On Symbol-based Turbo Codes for cdma2000
- F. Khaleghi, A. Khandani, N. Secord, and A. Gutierrez
Nortel Networks
Email: {arideh@nortelcn

Tel: (613) 765-1256

Abstract L

Turbo codes have enjoyed a great attention in
recent Among different soft-output
decoding algorithms of Turbo codes only
maximum a posteriori (MAP) decoding as an
iterative soft-output decoder (BCJR) allows for
achicving an acceptable BER performance at
Eb/No levels within only 1 dB of the valuc
“corresponding to the Shannon capacity. .
The drawback of the MAP algorithm is the
memory required. Here, we
investigate the so-called symbol-based Turbo
codes. These codes allow for a reduced required
memory by 30% for the BCIR method .

1. Introduction '

Turbo-codes have replaced the convolutional
codes in ¢cdma2000 (third generation of [S-95
system) RTT proposal submitted to the ITU in
June 1998 as a candidate RTT for IMT-2000.
The input bits to the Turbo codc encoder are
divided to the blocks of a certain length
depending on the data rate as specificd in the
cdma2000 RTT (1}. In a so-called parallcl
Turbo code. the information bits arc sent as the
svstematic bits and then the block of the
information bits 15 encoded by the first
constituent encoder to produce the first parity
bits and the bits of the original block after being
interleaved arc cncoded by the second
constituent encoder producing the sccond set of
the parity bits. The systematic and parity bits arc
then transmitted ina serial fashion. The
intzrleaver in the conventional Turbe codes is
based on a bit-by-bit interleaving. In symbol-
based Turbo codes {2]. the structure of a
traditional Turbo code is modified 10 act over a
sub-block of input bits where the interlcaver is
constructed to permute the sub-blocks (while
preserving the relative order of the bits within
cach sub-block). The resulting codes are called
"Symbol-based Turbo-codes” [2]. By parsing the
input data block into n-bit symbols. we are in
essence merging nosections of the encoder wellis
into one. :
As known ftor the MAP Turbo decoding. the
entire state metric history must be stored in the
memory during the forward recursion up o the
end of the wtrellis. at which point the backward
algorithm begins and decisions can be made
starting with the last branch. with a need o store

vears.,

CXCCSsIve

0-7803-5668-3/99/$10.00 © 1999 IEEE.

471

only the last set of the state metrics computed
backward. This memory requirement is
obviously excessive. The merging of n trellis
stages results in a reduction in the effective block
length by 1/n. A shorter elfective block length
translates into [ewer stages for the forward and
backward recursions. and consequently,
values need to he stored.

An important spectal case of the above code
structure is obtained when the length of the sub-
blocks 1s equal to two bits. For this special case
(n=2), first the advantages are outlined in section
2. In section 3. it is shown that the computation
complexity of the Turbo decoder remains
roughly the same while the required memory
size 15 reduced by more than 30%. Some
simulation results arce presented in section 4. and
finally the conclusions are given.

2. Advantages of the Symbol-Based

Turbo Codes

In & Symbol-based Turbo ¢encoder, the Turbo
interleaver operates on groups of bits. The two
constituent convolutional encoders are the same
and still operate on a bit-by-bit basis.

In the decoder. the APP values of the symbols
arc passed from onc iteration to the next as
opposced to the APP values of the bits. This
reduces the number of the stages of the trellis
and hence the number of the state probabilities.
The assumption of the independence of the
conditional bit probabilitics in subscquent stages
of the trellis is removed. The assumption of the
independence is not completely valid. The
corresponding dependency is stronger for bits
which are closer to cach other. As a result. the
performance of the symbol-based decoding
algorithm will be closer to that of a true
maximum likclihood decoding.

Therefore. the benefits of the symbol-based
Turbo codes can be summarized as; 1) reduction
in the Turbo decoding memory requirements.
and 2) reduction in Turbo interleaver complexity.
2.1, Turbo Decoder Memory
Requirement Benefits

The number of treflis stages i a Symbol-based
Turbo-code is halt of the standard Turbo-code.
This reduces the size of the RAM required to
store the state probabilities by a factor of two.

fess

resulting in 33% overall reduction in the RAM
size tor 4 BCIR decoder.

