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Abstract— 1 In this paper, we consider a downlink communi-
cation system, in which a base station (BS) equipped with M
antennas communicates with N users each equipped with K
receive antennas. We propose an efficient suboptimum algorithm
for selecting a set of users in order to maximize the sum-rate
throughput of the system. For the asymptotic case of N → ∞, it
is shown that by using a very simple precoding scheme of zero-
forcing beam-forming, the optimum sum-rate which behaves like
M log log N can be achieved. The complexity of our algorithm is
investigated in terms of the required amount of feedback from
the users to the base station, as well as the number of searches
required for selecting the users. It is shown that the proposed
method is capable of achieving a large portion of the sum-rate
capacity, with a very low complexity2.

I. INTRODUCTION

Many recent applications demand for transmission of data
at high rates. Multiple-input multiple-output (MIMO) systems
have proved their ability to achieve high bit rates on a
scattering wireless network [2].

In a MIMO Broadcast Channel (MIMO-BC), the base
station equipped with multiple antennas communicates with
several multiple-antenna users. Recently, there has been lots
of interest in characterizing the capacity region of this channel
[3], [4], [5], [6]. In [3]-[5], it has been shown that the sum-
rate capacity of MIMO-BC can be achieved by applying Dirty
Paper Coding (DPC) [7] at the transmitter. Practical schemes
for implementation of DPC are proposed in [8], [9], [10].
However, achieving the theoretical limits promised by DPC
faces many challenges.

In a network with a large number of users, the base station
can increase the throughput by selecting the best set of users
to communicate with. This results in the so-called “multiuser
diversity” gain [11], [12]. However, achieving the optimum
multiuser diversity gain requires an exhaustive search over all
possible combination of the users, which is not practical for
large-scale networks. To overcome this problem, references
[13] and [14] propose sub-optimum methods for user selection.
These methods exploit the multiuser diversity gain, but are
based on assuming DPC at the base station.

To avoid the complexity of the DPC, the simple precoding
scheme of “zero-forcing beam-forming”, which is sometimes

1This work is financially supported by Communications and Information
Technology Ontario (CITO), Nortel Networks, and Natural Sciences and
Engineering Research Council of Canada (NSERC).

2More details about this work can be found in [1]

called “channel inversion”, is considered by some authors
[15], [16], [17], [18]. Using zero-forcing beam-forming, the
downlink channel with M transmit antennas is decomposed
into N ≤ M interference-free subchannels, serving N users.
To achieve a good performance by using zero-forcing beam-
forming, the selected sub-channels must have high gains and
be nearly orthogonal to each other. As the number of users in-
creases, it becomes easier to meet such requirements. However,
the exhaustive search for selecting the best set of users is very
complex. In [19], the authors propose a suboptimum algorithm
for selecting such a set of users in a downlink environment
with large number of single-antenna users. It has been shown
that using this algorithm, the optimum sum-rate throughput
of the system can be asymptotically achieved as N → ∞.
However, in their approach, the base station must have perfect
channel state information (CSI) for all users.

To avoid the huge amount of feedback required by provid-
ing perfect CSI to the base station, reference [20] proposes
a downlink transmission scheme based on random beam-
forming relying on partial CSI at the transmitter. Reference
[20] shows that when the number of users tends to infinity,
the optimum sum-rate throughput can be achieved. However,
for practical number of users, it does not perform well [19].

In this paper, we consider a MIMO-BC with large number
of users and propose an efficient sub-optimum algorithm that
assigns the coordinates of transmission space to different users
in order to achieve the best performance in terms of the sum-
rate throughput. Zero-forcing beam-forming is used at the
base station as the precoding scheme. The algorithm starts
by setting a threshold value. By applying Singular Value
Decomposition (SVD) to all users’ channel matrices, only the
eigenvectors whose corresponding singular values are above
the set threshold are considered. Then, among these candidate
eigenvectors, the algorithm chooses a set of size M which are
nearly orthogonal to each other. Our analysis shows that this
scheme achieves the optimum sum-rate capacity for N → ∞,
which scales as M log log N . The advantage of our algorithm
over the algorithm proposed in [19] is that the coordinates are
selected among the eigenvectors with singular values above a
certain threshold, and the rest do not require to feedback their
information to the base station. Therefore, the complexity of
search and the amount of feedback is decreased significantly.

This paper is organized as follows. In section II, we
introduce the system model, and the proposed algorithm is



described in section III. Sections IV and V are devoted to
analyzing the performance, in terms of sum-rate throughput,
and the complexity of our proposed algorithm, respectively.
Finally, section VI concludes the paper.

