . . . , xa) : x(S) ≤ f(S),∀S ⊂ E,∀xi ≥ 0}
(1)

is a polymatroid, if the set function f satisfies

(normalized) f(∅) = 0 (2)

(increasing) f(S) ≤ f(T ) if S ⊂ T (3)

(submodular) f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) (4)

Any function f that satisfies the above properties is termed as
rank function. Note that (1) imposes 2|E| constraints on any
given vector (x1, . . . , xa) ∈ B(f,E).

Corresponding to each permutation π of the set E, the
polymatroid B(f,E) has a corner point v(π) ∈ Ra

+ which
is equal to:

vπ(i)(π) =















f({π(i)}) i = 1

f({π(1), . . . , π(i)})
−f({π(1), . . . , π(i− 1)}) i = 2, . . . , a

(5)

Consequently, the polymatroid B(f,E) has a! corner points
corresponding to different permutations of the set E. All the
corner points are on the hyperplane x(E) = f(E). In addition,

any point in the polymatroid on the facet x(E) = f(E) is
in the convex hull of these corner points. The hyperplane
x(E) = f(E) is called as dominant face, or simply face of
the polymatroid. In this paper, we use the term sum-capacity
facet to denote the face of the polymatroid.

For a wide class of multi-user systems, the whole or a subset
of the capacity region forms a polymatroid structure. As the
first example, consider a multi-access system with a users,
where the distribution of inputs are independent and equal to
p(x1), . . . , p(xM ). Then, the capacity region of such a system
is characterized by [9], [10]
{

r ∈ Rr
+|r(S) ≤ I (y; {xi, i ∈ S}|{xi, i ∈ Sc}) ,∀S ⊂ E

}

,
(6)

where y is the received signal, r represents rate vector, I
denotes the mutual information, and Sc is equal to E − S.
It has been shown that the above polyhedron forms a polyma-
troid [3].

As the second example, consider the capacity region of a
Multiple-Antenna Broadcast System. A subset of the capacity
region which includes the corner points and sum-capacity facet
forms a polymatroid. The reader is refereed to [11] for more
details.

III. THE FAIREST CORNER POINT

As mentioned, in some cases, the complexity of computing
and implementing an appropriate time-sharing or rate-splitting
algorithm is not feasible. This motivates us to compute the
corner point for which the minimum rate of the active users
is maximized (max-min corner point). In the following, we
present a simple greedy algorithm to find the max-min corner
point of a general polymatroid B(f,E).

Algorithm I
1) Set α = a, S = ∅.
2) Set π∗(α) as

π∗(α) = arg min
z∈E,z/∈S

f (E − S − {z}) (7)

3) If α > 1, then S ←− S ∪ {π∗(α)}, α ←− α − 1, and
go to Step 2; otherwise stop.

The following theorem proves the optimality of the above
algorithm.

Theorem 1 Let the vector v(π∗) be the corner point of
the polymatroid B(f,E) corresponding to the permutation
π∗ = (π∗(1), . . . , π∗(a)). For any other permutation π =
(π(1), . . . , π(a)),

min
i

vπ∗(i)(π
∗) ≥ min

i
vπ(i)(π). (8)

Proof: see [11].
Remark: In the case of multiple access channel, the above

algorithm implies an interesting result. It suggests that to
attain the fairest corner point with successive decoding, at
each step, one should decode the strongest user (the user with
the highest rate, while the signals of the remaining users are
considered as interference). Note that in MAC, the corner point



corresponding to the specific permutation π is obtained by the
successive decoding in the reverse order of the permutation.

It is worth mentioning that by using a similar algorithm,
one can find the corner point for which the maximum rate is
minimum. The algorithm is as follows:

Algorithm II
1) Set α = 1, S = ∅.
2) Set π∗(α) as

π∗(α) = arg max
z∈E,z/∈S

f (S + {z}) (9)

3) If α < a, then S ←− S ∪ {π∗(α)}, α ←− α + 1, and
go to Step 2; otherwise stop.

The optimality of the above algorithm can be proven by a
similar method as used to prove Theorem 1.