In o Turbo-code of block length N with three
streams of output and 8 states. the size (in words)
of RAM required 1o store the state probabilities
is equal to 8 N, Thix is 2/3 of the total RAM. The
other 173 is used to store the channel outputs (3
Ny and the LLR values (N). Using Symbol-based
Turbo-code. the memory for storing the state
probabilities is reduced by a factor of twao.
resulting in an overall saving of 4/12 = 33% in
the RAM sivze.

In section 3. it is shown that the computational
complexity of the Symbol-based Turbo decoder
is practically identical to that of the conventional
bit Turbo decoder.

2.1.1. Symbol-Based Turbo Codes and Sliding
Window Algorithm

Sliding-window is a method to reduce the
memory requirement ol a Turbo-code decoder
(at the price of an increase in the computational
complexity [3.4]).

The key tdea in sliding window decoding is to
repeat the back-ward recursion in overlapping
windows to avoid storing the state probabilities
for the entire block. Each computational window
is composed of two consecutive sub-windows of
lengths A and B where. (i) the backward
computations performed in sub-window B are
redundant and are used to initialize the recursion
in sub-window A. and (ii) the state probabilities
are stored only in sub-window A. The price to

pay is a relative increase ol (B/A) in the
computational complexity of the backward

recursion, If the size of window A is very small
compared to the block size N. then the reduction
in the required memory size is not significant.
The required RAM for a bit-level Turbo decoder
consists of storage space for the channel outputs
(3 N) (i.c.. corresponding to frame size). LLR
values (N). and state probabilities (8 A. where A
is the window size). The RAM size is reduced
to 4 A for the state probabilitics of the Symbol-
based Turbo decoder.

2.2. Turbo Interleaver Complexity
Reduction '

The interleaving in Turbo-codes is achieved
cither by generating the interleaver on the "fly."
or by storing the interleaver wable. In the first
approach. the interleaver structure is stored in a
parametric form and the corresponding memory
requirement is negligible. There is however a
price to pay in terms of the computational
complexity. In the sccond approach. the entire

472

interleaver is stored. requiring a large RAM size.
Using symbol-based Turbo-code with n = 2
results in a reduction in the corresponding
computational (or memory) requirement by a
factor of two, Performance of Symbol-based
Turbo-code: According o the extensive
simulations conducted. symbol-based Turbo-
code with n = 2 results in a similar (or even
better) performance as compared to a traditional
bit-by-bit interleaving.

3. Decoding Complexity of Symbol

Based Turbo Codes

In this section we show that the computation
complexity of both the bit-based and symbol-
based Turbo decoders are comparable. In the
following analysis. we have not included the
complexity reduction of the interleaving and de-
interlcaving operations that are part of the
decoding process. We consider a decoding
algorithm tor Turbo-codes (with M = 3 memory
elements. 2 M = 8 states). Decoding is performed
in the log-domain. where the bit probabilities are
stored as the log-probability values. These values
are normalized such that the log-probability of
bit 0 is cqual to zero (this normalization is
achieved by subtracting the log-probability of the
zero from the log-probability of one). Such a
normalization reduces the memory required to
store the APP bit probabilities (to onc memory
location for cach bit) and also simplifies the
subsequent caleulations (additions involving zero
values are avoided).
The state probabilities are also stored as log-
probabilities where the values are normalized to
have zero value for the zero state (for both
forward recursion. @ values. and back-ward
recursion. f values). This normalization is
simply achieved by subtracting the log-
probability of the zero state from the other states
at each stage of the trellis. This normalization
results in the following advantages:

o It reduces the memory used to store the state
probabilities to 7/8 of its original value. This
is because the probabilities of zeros do not
need to be stored.

e It simplities the subsequent calculations
(which will largely compensate for the
computational complexity associated with
the normalization operation).

e [t reduces the chance of overflow throughout
the forward and backward recursions.

We assume that at cach stage of the trellis (in the

forward or backward recursion) the branch

metrics (¥ values) are pre-computed (for all the

branches of the current stage) and the results are
subsequently used o perform the rest of the
computations related o that stage. This results in
a reduction- - complexity because there exist
several branches with the same label in cach
section of the trellis for which we would like to
avoid the recalculation of the ¥ values.

We consider the conventional approach o
decoding in which the trellis is processed one
stage at a time (n = 1). and also an alternative in
which two subsequent stages of the trellis are
processed at once (n = 2):7" Symbol-based Turbo-
code”.

