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Abstract

In this work, we consider the problem of decoding a predictively encoded signal
over a noisy channel when there is a residual redundancy (captured by a γ-order
Markov model) in the sequence of transmitted data. Our objective is to minimize
the mean squared error in the reconstruction of the original signal (input to the
predictive source coder). The problem is formulated and solved through Minimum
Mean Squared Error (MMSE) decoding of a sequence of samples over a memoryless
noisy channel, which was previously recognized to be an open problem by Phamdo
and Farvardin in [3]. The related previous works include a sequence MAP decoder
[2] and several VQ MMSE decoders which all use a first-order Markov model for
the residual redundancy. The former is suboptimal when the performance criterion
is the mean squared error and the latter schemes are suboptimal since they decode
the data samples received over the channel (the prediction residues) rather than
the original signal. As well, using a first-order model, they fail to utilize all the
remaining redundancy in the decoding process. The solution is setup by modeling
the source and its redundancy with a trellis structure.

1 Introduction

An important result of the Shannon’s celebrated paper [1], is that the source and channel
coding operations can be separated without any loss of optimality. This has been the
basic idea of enormous research endeavors in separate treatment of source and channel
coders. However, in practise, there is residual redundancy [2] in the output of the source
coders which is due to their sub-optimality caused by e.g. a constraint on complexity or
delay. As Shannon stated, this redundancy can be used at the receiver to enhance the
performance of the system [1].
Recently, researchers have used the residual redundancy for enhanced channel decod-

ing e.g. [5] and [6] or for effective source decoding e.g. [7]-[9]. The problem is formulated
in the form of a Maximum A Posteriori detection e.g. [3] and [5] or a Minimum Mean

Squared Error estimation problem e.g. [4]. Several speech error concealment solutions
based on MMSE source decoding are presented in [8] and [9]. In [9] a solution to reduce
the complexity of the MMSE decoding and its application for error concealment in IS-641
CELP is presented.
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The recent literature clearly demonstrate the benefit of exploiting the residual re-
dundancies in reconstructing the data received over noisy channels. Although, different
applications have been studied, one general problem considered can be viewed as decod-
ing of a source encoded with a memoryless VQ when there is a residual redundancy in
the form of a first-order Markov model in the encoder’s output sequence. Recently, a
general solution for MMSE decoding of a source when the redundancy is captured more
efficiently by a γ-order Markov model (γ ≥ 1) was presented in [10].
In this work, we consider the problem of decoding a predictively encoded signal over a

noisy channel when there is a residual redundancy (captured by a γ-order Markov model)
in the sequence of transmitted data. In fact, in [2] it was shown that there is always a
residual redundancy in the output of a DPCM encoder. Our objective is to minimize the
mean squared error in the reconstruction of the original signal (input to the predictive
source coder). The problem is formulated and solved through Minimum Mean Squared
Error (MMSE) decoding of a sequence of samples over a memoryless noisy channel, which
was previously recognized to be an open problem by Phamdo and Farvardin in [3]. The
solution is setup by modeling the source and its redundancy with a trellis structure. The
proposed solution is optimized to minimize the computational complexity. Based on the
proposed trellis structure, we also present a Sequence MAP decoder which exploits the
redundancies in the form of a γ-order Markov model.
The related previous works include a sequence MAP decoder [2] and several VQ

MMSE decoders (e.g. [8]) which all use a first-order Markov model for the residual
redundancy. The former is suboptimal when the performance criterion is the mean
squared error and the latter schemes are suboptimal since they decode the data samples
received over the channel (the prediction residues) rather than the original signal. As
well, using a first-order model, they fail to utilize all the remaining redundancy in the
decoding process.
The organization of this manuscript is as follows. In section 2, an overview of the

system and the channel model used is described. In section 3, the Sequence MMSE
decoder is presented. The Sequence MAP decoder is presented in section 4. In section
5, the application of the proposed Sequence MMSE decoding scheme for decoding of the
predictively encoded signals is discussed. In section 6, numerical results and comparisons
are presented.

2 System Overview

The block diagram of the system is shown in Figure 1. The source encoder E receives the
sample Xn from an N -dimensional Euclidean space, RN , and maps it into an index In
from a finite index set J of M elements. The source encoder has memory i.e. it may use
the previous values of its input and/or output for each mapping. It is composed of two
components: the quantizer Q and the index generator I. The quantizer (considering the
encoder memory) maps the input Xn, to one of the reconstruction points or codewords in
RN 1. The bitrate of the quantizer r is given by d(log2M)e bits/symbol (or d(log2M)e/N
bits/dim). At the receiver, for each transmitted r-bit index (symbol) In = in, a vector
Jn = jn with r components is received, which depending on the channel model provide

1Capital letters (e.g. I) represent random variables, while small letters (e.g. i) is a realization. For
simplicity, P (I = i) is represented by P (I). Vectors are shown bold faced (e.g. X). Lower index indicate
time instant. Upper index in parenthesis indicate components of a vector or bit positions representing
an integer value.



