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Abstract — This work studies the effect of the in-
terleaver optimization on the performance of Turbo-
codes for large block lengths, N → ∞. For N → ∞,
the weight of the systematic and parity check se-
quences, denoted by w1, w2 and w3, respectively, tend
to a jointly Gaussian distribution for typical values
of wi, i = 1, 2, 3 (typical values of wi are defined as

lim
N→∞

wi
N
6= 0, 1 for i = 1, 2, 3). To optimize the code per-

formance, it is desirable that the corresponding corre-
lation coefficients, denoted as ρij, i, j = 1, 2, 3, to be as
small as possible. It is however shown that: (i) ρij > 0,
i, j = 1, 2, 3, (ii) ρ12, ρ13 → 0 as N →∞, and (iii) ρ23 → 0
as N → ∞ for almost any random interleaver. This
means that for N → ∞, the optimization of the in-
terleaver has a diminishing effect on the distribution
of large weight error events. We discuss methods to
expurgate the low weight code-words (lower the error
floor) without affecting the code rate. The resulting
expurgated code has an “average spectrum” [1] and
consequently meets the best known random coding
error exponent (i.e., achieves the channel capacity).
We also present a condition on the channel Signal-
to-Noise-Ratio (SNR) such that the dominant error
events satisfy the Gaussian assumption and show that
this condition is satisfied in cases of practical interest.
This means that the asymptotic performance of the
expurgated code is not affected by the choice of the
interleaver for values of channel SNR of practical in-
terest.

I. Introduction

The advent of Turbo-codes [2] is perhaps the most impor-
tant development in coding theory in many years. These codes
can achieve near Shannon-limit error correcting performance
with a relatively simple decoding method. The basic idea
of Turbo-codes is to make use of some Recursive Convolu-
tional Codes (RCC) which are connected in parallel through
pseudo-random interleavers. Note that as the RCCs and also
the interleaver have linearity property1, the resulting code is
linear2, and consequently, group property and distance invari-
ance property hold.

Figure 1 shows the block diagram of the encoder of a rate
1/3 Turbo-code composed of two RCCs, where b1(m) is the

1The effect of interleaving is equivalent to multiplying the input

sequence by a permutation matrix which corresponds to a linear

operation.
2This is based on neglecting the effect of the possible non-

linearity caused by the method used to terminate the trellis.

systematic bit, and b2(m), b3(m) are the parity check bits.
The weight of the code in Fig. 1 is equal to the sum of the
weights of the b1(m), b2(m) and b3(m) sequences over a block,
which are denoted by w1, w2, and w3, respectively.
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Figure 1: Basic structure of the Turbo encoder.

We present results for the performance of Turbo-codes for
large block lengths, N → ∞. For N → ∞, the weight of
the systematic and parity check sequences, denoted by w1, w2

and w3, respectively, tend to a jointly Gaussian distribution
for typical values of wi, i = 1, 2, 3 (i.e., limN→∞

wi

N
6= 0, 1 for

i = 1, 2, 3). To optimize the code performance, it is desirable
that the corresponding correlation coefficients, denoted as ρij ,
i, j = 1, 2, 3, to be as small as possible. It is however shown
that: (i) ρij > 0 for i, j = 1, 2, 3, (ii) ρ12, ρ13 → 0 as N →
∞, and (iii) ρ23 → 0 for N → ∞ with probability one (for
almost any random interleaver). This means that for N →∞
and limN→∞

wi

N
6= 0, 1 for i = 1, 2, 3, the weights w1, w2

and w3 tend to become independent and consequently the
optimization of the interleaver has a diminishing effect on the
code performance.
For the low weight code-words, the assumption of Gaussian

distribution is no longer valid. It is well known that some low
weight code-words may exist which produce low weight parity
strings in both the RCCs. Such low weight code-words con-
tribute to an error floor on the code performance. The number
of such low weight code-words and their weights depend on
the code polynomial and the interleaver structure and hence
the interleaver optimization plays an important role in this
region. In [3], it is shown that the average number of these
low weight code-words tends to zero when N → ∞, except
for some special code-words in which the systematic stream
consists of certain pairs of 1’s.
We discuss methods to expurgate the low weight code-

words (lower the error floor) without affecting the code rate.