Throughout this paper, the norm of the vectors are denoted
by ‖.‖, the Hermitian operation is denoted by (.)∗, and the
determinant and the trace operations are denoted by det(.) and
Tr(.), respectively. E{.} represents the expectation, notation
“log” is used for the natural logarithm, and the rates are
expressed in nats.

II. SYSTEM MODEL

In this work, a MIMO-BC in which a base station equipped
with M antennas communicates with N users, each equipped
with K antennas, is considered. We assume a homogenous
network, where the channel between each user and the base
station is modeled as a zero-mean circularly symmetric Gaus-
sian matrix (Rayleigh fading). The received vector by user k
can be written as

yk = Hkx+ nk, (1)

where x ∈ C
M×1 is the transmitted signal, Hk ∈ C

K×M

is the channel matrix from the transmitter to the kth user
(assumed to be known at the receiver side), and nk ∈ C

K×1 ∼
CN (0, IK) is the noise vector for the kth user. We assume
that the transmitter has an average power constraint P , i.e.
E {Tr(xx∗)} ≤ P . We consider a block fading model in
which each Hk is constant for the duration of a frame.
The frame itself is assumed to be long enough to allow
communication at rates close to the capacity.

The optimum achievable sum-rate capacity in MIMO-BC is
equal to [3]

ROpt = E


 max

Qn∑
Tr(Qn)=P

log det

(
IM +

N∑
n=1

H∗
nQnHn

)
 , (2)

where Qn is the transmit covariance matrix of the nth
user, and the expectation is taken over the channel matrices
H1, · · · ,HN .

III. PROPOSED ALGORITHM

As mentioned earlier, to maximize the sum-rate using
zero-forcing beam-forming, the selected eigenvectors must
be nearly orthogonal to each other, and their corresponding
singular values be sufficiently large. Basically, the measure of
orthogonality between two M × 1 vectors υ and ψ is defined
as,

z(υ,ψ) =
|υ∗ψ|2

‖υ‖2‖ψ‖2
. (3)

It is evident that the smaller is z(υ,ψ), the more orthogonal
will be υ and ψ.

Using Singular Value Decomposition (SVD), Hk can be
written as

Hk = UkΛkV
∗
k, (4)

where Λk is an K×M diagonal matrix containing the singular
values of Hk, Uk and V k are K × K and M × M unitary
matrices, respectively. Multiplying both sides of (1) by U ∗

k,j ,
where Uk,j is the jth column of Uk, it is easy to show that

rk,j = gk,jx+ wk,j . (5)

In the above equation, rk,j = U∗
k,jyk, gk,j =

√
λj(k)V ∗

k,j ,
where V k,j is the jth column of V k and

√
λj(k) is

the jth singular value of Hk corresponding to V k,j , and
wk,j ∼ CN (0, 1) is an AWGN. This equation suggests that
for selecting the dimensions with high gains, the norm of
the equivalent channel introduced by (5), gk,j , which is
equal to

√
λj(k), can be compared with a threshold. This

threshold is set by the base station at the beginning of the
transmission. Using such a threshold, also reduces the amount
of feedback and the size of search space for selecting the
coordinates. To satisfy the orthogonality criterion, the base
station can perform an exhaustive search for finding the “most
orthogonal set”3 among the pre-selected eigenvectors. Due
to the huge complexity of exhaustive search, the coordinates
can be chosen one by one. In other words, in each step the
eigenvector which is the most orthogonal to the previously
selected coordinates, is selected. The first coordinate is
chosen as the eigenvector with the maximum corresponding
singular value. The steps of the algorithm can be explained
in the following:

Proposed Algorithm (Algorithm 1):
1. Using SVD, each user computes the eigenvectors and

singular values of its channel matrix and sends back the
singular values which are larger than a predetermined
threshold t, along with their corresponding “right” eigen-
vectors, to the base station. These eigenvectors form the
following set:

S0 = {(k, j)| λj(k) > t}. (6)

2. Base station selects the index corresponding to the max-
imum value in S0. Let us define this index as (s1, d1),
i.e., the d1th dimension of the s1th user.

3. Define

S1 = S0 − {(s1, d1)},
γk,j(1) = z(V s1,d1 ,V k,j) ∀(k, j) ∈ S1, (7)

where z(., .) is defined in (3). Note that as ‖V k,j‖ =
‖V si,di

‖ = 1, z(V si,di
,V k,j) = |V ∗

sm,dm
V k,j |2.

4. For 2 ≤ m ≤ M , repeat the followings:

(sm, dm) = arg min
(k,j)∈Sm−1

γk,j(m − 1)

Sm = Sm−1 − {(sm, dm)}
γk,j(m) = z(V sm,dm

,V k,j) + γk,j(m − 1),
∀(k, j) ∈ Sm (8)

3In general, the orthogonality of a set {hi}M
i=1 can be measured by the

orthogonality defect, defined as
∏M

i=1 ‖hi‖2

det[HH∗]
, where H = [hT

1 | · · · |hT
M ]T .



