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ABSTRACT

We explore the transform coefficients of various fractal-
based schemes for statistical dependence and exploit
correlations to improve the compression capabilities of
these schemes. In most of the standard fractal-based
schemes, the transform coefficients exhibit a degree of
linear dependence that can be exploited by using an ap-
propriate vector quantizer such as the LBG algorithm.
Additional compression is achieved by lossless Huffman
coding of the quantized coefficients.

1. INTRODUCTION

JPEG and Vector Quantization have certainly been the
most commonly used methods for image compression,
followed more recently by wavelet methods. However,
over the past few years, there has also been much inter-
est and development in fractal-based methods of image
compression [3, 4, 7], accompanied by a number of sig-
nificant developments [5]. Most of these schemes are
centered around the method of Iterated Function Sys-
tems [2]. The common conception is that fractal-based
schemes exploit geometric self-similarities that are in-
herent in images. However, a more realistic justification
of these schemes is that they exploit the local scaling
properties of irregularities, e.g. edges, across a range of
resolutions, in turn reflected in the decay of associated
wavelet coefficients.[8, 12]

Fractal-based schemes seek to approximate a target
image function f(z,y) as a union or tiling of geomet-
rically shrunken copies of subsets of f with suitably
transformed grey level values. As such, the image f
is approximated by the fixed point f of a contractive
operator or fractal transform T. From Banach’s Fixed
Point Theorem, the approximation f may be gener-
ated by the iteration procedure fo+1 = Tfn. (fo can
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be a blank screen, for example.) It is the transform T,
in particular the coeflicients of its geometric and grey-
level transformations, that is stored in computer mem-
ory, often requiring much less storage than the original
image f, resulting in significant (lossy) data compres-
sion.

In this study, we explore the statistical dependen-
cies of transform coeflicients for various fractal schemes
and exploit such correlations to improve their compres-
sion capabilities. We find that the fractal transform co-
efficients for most standard fractal-based schemes ex-
hibit a degree of linear dependence that can be ex-
ploited by using a proper vector quantizer such as the
LBG algorithm. Additional compression is achieved by
lossless Huffman coding of the quantized coeflicients.

2. BASICS OF FRACTAL COMPRESSION

As stated earlier, given a target image f, we seek to
find a contractive fractal transform operator 7' with
fixed point f approximates f to some suitable degree
of accuracy, i.e. d(f, f) < e where d denotes £2 (RMS)
metric. From an important corollary of Banach’s Fixed
Point Theorem, referred to in the IFS literature as the
Collage Theorem [1], this inverse problem reduces to
the following: Find an operator T such that d(f, T(f))
is suitably small. In other words, T should send the
target close to itself.

Originally, IFS-type methods sought to express a
target set or image as a union of shrunken copies of
itself. However, most real-world objects are rarely so
entirely self-similar. Instead, self-similarity may be ex-
hibited only locally, in the sense that subregions of an
image may be self-similar. This is the basis of the
block-encoding scheme of Jacquin [6] that has been used
in most fractal-based methods to date and which we
briefly summarize below:



e The target image is subdivided into two different
partitions of nonoverlapping blocks, as illustrated
in figure 1.

1. M x M parent blocks, Pi;, 4,5 = 1,..., M,
for simplicity we typically choose M = 2™,
for some integer m.

2. N x N child blocks, Cui, k,I = 1,...,N,
typically, N = 2 x M.

For each child block, Cyi, k,1 =1,..., N, choose
a parent block P;; and one of eight possible geo-
metric contractions wl(;,?, 1 Gy = Py, 1 <m <8,
Find a grey level map ¢t(;7;c)l : R = R that maps
the grey level values on F;; onto the grey level val-
ues on Cy; in an optimal way, 1.e. by minimizing
the £? distance

| Fwl(z,9) — $Ta(F @ 9) ll - (1)

In standard practice, the grey level maps are as-
sumed to be affine, i.e.

c;S(t) = at + 8.

Because the child blocks are nonoverlapping the
minimization of the £? distance in Eq. (1) be-
comes a least squares determination of o and 8.

For each child block Cj;, the parent block indices
(i(k,1), j(k,1)), the geometric map index m €
{1,2,...,8} and corresponding grey level coefli-
cients (a;j,5;;) define the fractal code for Cyy.

|

W)y (oneol 8 omenic waslormations)

Ty g (affine prey-Jovel map)

al

Gj

Rl

i

M =4 parcat blocks Wi Nel6 child bocks

T

Citd Block (818 pixels)