In the following. we provide a description of the
calculations involved in the decoding algorithm
and provide a comparison between the two cases
of n =1 (conventional decoding) and n = 2.

3.1. Operation [: Calculation of
Branch Metrics (y values)

The following figure shows two stages of a
trellis diagram corresponding 10 an 8-state Turbo
Code. The notation «/ ab on the branch labels
specifies the soft values of the encoder input and
output, respectively, where «a is the encoder
input and ab is the encoder output (systematic
and parity bits, respectively).

000

)
001 001
010 010
011 011
100 100
101 10}
110 110

t i

Figure 1. 8-state Trellis Diagram
The values involved in the computation of the
branch metrics for n = | are as shown in Table 1.
Since the log-probabilitics are normalized such
that the log-probabitity of zero is zero. the log-
probabilitics of zero are shown as zero. The log-
probability of one 1s @ won-zero number and is
shown by x. y. and 2. For the first column, the
first element is the APP value of the
corresponding bit (in the log domain) and the
second and the third elements are the conditional
probabilitics of the corresponding systematic and
parity bits as received at the channel output. In
the sccond column iy the number of

473

computations required 10 the

corresponding values.

gencerale

Table 1. Branch Metric Computation Values

n=1 APPand (‘ompul;um;;
Conditional Probabilities
000
007
xy{)
y |)
Xy7
y !
Total 2

Once can compute all the entrics of this table
using (wo operations per trellis stage (one
addition for xy and one extra addition for xyz).
This operation s repeated in the forward and
backward recursions resulting inoa total of 4
operations per trellis stage.

Table 2 shows the values for n = 2. where the

first two entrics are the APP valucs of the
corresponding bits (in the log domain). The
sceond two entries are the conditional

probabilitics of the corresponding systematic bits
(in the log domain) and the last two entries are
the conditional probabilitics of the corresponding
parity bits (in the log domain):

Table 2. n=2 Values

000000 00000f 0000 D000
0Ob0dO0 ObOdOr 0LOdeO ObOdet
a0c000 a0cO0f aOcOeO abcOef
ahed00 abed0f abede abedef
Once cuan compute all the entries of this table
using 12 operations per trellis stage as shown in
the Tollowing table:

Table 3. Computations for n = 2

a0ch 1
Obh0Od !
Oh0dot |
ObOdcO 1
ObhOdcet I
actot |
allctel) [
alcbet 1
abc |
abo |
abhvu 1
LkhL‘ |

d0o
dor
de0

doet

| Towl 12

[t should be mentioned that these operations are
repeated two times. once during the forward and
once during the backward recursions. This leaves
us with a total of 4. and 24 operations per trellis

stage for the cases of n = 1, n = 2. respectively.

This results inoa net value of 24 — 4 = 20
operations. or in other words a savings of 10
operations per trellis stage for the symbol based
Turbo Code with n = 2 when compared ton = 1.
3.2. Operation 11: Calculation of Forward
State Probabilities (« values)

Figure 2 shows the basic unit of computations
involved in updating the @ values for n = 1 and

n=2>

NG g T
- e o
R - DS
, A
) : ud.-
;w:[S ! Q\g:‘l

Figure 2. Computations for Updating
- Alpha Values

The corresponding computations forn = 1.n =2
are summarized in_the following-tables.
where 1), 1X:) denote the “inverse-log’
“log™ look-up table operations.

and the

Table 4. n'= 1 alpha Computations

Total 12

X+A |
Y+B . 1
X+ : I
HY+B) ’ |
IX+A)+HY+B) |
LiliX+0+0Y+B D |

Total
6 -

Table 5. n =2 alph? Computations

This means that the complexity of these
operations for n = 1 and n = 2 is the same (total
of 6x 8 states = 48 operations per trellis stage). A
simifar argument holds for the backward
recursion (lotal of 6 x 8 states = 48 operation per
trellis stage). Note that duc 1o the normalization
applied to the state probabilities. we need only to
include branches starting from a non-zero state
in the above computations. The corresponding
saving in the complexity is part of what we
referred to in the carlier discussion concerning
the advantages obtained through normalization
of the state probabilitics.