IV. OPTIMAL RATE-VECTOR ON THE SUM-CAPACITY

FACET

A. Max-Min Operation over a Polymatroid

In the following, the polymatroid properties are exploited
to locate an optimal fair point on the sum-capacity facet. For
an optimal fair point, the minimum rate among all the users
should be maximized (max-min rate). For a sum-capacity of
rSC, a fair rate allocation would ideally achieve an equal rate
of

rSC

a
for the a active users. Although this rate vector is

feasible for some special cases (see Fig. 1), it is not attainable
in the general case (see Fig. 2). The maximum possible value
for the minimum entry of a vector x where x ∈ B(f,E) can
be computed using the following lemma.

Lemma 1 In the polymatroid B(f,E), define

δ = max min
i∈E

xi.

s.t. (x1, . . . , xa) ∈ B(f,E). (10)

Then,

δ = min
S⊂E,S 6=∅

f(S)

|S|
. (11)

Proof: see [11].
In minimization (11), if the minimizer is not the set E, then

δ (the optimal max-min value) is less than rSC
a ( rSC = f(E)

is the sum-capacity), and therefore the ideal fairness is not
feasible. For example in the polymatroid, depicted in Fig 2,
the minimizing set in (11) is the set {3}, and therefore δ =
f({3}).

In the following, a recursive algorithm is proposed to locate
a rate vector x

∗ on the sum-capacity facet which not only
attains the optimal max-min value δ, but also provides fairness
among the users which have the rates higher than δ. The
proposed algorithm partitions the set of active users into t+1
disjoint subsets, S(0), ..., S(t), such that in the i’th subset, the
rate of all the users is equal to m(i), i = 0, · · · , t, where
δ = m(0) < m(1) < · · · < m(t). Starting from m(0), the
algorithm maximizes m(i), i = 1, · · · , t, given that m(j)’s,
j = 0, · · · , i−1, are already at their maximum possible value.

x1

x2

x3

x1 = x2 = x3

Fig. 1. All Equal Rate-Vector Is on the Sum-Capacity Facet

x1

x2

x3

x1 = x2 = x3

Fig. 2. All Equal Rate-Vector Is NOT on the Sum-Capacity Facet

To simplify this procedure, we establish a chain of nested
polymatroids, B(fα, Eα), α = 0, . . . , t, where

B(f t, Et) ⊂ B(f t−1, Et−1) ⊂ . . . ⊂ B(f0, E0) = B(f,E).
(12)

In the algorithm, we use the result of the following lemma.

Lemma 2 Let E = {1, . . . , a} and A ⊂ E, A 6= E. If
the set function f : 2E −→ R+ is a rank function, then
h : 2E−A −→ R+, defined as

h(S) = f(S ∪A)− f(A), S ⊂ E −A, (13)

is a rank function.

Proof: By direct verification.
Using the following algorithm, one can compute the rate

vector x
∗.

Algorithm III

1) Initialize the iteration index α = 0, E(0) = E, and
f (0) = f .



2) Find m(α), where

m(α) = min
S⊂E(α),S 6=∅

f (α)(S)

|S|
. (14)

Set S(α) equal to the optimizing subset.
3) For all i ∈ S(α), set x∗

i = m(α).
4) Define the polymatroid B(f (α+1), E(α+1)), where

E(α+1) = E(α) − S(α), (15)

and ∀S ⊂ E(α+1),

f (α+1)(S) = f (α)(S ∪ S(α))− f (α)(S(α)). (16)

5) If E(α+1) 6= ∅, set α←− α + 1 and move to step two,
otherwise stop.

This algorithm computes the optimization sets S(α),
α = 0, · · · , t and their corresponding m(α), where E =
⋃t

j=0 S(j) and x∗
i ∈ {m

(0), · · · ,m(t)}, i = 1, · · · , a.
In the following, we prove some properties of the vector

x
∗.

Theorem 2 Assume that the algorithm III is applied over the
polymatroid B(f,E), then

(I) x
∗ ∈ B(f,E) and is located on the sum-capacity facet

x(E) = f(E).
(II) The minimum entry of the vector x

∗ attains the optimum
value determined by Lemma 1 and

δ = m(0) < m(1) < · · · < m(t) (17)

Proof: see [11].
The remaining issue in Algorithm II is how to compute

minS⊂E,S 6=∅
f(S)
|S| . These types of problems are known as

geometric minimization. In order to find the minimizer, the
smallest value of β is desirable such that there is a set S with
f(S) = β|S|. For the special case of single antenna Gaussian
multi-access channel, computing such β is very simple. For
the general case, β can be computed by Dinkelbach’s discrete
Newton method as follows [12].