Equivalent
Channel

Modulator

Encoder

Soft output

Decoder

Channel

Demodulator

Noisy

Channel

Reconstructor
X̂

X
Source Coder

J

I

Figure 1: Overview of the system

information about In in different ways.The reconstructor (source decoder) uses the infor-
mation sequence Jn+δ = [J1, . . . , Jn, . . . , Jn+δ] and produces an output sample X̂n. The
variable δ ≥ 0 denotes the delay allowed in the decoding process.
The noisy channel together with the channel encoder and decoder is replaced by a

channel model. We assume that the equivalent channel between I and J is memoryless,
i.e.,

P (J = j|I = i) = Πr
m=1P (j

(m)|i(m)), (1)

where i(m), j(m),m = 1, . . . , r are the bit components of i and j respectively. For a
sequence of transmitted symbols, In = [I1, I2, . . . , In] over a memoryless channel, we
have,

P (Jn = j
n
|In = in) = Π

n
q=1P (Jq = jq|Iq = iq). (2)

Therefore, the channel model includes any abstract memoryless mapping that can be
described by a pdf P (jn|in). A basic example of such a channel is the Binary Symmetric
Channel. In section 6, we use a BPSK modulation and a channel with AWGN which
produces soft outputs.

3 Sequence MMSE Decoding

Consider the case where due to the sub-optimality of the source coder there is a residual
redundancy in the output stream of the source coder. This redundancy is in the form of
a non-uniform distribution or memory in the sequence of the transmitted symbols. For
effective reconstruction of the transmitted information at the receiver, our objective is
to exploit this redundancy by designing the reconstructor (source decoder) in Figure 1,
such that it produces the Minimum Mean Squared Error estimate of the source sample
Xn given the received sequence Jn+δ = j

n+δ
= [j1, j2, . . . , jn+δ], where δ ≥ 0 is the

delay allowed in the decoding process. Based on the fundamental theorem of Estimation
Theory, this is given by,

x̂n = E[Xn|Jn+δ = j
n+δ
] (3)

which minimizes the expected squared error of estimation,

E[(Xn − X̂n)
′(Xn − X̂n)|Jn+δ = j

n+δ
] (4)



The Equation (3) can be expanded as follows,

x̂n =
∑

in+δ

E[Xn|In+δ = in+δ]P (In+δ = in+δ|Jn+δ = j
n+δ
). (5)

We assume the encoded (quantized) sample X̃n corresponding to the input sample Xn

can be written as a specified function f of the current and the K previously encoded
symbols, i.e.,

X̃n = f(In−K , . . . , In−1, In) (6)

In−q ∈ J , 0 ≤ q ≤ K

We refer to an encoder with such a characteristic as an encoder with memory length
K. Given the above Equation and assuming that the encoded sequence contain residual
redundancy in the form of a Markov model of order γ, γ ≥ 1, the Equation (5) is now
simplified to

x̂n =
∑

I
n−K−γ
n+δ

E[Xn|I
n−K−γ
n+δ ]P (In−K−γ

n+δ |Jn+δ) (7)

where In−K−γ
n+δ = [In−K−γ , . . . , In+δ]. Equation (7) provides the optimum MMSE re-

construction of the source sample Xn given the received sequence Jn+δ subject to the
abovementioned assumptions. This Equation describes the MMSE estimate in terms of
the weighted average of the terms E[Xn|I

n−K−γ
n+δ ], which we refer to as the decoder code-

words or collectively the decoder codebook. The weights are the probability of receiving
the corresponding sequence of indices given the received sequence Jn+δ = j

n+δ
. The

decoder codewords provide a finer quantization of the source samples as compared to
the encoder codewords which are described as a function of only In

n−K (see Equation
(6)). This, however, leads to a higher memory requirement at the decoder and assuming
that the encoder codebook provides a fine enough quantization of the source, we further
simplify the Equation (7) to the following,

x̂n =
∑

In−K
n ∈JK+1

E[Xn|I
n−K
n ]P (In−K

n |Jn+δ) (8)

which provides the MMSE estimate as a weighted average of the encoder codewords.
The weights or the probabilities P (In−K

n |Jn+δ = j
n+δ
) are calculated every time instant

as developed below. This methodology can also be employed to solve the optimum case
(Equation (7)) as discussed in the subsection 3.2.
First, we model the source In by a trellis structure. In this structure, the states at

time n corresponds to the ordered set

Sn = (In−γ+1, In−γ+2, . . . , In−1, In). (9)