3.3. Operation [II: Normalization of the

_state probabilities

This operation takes 14 operations in each stage
of the trellis (7 operations to normalize the o
values and 7 operation to normalize the [
values). For n = 2. this will reduce to 14
operation per (wo- stage of the trellts. meaning 7
operations per stage to the advantage of n = 2 vs.
n=1

‘3.4. Operation 1V:.Mixing the o, S, y

values and updating the bit probabilities-
The following table§ show - the basic unit of
computations involved in mixing the results for
the. . fand y values. Noting that the total
number of branches in cach section of the trellis
forn=1.n=2is cqual to 16. 32, respectively.
we conclude that the: complexities for the two
cases are the same. The results of these
computations are subsequently added together
(after taking out of the log domain). to give the
bit probabilities. '

Table 6. Computations for n = l

X+A 1
Y+B 1
Z+C |
U+D I
[(X+A) B |
1Y+B) . S 1
(Z+C) . |
Ku+Dy -7 1

] HX+A+IY +B)+1(Z+C) 1=
+l(U+D) - A
LIX+A)HY+B)+HZ+ -
C)+lU+D)) -)

a+B+y | 2%16=32
I(o+B+y) 16

S 1 (a+B+y) 3*8=16
L (Z I (a+B+v) -
Normalization of I
log-probabilities

_thal 67

Table 7. Computations for n = 2

a+B+'\/ . 2”37_:64
I(a+B+y) 32
1 (o+B+y) - J (4%8) =32

L (Z [(a+PB+y) 4
Normalization of 4
log-probabilities _
Total ' :
o 136

This results in 2 operations per trellis stage in
favorofn=1vs.n=2.
3.5. Comparison of the computational
complexity per trellis stage for n=1 & n=2
A summary of calculations are shown in the
following table.)

Table 8. Comparisonof n=1andn=2

calculations
n=1 n=2
Operation | 4 24
Operation Il 96 96
Operation 111 14 7
Operation IV - 67 68 -
Total 181 195

It is observed that the computational complexity
per trellis stage of the two methods are almost
the same, while the symbol-based method results
in a saving in the size of the RAM memory
required to store the state probabilitics by a
factor of two. - :

4. Simulation Results

In this section. wc present some simulation
results on the performance of the symbol-based
Turbo codes. Figure 2 depicts the performance
results for block length of 288 for a code rate of

i,

Bt e Hate

Figure 2. BER and FER performance for
N=288, AWGN channel

475

In Figure 3. we compare the performance of the
2-D lincar congruential sequence (LCS)y symbol-
interteaver (IS-2000 Turbo
with that of the corresponding bit-based 2-D

based [nterleaver)
LCS interfeaver. These results also indicate that
no performance penaltics are associated with the
svinbol-based Turbo codes.

v BEf (IS 95C bit-based interleaver) BN !
. BER (IS 95C symhol-based interleaver)

£ iy
Figure 3. BER and FER performance for
N=192, AWGN channel

5. Conclusions

In summary. the benefits provided by the
Symbol Based Turbo code arc twofold -
reduction in memory tor decoding, and reduction
in Turbo Interlcaver complexity. The decoding
is reduced by 339% for the BCIR
decoding and may be reduced some for Window
decoding as compared to conventional Turbo
Codes. when the size of the window is large. Tt
was shown that the decoding complexity is
approximately the same for Symbol Based Turbo
codes as compared to conventional Turbo Codes.
Finally. the computational requirement for the
Turbo Interlcaver is reduced by a factor of two
when compared to that of conventional Turbo
Codes.

memory

References

[T} cdma2000 RTT, Draft Text for "95¢”
Physicul Layer (Revision 4).

2] M. S Bingeman and A. K.
Khandani.”Symbol-based Turbo-codes™. 1o

appear in the IEEE Communication Letters (also
refer tor "Symbol-based Turbo-codes for
Wircless Comumunications”, M. S, Bingeman,
M.A.Sc. Thesis. University of

Watcerloo).

131 S. Benedetto. D, Divsalar, G. Montorsi and
I*. Pollara. “Soft-output decoding algorithm.s in
iterative decoding of Turbo-codes™ TDA
Progress Report 42-124

41 AL 1. Viterbi. “An institutive justification and
asimplificd implementation of the MAP decoder
for convolutional codes™, pp. 260-264,

