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Abstract — For a linear block code C, the Wag-
ner rule together with a subcode having an acyclic
Tanner graph are applied to decode C in a two-level
soft-decoding technique.

I. SUMMARY

A Tanner graph [1] (TG) representing a linear block code with
check matrix H = [h;;] is a bipartite graph in which one of
the two sets of vertices denote the parity nodes, the rows of
H, and the other set denote the symbol nodes, the columns
of H. A parity node u; is connected to a symbol node v; iff
h;; # 0. The single parity check codes can be easily decoded
by using the Wagner rule [2] where a bit-by-bit hard decision
of the received channel output is considered as the transmitted
codeword unless the parity is not satisfied in which case the
least reliable bit is flipped. The corresponding TG has a single
parity node adjacent with all symbol nodes.

It is natural to think of a generalization of the Wagner rule
on codes with an Acyclic Tanner Graph (ATG) by focusing
on one of the parity nodes, to be called the root parity. This,
together with coset decoding techniques, lead us to the appli-
cation of the Wagner rule on codes having TGs with cycle.
There are obviously two main parameters involved in this ap-
proach. Given a linear block code C, one first needs to deter-
mine a relatively large subcode Co of C with ATG to reduce
the number of cosets. Our experience has shown that always
the largest subcode results in the minimum overall complex-
ity. Another important property of Cp is the structure of the
corresponding minimal Tanner graph (MTG). To reduce the
decoding complexity it is essential: (i) to have the number
of branches leaving the root parity node as large as possible,
and (ii) branches to be as similar as possible. We refer to this
property as the uniformity of the Tanner graph. The class
of product codes (n,n —1,2) @ (m,1,m), called uniform gen-
eralized single parity (UGSP) codes, satisfy this uniformity
condition fully. Other than the aforementioned two factors,
the method to deal with the cosets of Gy for finding the most
overall reliable codeword is another important issue.

Suppose M = Mo + M. where M, is a generator matrix
for the space of coset representatives, and Mg" stands for a
generator matrix of the dual code Cj-. A coset Cy + ¢ is
specified by Co +¢ = {s+¢| Miz =0}. If Mg"c = b, then
Mi(z + ¢) = Mgtz + Mg'c = b. Therefore, the TG corre-
sponding to the coset Co + ¢ i1s the same as that of Co except
for the values of the parity nodes, i.e., the sequence of zeros
for the parity nodes of Cp has to be replaced by b = Mg c. It
follows that any two cosets are distinguished by the values of
their corresponding sequences of parity nodes. The set of all
such parity node sequences is a vector space called the parity
space corresponding to Co and is denoted by PS(Co).

The parity space is given by the generator matrix Mps =
Mgt x M.. The ATG of Cy, G1(Co), together with Tps(C), a
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minimal trellis diagram of the parity space in which the root
parity is ignored, is considered as a graphical representation
of C, called the Tanner graph-trellis (TG-T) of C.

If the roob parity in G1(Co) 15 of degree m then we may
think of Tps as an m-section trellis diagram. The edge label
set at each section of Tps is generated by the parity sequences
of the corresponding branch of Gz(Cp). If C is over field Fy,
then any element of F; can be the contribution of each edge ¢
of Tps to the root parity. Therefore, an edge e can be thought
of as a g-tuple e := (e1,e2,:+,e,) where e; is the version of e
which provides the root parity with contribution i ¢ F,;. To
each version ¢; of e, 1 < 1 < g, a confidency value is associated.
In the ¢-tuple of confidency values, the maximum and the
differences of the maximum with the rest are determined. The
differences are referred to as the confidency deviations.

All the edges lying on a path of Trks are originally consid-
ered with their preferred version, the version with maximum
confidency, unless the root parity is not satisfied in which case
a group of edges of the path are changed with their other ver-
sions such that the changes causes the least total confidency
deviation and satisfies the root parity. One way to implement
this procedure is to substitute each edge of Tps by a g-tuple
e = (ey,62,---,¢q) and then ignore the paths that do not sat-
isfy the root parity. The so obtained trellis, denoted TTps(C)
or simply TTps, is referred to as the twisted trellis of parity
space.

We call an n-section trellis diagram T regular if: (i) The
number of vertices of T' is the same for all time indices, except
for the initial and final time indices that have a single vertex.
(ii) Each section of the trellis is a complete bipartite graph.
(iii) The set of label of edges leaving or entering any vertex
of a section of T, except for the first and last sections, is the
whole set of edge labels of that section. One can simply apply
the Viterbi algorithm on T7Tps and find the optimal path.
However, we show that if TTps consists of disjoint regular
subtrellises then it can be decoded more efficiently.

II. RESULTS

The Reed-Muller codes, Hamming codes, Hexacode, extended
Golay codes, (32,16) quadratic residue code have been stud-
ied and for each of them bthe best maximal acyclic subcodes,
from decoding complexity point of view, has been determined.
The given systematic decoding technique has unified the best
previously known decoding methods for these codes. Our
approach has revealed the importance of the acyclic UGSP
codes.
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