The algorithm is initialized by setting β equal to f(E)/|E|,
which is an upper bound for optimum β. Then, a minimizer Y
of f(S)− β|S| is calculated as will be explained later. Since
f(E)−β|E| = 0, then f(Y )−β|Y | ≤ 0. If f(Y )−β|Y | = 0,
the current β is optimum. If f(Y )−β|Y | < 0, then we update
β = f(Y )/|Y |, which provides an improved upper bound.
By repeating this operation, the optimal value of β will be
eventually calculated [13]. It is shown that the number of β
visited by the algorithm is at most |E| [12].

Using this approach, the minimization problem
minS⊂E,S 6=∅

f(S)
|S| is changed to minS⊂E,S 6=∅ f(S) − β|S|.

By direct verification of (4), it is easy to see that f(S)−β|S|
is a submodular function. There have been a lot of research
on submodular minimization problems [12], [14], [15]. In
[14], [15], the first combinatorial polynomial-time algorithms
for solving submodular minimization problems are developed.
These algorithms design a combinatorial strongly polynomial
algorithm for testing membership in polymatroid polyhedra.

B. Decomposition of the Time-Sharing Problem

In the following, we take advantage of the special properties
of x

∗ and polymatroids to break down the time-sharing
problem to some lower dimensional subproblems. In the pre-
vious subsection, a chain of nested polymatroids B(fα, Eα),
α = 0, . . . , t, is introduced, where B(f (α−1), E(α−1)) ⊂
B(f (α), E(α)) for α = 1, . . . , t. Since S(j) ⊂ E(j)) for
j = 0, . . . , t and regarding the definition of polymatroid,
B(f (j), S(j)), j = 1, . . . , t, is a polymatroid, which is defined
on the dimensions S(j)). According to the proof of the The-
orem 2 [11], the vector m(j)

1|S(j)| ∈ B(f (j), S(j)) is on the

hyperplane x(S(j)) = f(S(j)). Let {π(j)
γj , γj = 1, . . . , |S(j)|!}

be the set of all permutations of the set S(j), and u
(j)(π

(j)
γj ) be

the corner point corresponding to the permutation π
(j)
γ in the

polymatroid B(f (j), S(j)). Then, there exists the coefficients
0 ≤ λ

(j)
γ ≤ 1, γ = 1, . . . , |S(j)|!, such that

m(j)
1|S(j)| =

|S(j)|!
∑

γj=1

λ(j)
γj

u
(j)

(

π(j)
γj

)

, (18)

where
|S(j)|!
∑

γj=1

λ(j)
γj

= 1. (19)

Note that E =
⋃t

j=0 S(j). Consider a permutation π
(j)
γj as

one of the total |S(j)|! permutations of S(j), for j = 0, · · · , t,
then the permutation π formed by concatenating these permu-
tations, i.e. π =

(

π
(t)
γt , · · · , π

(0)
γ0

)

, is a permutation on the set
E.

Theorem 3 Consider the permutation π =
(

π
(t)
γt , · · · , π

(0)
γ0

)

of the set E.

(I) The corner point corresponding to this permutation in the
polymatroid B(f,E) is B(f (j), S(j))

vi(π) = u
(j)
i (π(j)

γj
), for i ∈ S(j), (20)

where u
(j)(π

(j)
γj ) is the corner point of the polymatroid

B(f (j), S(j)) corresponding to the permutation π
(j)
γj , and

u
(j)
i (π

(j)
γj ) denotes the value of u

(j)(π
(j)
γj ) over the di-

mension i, i ∈ S(j).
(II) The vector x

∗ is in the convex hull of the set of corner
points corresponding to the following set of permutations
{(

π(t)
γt

, · · · , π(0)
γ0

)

, 1 ≤ γt ≤ |S
(t)|!, . . . , 1 ≤ γ0 ≤ |S

(0)|!
}

,

(21)
where the coefficient of the corner point corresponding
to the permutation π =

(

π
(t)
γt , · · · , π

(0)
γ0

)

is equal to

λ
(t)
γt . . . λ

(0)
γ0 , i.e.

x
∗ =

|S(t)|!
∑

γt=1

. . .

|S(0)|!
∑

γ0=1

λ(t)
γt

. . . λ(0)
γ0

v
(

(

π(t)
γt

, · · · , π(0)
γ0

)

)

.