Hence, there are M γ states in each time step (stage), Sn ∈ J
γ. Each branch leaving

the state at time step n corresponds to one particular symbol In+1 = in+1. Therefore,
there are M branches leaving each state. Each branch is identified by the pair (Sn =
sn, Sn+1 = sn+1) of the two states that the branch connects together. Having defined the
trellis structure as such, there will be one a priori probability P (In+1 = in+1|Sn = sn)
corresponding to each branch which characterizes the γ-order Markov property of the



source. The states now form a first-order Markov sequence. Using this property, the
memoryless assumption of the channel (see Eq. (1) and (2)), in a similar spirit to the
BCJR algorithm [12], the probability of a particular state Sn+m = sn+m, 0 < m ≤ δ
given the observed sequence Jn+δ is calculated as follows,

P (Sn+m|Jn+δ) = C .P (Sn+m|Jn+m) . P (J
n+m+1
n+δ |Sn+m), 0 ≤ m ≤ δ (10)

where Jn+m+1
n+δ = [Jn+m+1, Jn+m+2, . . . , Jn+δ] and C is a factor which normalizes the sum

of probabilities to one. The above equation can be computed using the well known
Forward Backward equation [12]. The first term is referred to as the forward equation
and is denoted by αn+m(Sn+m). This can be calculated recursively as follows,

αn(Sn = sn) = P (Jn = jn|In = in) . (11)∑

sn−1→sn

P (In = in|Sn−1 = sn−1).αn(Sn−1 = sn−1)

The second term in Equation (10) is referred to as the backward equation and is denoted
by βn+m(Sn+m). This can be calculated recursively as follows,

βn(Sn = sn) =
∑

in+1∈J

P (Jn+1 = jn+1|In+1 = in+1) .

P (In+1 = in+1|Sn = sn) . βn+1(Sn+1 = sn+1) (12)

Now, the Equation (10) can be rewritten as,

P (Sn+m = sn+m|Jn+δ) =

C .αn+m(Sn+m = sn+m) . βn+m(Sn+m = sn+m), 0 ≤ m ≤ δ (13)

where,

βn+δ(Sn+δ = sn+δ) = 1, ∀sn+δ ∈ J
γ (14)

Equations (11)-(14) provide the necessary means to calculate the probabilities of states
as described in Equation (10). The weights (probabilities) we need to calculate every
time instant to be used in Equation (8) are calculated using the probabilities of states.
Depending on the relative value of encoder memory K,to the residual redundancy order
γ, this is performed in two ways as described below.

3.1 Calculating the weights for K < γ

For the scenario with K < γ, we can calculate the probabilities required in Equation (8),
by performing γ −K − 1 summations over any of the probabilities P (Sn+m|Jn+δ) as long

as Sn+m includes In−K
n or equivalently, 0 ≤ m ≤ γ −K − 1. However, it is shown that

the number of computations required for the forward and backward recursions per time
step (denoted by NCfwd and NCbwd respectively) is given by,

NCfwd = (2M + 1)Mγ (15)

NCbwd = 3(δ −m)Mγ+1 (16)

where δ −m is the number of backward recursions required per time step. Therefore,
we can select the value of m such that it minimizes the overall computational burden.
We solve the following for the optimum value of m,

Minimize NCbwd = 3(δ −m) .Mγ+1 (17)

subject to 0 ≤ m ≤ γ −K − 1; 0 ≤ m ≤ δ



case 1. δ < γ − K In the cases where the delay is smaller than the difference of
the assumed residual redundancy order and the encoder memory, we are able to choose
m = δ and eliminate the backward term. The probabilities in Equation (8) are calculated
using (11) and the following,

P (In−K
n |Jn+δ) = . . .

∑
In+q

. . . P (Sn+δ|Jn+δ), (18)

q = δ − γ + 1, . . . , δ, q 6= −K, . . . , 1, 0.

case 2. δ ≥ γ −K Alternatively, when the delay is larger than γ −K, the NCbwd is
minimized when m = γ−K − 1, i.e. δ+K − γ+1 backward recursions is required. The
probabilities in Equation (8) are now given by,

P (In−K
n |Jn+δ) =

∑

In+1

∑

In+2

. . .
∑

In+γ−K−1

P (Sn+γ−K−1|Jn+δ) (19)

and Equations (11) to (14).