The key point is that the average number (averaged over all
possible interleavers) of such error events does not increase
with the block length [3], and consequently, the number of
such error events remain finite with high probability (for most
interleavers). The resulting expurgated code has an “average
spectrum”[1] and consequently achieves the best known ran-
dom coding error exponent (i.e., achieves the channel capac-
ity). We also present a condition on the channel SNR such
that the dominant error events satisfy the Gaussian assump-
tion and show that this condition is satisfied in cases of prac-
tical interest. This means that the asymptotic performance
of the expurgated code is not affected by the choice of the in-
terleaver for values of code rate and channel SNR of practical
interest.

II. Interleaver optimization for N →∞

We assume that the RCCs are generated by the transfer
function G(d) = N(d)/D(d). Using the results of [4], we
know that the impulse response of G(d) is periodic with period
p ≤ 2r − 1 where r is the memory length of the code. We are
mainly interested in the group structure and also the period-
icity property of the impulse response of G(d). In this respect,
we limit our attention to the structure of D(d). This does not
result in any loss of generality because the group structure
and also the periodicity property of the impulse response of
G(d) is not affected by the choice of N(d).
In general, we would like the period of the impulse response

of G(d) to be as large as possible. If the period is equal to
2r − 1, the resulting impulse response is called a maximum
length sequence (MLS). Inthe rest we assume that all RCCs
are MLS. The rules to determine all the possible configurations
of D(d) to obtain a maximum length sequence of period 2r−1
(for given r) are given in [4]. It can be shown that any MLS-
sequence satisfy the three randomness postulates [4]. One
consequence of this property is that in any period of an MLS-
sequence, the number of ones is equal to 2r−1 and the number
of zeros is 2r−1 − 1.
If we look at the impulse response of D(d) as a periodic

sequence (started infinite in the past), we obtain K = 2r − 1
non-zero sequences which are time shifts of each other. Each
sequence corresponds to a specific positioning of the impulse
within the period. We refer to these sequences as different
phases of the periodic signal. We assume that different phases
are labeled by integer numbers, say 1, . . . ,K, where the label
of a phase corresponds to the relative position of the corre-
sponding impulse within the period. It can be shown that the
set of phases of an MLS-sequence (plus the all-zero sequence)
constitute a group under binary addition [4]. The order of
each element in this group is equal to two, meaning that the
sum of each phase with itself results in the all-zero sequence
(denoted as the zero phase).
Using the group property of phases, we conclude that the

effect of the numerator of G(d) is to replace each phase with a
linear combination of some other phases. This effect is equiva-
lent to a permutation (relabeling) of phases and does not play
a role in our following discussions.
For bit position k = 1, . . . , N within the jth output stream,

we refer to the set of bit positions i ≤ k for which an impulse
at position i results in a 1 at position k as Rj(k), j = 1, 2, 3.
Obviously, R1(k) = {k}. If the bit position k is located in the
Mth period, i.e., M = dk/pe, then the number of positions
within each of the periods 1, . . . ,M−1 which belong to Rj(k),
j = 2, 3, is equal to 2r−1. The number of positions within the

Mth period (the period containing k itself) depends on the
relative position of k within the Mth period and also on the
numerator of G(d). We are mainly interested in large values of
M for which the effect of the elements within the Mth period
itself is negligible. This means |R2(k)|, |R3(k)| ' dk/pe2

r−1

where | . | denotes the cardinality of the corresponding set.

We use the notation bi(m), i = 1, 2, 3, m = 1, . . . , N , to
refer to the mth bit within the ith output stream. We have
the following statistical expectations: bi(m) = b2i (m) = 1/2.

In the following, we first show that w1, w2 and w3 have a
Gaussian distribution for high input weight codewords. This
is easily verified noting that all the 2N possible combinations
within the three steams are allowed, and consequently, the po-
sitions within each of the three output streams are iid binary
random variables (where 0 and 1 are equally probable). Using
the Central Limit Theorem, we conclude that w1, w2 and w3

which are the sum of N iid random variables have a Gaussian
distribution with mean N/2 and Variance N/4. On the other
hand, when concerning with high weight code-words, the con-
ditional weight distributions are also Gaussian and hence w1,
w2 and w3 are jointly Gaussian. To show this, let us con-
sider either of the parity sequences when w1 is known and is

in the range of its typical values, i.e., lim
N→∞

w1

N
6= 0, 1. Un-

der these circumstances, it is easy to show that the sequence
of bits in either of the two parities will be an m-dependent
sequence [5], and consequently, the corresponding weight (as
a random variable conditioned on the systematic weight) will
have a Gaussian distribution.