(22)



Proof: see [11].
Regarding the above statements, the problem of finding the

time-sharing coefficients is decomposed to some lower di-
mensional subproblems. In this part, we develop an algorithm
which finds the coefficients of the time-sharing directly over
the corner points of polymatroid B(f,E) to attain x

∗ (or any
other vector on the convex hull of the corner points).

Algorithm IV
1) Initialize α = 1, u1 = v(π∗) (the fairest corner point

obtained by algorithm I).
2) Solve the linear optimization problem

max τ

s.t.
∑α

i=1 µiui − x ≥ τ

0 ≤ µi ≤ 1 (23)

Let µα
i , i = 1, . . . , α be the optimizing coefficients.

3) If x =
∑α

i=1 µα
i ui, Stop.

4) α←− α+1. Set e = x−
∑α

i=1 µα
i ui and determine the

permutation π for which eπ(1) ≥ eπ(2) ≥ . . . ≥ eπ(|E|).
Set uα = v(π) and move to step 2.

The idea behind the algorithm is as follows. In each step, the
time-sharing among some corner points is performed. If all
entries of the resulting vector are equal, the answer is obtained.
If the entries are not equal, then a permutation π is determined
such that eπ(1) ≥ eπ(2) ≥ . . . ≥ eπ(|E|). We can compensate
the error vector e by including an appropriate corner point in
the set of corner points participating in time-sharing. Clearly,
the best one to be included is the one which has the highest
possible rate for user π(1) and lowest possible rate for user
π(|E|). Apparently, this corner point is v(π), computed by
the above algorithm.

Note that the Algorithm IV can be applied over the sub-
polymatroid to solve the lower dimensional problems or di-
rectly applied over the original polymatroid. If a and |Sj | are
relatively small numbers, the decomposition method has less
complexity, but for large a applying the Algorithm IV over
the original problem is less complex.

C. Decomposition of Rate-Splitting Approach

As mentioned, an alternative approach to achieve any rate
vector on the sum-capacity facet of MAC is rate splitting [6],
[7]. This method is based on splitting the power of all users
except one into two parts. The users with split power is treated
as two virtual users. Thus, there are at most 2a − 1 virtual
users. It is proven that by splitting the powers appropriately
and successive decoding of virtual users in a suitable order,
any point on the sum-capacity facet can be attained.

Similar to the time-sharing part, we prove that to attain the
rate vector x

∗, the rate-splitting procedure can be decomposed
into some lower dimensional subproblems. Consider a multi-
access channel, where the capacity region is represented by
polymatroid B(f,E) and the vector x

∗, derived in Algorithm
III, is on its face. Assume that the users in the set S(j) is de-
coded before the set of users in {S(j−1), S(j−2), . . . , S(0)} and
after the users in the set {S(t),...,S(j+2),S(j+1)

} . It can be shown

that the rate of the users in the set S(j) is characterized by the
polymatroid B(f (j), S(j)), where the rate vector m(j)

1|S(j)| is
on its face [11]. Regarding the results presented in [6], [7], we
can attain this rate vector by properly splitting the powers of all
user, except for one, in the set S(j) to form 2|S(j)|−1 virtual
users and by choosing the proper order of the decoding of the
virtual users. Consequently, using the following algorithm, we
achieve the rate-vector x

∗ in the original polymatroid.
Algorithm V
1) Apply rate-splitting approach to attain the rate vector

m(j)
1|S(j)| on the face of the polymatroid B(f (j), S(j)),

for j = 0, . . . , t. Therefore, at most 2|S(j)| − 1 virtual
users are specified with a specific order of decoding.

2) Starting from j = t, decode the virtual users in the set
S(j) in the order found in Step 1. Set j ← j−1. Follow
the procedure until j < 0.
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