3.2 Calculating the weights for K ≥ γ

For the scenario with the residual redundancy order smaller than the encoder memory
K ≥ γ, the sequence In−K

n = [In−K , . . . , In−1, In] whose a posteriori probability is re-
quired, in fact corresponds to a sequence of states within the trellis structure of the
source as described before. Consequently, the desired probabilities can be calculated
using the probability of the corresponding sequence of states. We have,

P (In−K
n |Jn+δ) = P (Sn−K+γ−1

n |Jn+δ) (20)

This can be written in the following forward backward form where we have used the
assumption of redundancy order of γ, to replace P (Jn+1

n+δ |S
n−K+γ−1
n ) with P (Jn+1

n+δ|Sn).

P (Sn−K+γ−1
n |Jn+δ) = C.P (Sn−K+γ−1

n |Jn).P (J
n+1
n+δ |Sn) (21)

The value C is a factor which normalizes the sum of probabilities to one. The second
term or the backward term is given by the Equations (12) and (14). The forward term
is given by,

P (Sn−K+γ−1
n |Jn) = Π

0
q=γ−K [P (Jn+q|In+q).P (In+q|Sn+q−1)]P (Sn−K+γ−1|Jn−K+γ−1) (22)

For a comprehensive complexity analysis and alternative implementations of Sequence
MMSE Decoder refer to [11]. The Equation (22) can also be used to compute the weights
required for the optimum Sequence MMSE decoding given in Equation (7).

4 Sequence MAP Decoding

A Sequence MAP decoder exploiting the residual redundancies in the form of a first-order
Markov model was presented in [2]. Later in [3], a similar but optimal Sequence MAP
decoder was proposed. Here we present an optimal Sequence MAP decoder when the
residual redundancies are captured with a γ-order Markov model.
The Sequence MAP decoder receives the sequence Jn and determines the most prob-

able transmitted sequence,

în = arg max
In∈J

n
P (In|Jn) (23)



Using the same trellis structure as described in the previous section and considering
the memoryless property of the channel as well as the Markov model for the source
redundancy, it is straightforward to see that the Equation (23) is equivalent to,

în = arg max
In∈J

n
{

n∑

q=2

log[P (Jq|Iq)P (Iq|Sq−1)] + P (J1|I1)P (S1)} (24)

The Sequence MAP decoder in Equation (24) can be implemented using the well-known
Viterbi algorithm. We use the same trellis structure as defined before and the metric
corresponding to branch (Sq−1, Sq) is given by log[P (Jq|Iq)P (Iq|Sq−1)].

5 Reconstruction of Predictively Encoded Signals

In this section, we consider the MMSE reconstruction of DPCM signals over noisy chan-
nels. We focus on the DPCM systems with Auto Regressive prediction. This is due to the
popularity of these systems and the fact that the ideas employed in this case can be eas-
ily applied to the other cases including Moving Average (linear or nonlinear) predictive
encoding systems.
Figure 2, demonstrates the block diagram of a DPCM encoder with Auto Regressive

prediction. In this system, the quantized sample X̃n is given by,

Generator
Σ

+

+
+

ỸnYn

Σ

In

∑L
q=0 z−qAq

Xn

X̃n

Vn

−

VQ Index

Figure 2: DPCM Encoder

X̃n = Ỹn +
L∑

q=1

AqX̃n−q. (25)

which can be described as a function of the sequence of prediction residues [Ỹ1, Ỹ2, . . . , Ỹn].
Consequently, the Equation (6) holds and a solution based on the proposed Sequence
MMSE Decoding exists. However, this implies that the length of the sequence to be de-
coded grows with time. Since the complexity of the algorithms grow exponentially with
the sequence length, this would lead to impractical schemes. A manageable solution is
created by defining an effective memory length, i.e., assuming that the sample x̃n depends
effectively on Yn and only on K previous prediction residue values, [Ỹn−K , . . . , Ỹn−1, Ỹn].
Therefore, we can finalize the reconstructed value of the residues beyond n−K or equiv-
alently their corresponding output Xn−K−1. This idea is supported by the fact that in
DPCM systems error in one sample is effectively propagated to a limited number of future
samples.
For a first order AR predictive coder, Equation (25) can be rewritten as,

X̃n = Ỹn +A1X̃n−1 =
n−1∑

q=0

A
q
1Ỹn−q. (26)