D P 0

Figure 1: Fractal block-coding of an image: a parent
block F;; is mapped onto a child block Cy.
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Ideally, the best results are obtained from an ez-
haustive search in which all parent blocks as well as
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all possible geometric maps are tested: For each child
Cpi, the parent block address, the geometric map in-
dex and grey level map coefficients yielding the small-
est £? distance in Eq.(1) determine the fractal code for
Cri. This procedure, introduced by Jacquin [6], is obvi-
ously a computationally expensive procedure. Restric-
tive searches requiring much less computational time
often yield results with rather small sacrifices in accu-
racy. This has been the object of much research in frac-
tal image compression [5]. Some standard approaches
include: (a) a reduced search of parent blocks to a pre-
scribed neighborhood of the child block, (b) consid-
eration of only a few - perhaps only one - geometric
transformations of the parent block to the child block,
(c) consideration only of parent blocks that overlap a
child block, but allowing for “sliding”. (d) modified
grey level maps, including the place-dependent maps
used in the so-called Bath Fractal Transform (BFT)
(9, 101

In what follows, we consider three simple variations
of the Jacquin block-encoding scheme along with the
BFT, as summarized in Table 1.

Scheme | Parent Search? | All geometric maps?
I Exhaustive Yes
11 Exhaustive No
I No No
BFT No | No B

Table 1: Fractal schemes studied in this paper

In the case of no parent searching, a child block is is
simply matched with its “co-centric” parent block, i.e.
the parent block centered at the same pixel as the child
block, except in the case of border blocks. The place-
dependent BFT grey level maps used in this study have
the form

oz, y, f(2,9)) = af(z, ) + B+ 1z +ny.  (2)
The final three terms correspond to the addition of a
planar or “ramping” term to the fractal term af(z,y).

3. QUANTIZATION OF FRACTAL
COEFFICIENTS

In order to improve compression, we explored the frac-
tal coefficients for various types of statistical depen-
dence. It has been found that for the first three schemes;
the grey-level coefficients exhibit a high degree of linear
dependence as illustrated in figure 2. Similar correla-
tion was found to exist among some of the BFT coeffi-
cients. This suggests the use of an appropriate vector
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Figure 2: a vs. B coefficients for scheme I, based on four
test images(“Lena”, “Ape”, “Aspen” and “San Fran-
cisco”).

quantization algorithm to quantize the slope and the
intercept simultaneously as a two-dimensional vector.
The LBG vector quantization algorithm [11] was used
to quantize some of the highly correlated fractal coeffi-
cients simultaneously and dependently, and the results
are illustrated in figures 3 and 4. The quantization
details as well as the errors are given in the captions.

4. DISCUSSION AND CONCLUSION

This paper represents a preliminary attempt to study
and exploit the redundancies in the fractal coeficients
in order to achieve compression gain. For various frac-
tal schemes, it was found that the grey-level coeffi-
cients exhibit some degree of linear dependence. The
LBG vector quantizer was used to quantize the corre-
lated coeflicients simultaneously. Some of the benefits
of using such a quantizer include (%) compression gain,
(#%) preservation of edge information, (#it) fractal image
compression at a predetermined bit rate, and (iv) lack
of dependence on the image. The Huffman algorithm
was used for binary coding of the quantized fractal coef-
ficients, achieving a near-entropy bit rate performance.

In the fractal schemes I-III, a reduction in compu-
tational complexity of fractal transforms is generally
accompanied by visible degradation in image fidelity.
For the BFT scheme, however, a significant reduction
in complexity was achieved with a relatively small loss
in fidelity. Exploiting the correlation that seems to be
inherent among some of the fractal coefficients results
in an improvement of the compression capacity of these
schemes. Further compression may be achieved by us-
ing differential and higher dimension LBG quantization
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(b)

Figure 3: 2-Dimensional LBG quantization and Huff-
man coding of the fractal coefficients for “Lena” (512 x
512 pixels, 8 bits/pixel): (a) Scheme I: L= 4096 lev-
els(10 bits), RMSE = 8.80, PSNR = 29.24, Bit Rate
= 0.359bpp, Cr=22.26:1, encoding time = 3527 sec.
(b) Scheme II: L= 4096 levels(11 bits), RMSE = 8.80,
PSNR = 29.24, Bit rate = 0.33, Cr = 24.38, encoding
time = 535 sec.



(b)

Figure 4: 2-Dimensional LBG quantization and Huff-
man coding of the fractal coefficients: (a)Scheme III:
L= 4096 levels(11 bits), RMSE = 12.35, PSNR =
26.29, Bit rate = 0.17, Cr = 46.55, encoding time
= 8 sec. (b) First order BFT, fractal coefficients
(@, 8,Y2,7Yy), 1-D LBG Quantization of o, and ~.
independently with: L = 512 levels(9 bits), and 2-
Dimensional LBG quantization of (8,7,), simultane-
ously with: L = 16384 levels(12 bits), RMSE=10.11,
PSNR = 28.03, Bit rate=0.47bpp, Cr = 17.01:1, en-
coding time = 10 sec.
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or decorrelation and orthogonal projection. Much work
remains to be done in this regard.
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