In this case, to show that w1, w2 and w3 are indepen-
dent, we need to show that the corresponding correlation co-
efficients ρij , i, j = 1, 2, 3, tend to zero as N → ∞, where
ρij = (4/N)(wiwj − wi wj) = (4/N)[wiwj − (N/2)2]. We
have wiwj =

∑

m

∑

n
bi(m)bj(n) where the expectation is

over all possible 2N combinations of the input. The overall
weight of the output sequence is equal to w = w1 + w2 + w3

which has a Gaussian distribution of mean 3N/2 and variance
N(3 + 2ρ12 + 2ρ13 + 2ρ23)/4. Noting that sequences with a
weight smaller than the mean value result in larger probability
of error as compared to sequences with a weight larger than
the mean, we conclude that the main objective in the code
design is to sharpen the peak of the PDF of w which is equiv-
alent to minimizing its variance. This is in turn equivalent to
minimizing the ρij coefficients. In the following, we first show
that the ρij > 0, so the minimum possible value for each of
them is zero. Noting the properties of the Gaussian distribu-
tion, this is equivalent to having independence between the
coded streams.

Theorem: We have ρij > 0 for i, j = 1, 2, 3.

Any of the pairs bi(m), bj(n), i, j = 1, 2, 3, m,n = 1, . . . , N ,
can take four different values, namely {00, 01, 10, 11}. The set
of the input sequences resulting in the value of 00 form a sub-
group of the group of all possible 2N input combinations. This
is a direct consequence of the linearity, and consequently, the
group property of the code. Noting the group property of
the set of corresponding coset leaders, two cases may happen.
There is either only one coset with the coset leader 11, or there
are three cosets with the cosets leaders 01, 10 and 11. The
important point is that in both of these cases, using the basic
results of the group theory, we conclude that the 00 sub-group
and its cosets contain the same number of input sequences.
This means that for the probability of the pair bi(m), bj(n),



we have the following two cases:

Case I: bi(m), bj(n) take the values 00, 11 each with prob-
ability 1/2, resulting in bi(m)bj(n) = 1/2.

Case II: bi(m), bj(n) take the values 00, 01, 10, 11 each with
probability 1/4, resulting in bi(m)bj(n) = 1/4.

The important point is that in both cases, we have
bi(m)bj(n) − bi(m) bj(n) > 0. This means that the corre-
lation coefficients ρij , i, j = 1, 2, 3 are always positive.

Theorem: We have ρ12, ρ13 → 0 as N →∞.

For ρ12 and ρ13 (interaction of the systematic stream with
each of the parity checks), Case II of the above two cases
is valid resulting in ρ12, ρ13 → 0 for N → ∞. Note that
b1(m) and b2(n) will be independent of each other if b1(m)
is not mapped (through interleaving) to a bit position within
R2(n), or otherwise, if R2(n) contains at least two elements.
This will be always valid unless for some trivial cases which
will have a vanishing effect on the overall result.

Theorem: We have ρ23 → 0 for N → ∞ with probability
one (for almost any random interleaver).

If R2(m), R3(n) contain at least one bit which are different
from each other then b2(m) and b3(n) will be independent of
each other. This results in b2(m)b3(n) = b2(m) b3(n) = 1/4.
This will be the case unless m = n and the elements of R2(m)
and R3(m) contain the same input bits (before and after in-
terleaving). This means that the corresponding interleaver
has restriction on the mapping of infinitely many bit posi-
tions. Obviously, the faction of such interleavers tend to zero
as N → ∞. This means that for almost any random inter-
leaver, we have ρ23 → 0 as N →∞.

III. Low weight codewords

Low weight code-words in Turbo-codes occur when a low
weight input results in a small weight for the parity sequences.
It means that every time each RCC leaves the zero state by a
1 in the systematic input stream it returns to zero-state after
a small duration. In [3], it is shown that for N → ∞, the
average number of low weight code-words decreases to zero
except for the code-words which are composed of several non-
overlapping short error events3 caused by two information bits
separated by an integer multiple of the impulse response in
each RCC. In other words, the average number of low weight
code-words in which more than two ones cause a short error
event is zero for large block lengths. The key point is that
the average number of such low weight code-words does not
increase with N [3]. The number of low weight code-words is
a nonnegative integer with a finite average, and consequently,
the probability of having an infinite number of such low weight
code-words tends to zero for large block lengths.