The MMSE estimate (Equation (8)) is now given by,

x̂n = E[Xn|Jn+δ] = E[
n−1∑

q=0

A
q
1Ỹn−q|Jn+δ]

= E[
K∑

q=0

AqỸn−q|Jn+δ] +AK+1

n−K−2∑

q=0

E[Ỹn−K−1−q|Jn+δ] (27)

Subsequently, assuming an effective memory length of K, we approximate the second
term by AK+1x̂n−K−1 (replacing Jn+δ in the this term with Jn−K−1+δ). Next, we reach a
recursive formula for the Sequence MMSE Decoding tailored for decoding of a first-order
AR DPCM system.

x̂n = E[
K∑

q=0

AqỸn−q|Jn+δ] +AK+1x̂n−K−1 (28)

=
∑

I
n−K−γ
n+δ

E[
K∑

q=0

AqỸn−q|I
n−K−γ
n+δ ]P (In−K−γ

n+δ |Jn+δ) +AK+1x̂n−K−1 (29)

=
K∑

q=0

∑

I
n−q−γ
n+δ

AqE[Ỹn−q|I
n−q−γ
n+δ ]P (In−q−γ

n+δ |Jn+δ) +AK+1x̂n−K−1 (30)

The solutions provided in Equations (29) and (30) are perfectly implementable. However,
further approximation of the decoder codebooks could lead to more efficient systems at
a certain level of performance loss. One particular scenario of interest, is the case where
the decoder codebook is identical to the encoder codebook. This is derived as below,
from Equation (29), by replacing In−K−γ

n+δ by In−K
n and subsequently approximating the

decoder codebook E[
∑K

q=0A
qỸn−q|I

n−K
n ] by

∑K

q=0A
qE[Ỹn−q|In−q].

x̂n =
∑

In−K
n

{
K∑

q=0

AqE[Ỹn−q|In−q]}P (I
n−K
n |Jn+δ) +AK+1x̂n−K−1 (31)

For K = 0 the problem collapses to that of the MMSE reconstruction of prediction
residues,

x̂n =
∑

In

E[Ỹn|In]P (In|Jn+δ) +Ax̂n−1 (32)

In the next section, we present numerical results for Sequence MMSE decoding of a
DPCM signal over noisy channels. We will use Equation (31) for decoding and refer to
it as the Sequence MMSE decoder.

6 Numerical Results

To analyze the performance of the proposed decoders, we use a synthesized source similar
to [2]. The source here is a tenth-order Gauss-Markov source with the coefficients given
in Table 1. The coefficients are matched to the LPC coefficients of a 20ms segment of



coefficient (1-5) 1.1160 0.5365 -0.1830 -0.5205 -0.0535

coefficient (6-10) -0.3159 0.3263 -0.0194 0.2841 -0.2006

Table 1: Coefficients of the synthesized source

speech. The source Xn is quantized with a first-order linear auto regressive DPCM coder.
The predictor is a noisy channel (Chang and Donaldson) predictor [13]. The quantizer is a
Lloyd/Max scalar quantizer [14] withM levels, M = 8. The Index Assignment is natural
binary. Table 3 depicts the conditional entropy H(In|Sn) of the output of the DPCM
encoder for different orders of residual redundancy. This provides an indication of the
redundancy to be exploited and hence, the gains to be achieved. As given in this Table,
the redundancy due to the non-uniform distribution (γ = 0) is 0.34 bits. The redundancy
exploited by means of a first, second and third order Markov model is 1.15, 1.40 and 1.44
bits respectively. Figure 3.a demonstrates the effect of the effective memory length of the

Redundancy Order γ 0 1 2 3

Conditional Entropy 2.66 1.85 1.60 1.56

Table 3: Conditional Entropy of the source at different values of γ

decoder K. It is shown that increasing K noticeably enhances the performance. Figure
3.b provides a performance comparison between the proposed Sequence MMSE decoder
and the Sequence MAP decoder (section 4) at different orders of residual redundancy. We
use a BPSK modulation and an AWGN channel model with soft outputs. It is seen from
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Figure 3: Performance of the Sequence MMSE decoder (a) Effect of K or the effective
memory length of the decoder (γ = 2, δ = 0) (b) Comparison with Sequence MAP
decoder (K = 3, δ = 0)(EPA: Equal symbol Probability Assumption)

this figure that the proposed schemes provide effective solutions for source decoding over
noisy channels and gain as high as 7dB compared to the Maximum Likelihood decoding.



Also the proposed Sequence MMSE decoder outperforms the sequence MAP decoder by
about 2dB.
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