We can remove the effect of these low weight code-words on
the error floor region by expurgating them. Expurgating low
weight code-words decreases the dependency of Turbo-code
performance on the RCCs and interleaver structure and the
remaining code-words satisfy the Gaussian assumption.

To expurgate these code-words one way is to set one infor-
mation bit in each low weight code-word to zero. If the block
length is sufficiently large, the number of these bits will be
small in comparison with the block length, and consequently,
the code rate will not be affected.

3A short error event means leaving the zero-state and returning

back to it for the first time.

Another method to increase the minimum distance is to
create large block length interleavers from shorter ones. For
example, to create an interleaver of length 2N from a known
interleaver of length N , we can concatenate two such inter-
leavers and switch one information bit in each low weight
code-word between the two interleavers. The number of bits
to be exchanged remains finite with a high probability (for
most interleavers). The resulting Turbo-code of block length
2N has a minimum distance twice the original Turbo-code of
block length N . By repeating this procedure, we can increase
the minimum distance and remove the error floor.

IV. Probability of error for large block
Turbo-codes

In this section, we compute the condition on the channel
SNR such that the Gaussian assumption is valid. We also com-
pute the union bound on the Frame Error Probability (FER)
using the Gaussian distribution and find the cutoff rate based
on this assumption. Comparing the result with the true cut-
off rate, namely R0 = 1− log2(1 + e−EN/N0) where EN is the
channel symbol energy and N0 is one-sided Gaussian power
spectrum of noise [6], gives an indication of the region in which
the Gaussian distribution approximation remains valid.

For an expurgated Turbo-code with code rate R and block
length N the weight distribution function can be modeled as
a Gaussian distribution with mean N

2R
and variance N

4R
where

the code rate R is acheived by using a larger number of par-
allel concatenated RCCs and/or puncturing which does not
affect the Gaussian assumption. The number of code-words
of weight w is

Nw '
2N
√

πN
2R

exp

[

−
(w − N

2R
)2

N
2R

]

(1)

The term in the union bound corresponding to the probability
of an error event of weight w (using BPSK modulation) is

pw = Q

(

√

2wEN

N0

)

(2)

Dominant code-words in the error probability occur around
the peak of Nwpw, which is wp =

N
2R
(1 − EN

2N0
). In order

for the Gaussian assumption to be valid, we require that
limN→∞

Rwp

N
6= 0, 1. It is easy to see that

Rwp

N
< 1, and

consequently, we only require that
Rwp

N
> 0, resulting in

EN

N0
< 2 (equivalent to 3 dB). After reaching this break point

of EN/N0 = 3 dB, the behavior of Turbo-code cannot be mod-
eled any more using Gaussian distribution.

In practice, Turbo-codes are used in much lower range of
SNR. For example, the value EN

N0
= 3 dB corresponds to the

value of Eb

N0
= 7.7 dB (Eb stands for energy per information

bit) for a code of rate 1/3, or to Eb

N0
= 6 dB for a code of rate

1/2. These values are substantially higher than the ranges of
Eb/N0 used in practical systems. In other words, for SNRs of
interest the dominant code-words of expurgated Turbo-code
follow the Gaussian assumption.

To find the cutoff rate under the Gaussian assumption, us-
ing the union bound, we have

Pe <

∫ N
R

0

Nwpwdw (3)



By using the inequality Q(x) < 1
2
exp(−x2

2
), we can reduce

(3) to

Pe <
2N−1

√

πN
2R

A

∫ N
R

0

exp

(

−

[

w − N
2R

(

1− EN

2N0

)]2

N
2R

)

dw (4)

where

A = exp

(

−
N

2R

[

1−
(

1−
EN

2N0

)2
])

(5)

and hence,
Pe < 2

N−1AB (6)

where,

B = Q

[

√

N

R

(

EN

2N0

− 1
)

]

−Q

[

√

N

R

(

EN

2N0

+ 1
)

]

(7)

For EN

N0
< 2 and N →∞, we have

lim
N→∞

Q

[

√

N

R

(

EN

2N0

− 1
)

]

= 1 (8)

and,

lim
N→∞

Q

[

√

N

R

(

EN

2N0

+ 1
)

]

= 0 (9)

and hence B can be approximated as 1. Let us define

RT =
1

2 ln(2)

[

EN

N0

−
1

4

(

EN

N0

)2
]

. (10)

We can see that if R < RT , then the probability of error
converges to 0 as N → ∞. Figure 2 shows the difference
between R0 and RT around the break point of EN/N0 = 3 dB.
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