In the above, γk,j(m−1) =
∑m−1

i=1 z(V si,di
,V k,j) is used as

the measure of orthogonality between a candidate eigenvector
V k,j and the set of selected eigenvectors, {(si, di)}m−1

i=1 , up
to the mth step. Since these dimensions are nearly orthogonal
to each other by the algorithm, with a good approximation,
γk,j(m−1) can be interpreted as the square magnitude of the
normalized projection of V k,j over the sub-space spanned by
{V si,di

}m−1
i=1 . It is obvious that the smaller is this projection,

the more orthogonal will be V k,j to this sub-space. The
recursive structure of γk,j(m), facilitates its computation at
each step of the algorithm.

After selecting the users we construct the “selected coordi-
nate matrix” as

H(S) =
[
gT

s1,d1
| gT

s2,d2
| · · · | gT

sM ,dM

]T
. (9)

Using zero-forcing beam-forming, the transmitted vector x can
be written as

x = H(S)−1u, (10)

where u = [us1,d1 , · · · , usM ,dM
]T is the intended vector to

be sent over the selected coordinates. Using (5) and (10), the
received signal over the mth coordinate is equal to

rsm,dm
= U∗

sm,dm
yk

= usm,dm
+ wsm,dm

. (11)

It can be seen that by applying zero-forcing beam-forming
the downlink channel is decomposed to M interference-free
sub-channels.

IV. PERFORMANCE ANALYSIS

In this section, we examine the performance of our proposed
algorithm in terms of the sum-rate throughput. First, we
consider the asymptotic case of N → ∞.

A. Asymptotic Analysis

The sum-rate capacity of MIMO-BC has been shown to
scale like M log log N , as N tends to infinity [20]. This
implies that the singular values 4 corresponding to the
selected eigenvectors should behave like log N . Here, we set
the threshold t = log N + (K − 2) log log N . 5

The following lemma implies that with this threshold, at
most one dimension is likely to be selected from a given user.

Lemma 1- Assuming K > 1, define ΩJ as the probability
of existing at least one user with J dimensions (J ≤ K) being
selected using the proposed algorithm. We have

ΩJ ∼ O

(
[log N ]MK−1

NJ−1

)
. (12)

As a result, limN→∞ ΩJ = 0, for J > 1. This implies that as
N → ∞, with probability one, at most one eigenvector for any
user is likely to be selected by this algorithm. This eigenvector

4We mean the singular values of HH∗.
5The threshold is set to this value in order to reduce the amount of feedback,

while guaranteeing the 1
log N

-orthogonality among the users to be selected in
the next step.

must correspond to the maximum singular value of that user.
The following lemma gives the asymptotic number of users
whose maximum singular values are above t:

Lemma 2- Let L be the number of users being selected in
the first step of algorithm 1. Then, as N → ∞, with probability
one

L =
[log N ]M

Γ(M)Γ(K)

(
1 + O

(
log log N

log N

))
. (13)

After pre-selecting the dimensions with high gains, the al-
gorithm searches for a subset of M nearly orthogonal di-
mensions, among those candidates. To do this, the algorithm
uses the orthogonality measure defined in (3). As shown in
Lemma 1, in the asymptotic case of N → ∞ at most one
eigenvector from each user is likely to be selected. This
eigenvector must correspond to the maximum singular value of
that user’s channel matrix, and is denoted by V i,max. Hence,
for the sake of simplicity of notation, we define the measure
of orthogonality between the users i and j, denoted by z(i, j),
as the orthogonality measure between V i,max and V j,max. In
other words,

z(i, j) = |V ∗
i,maxV j,max|2. (14)

From [1], Appendix A, the probability density function of
z(i, j) can be computed as,

pz(i,j)(z) = (M − 1)(1 − z)M−2. (15)

Definition- A set S = {ψi}M
i=1, in which ψi ∈ C

1×M ,
is called ε-orthogonal, if we have z(ψi,ψj) < ε, for every
ψi �= ψj ∈ S.

Theorem1- As N → ∞, the selected users by the proposed
algorithm, with probability one, construct an 1

log N -orthogonal
set.

Proof- Refer to [1].
Theorem 1 implies that as the number of users increases,

the selected coordinates become more and more orthogonal
to each other, and in the limit of N → ∞, they construct an
orthogonal basis for C

M . This result is not surprising, since
the number of users out of which this set is selected tends to
infinity.

The following theorem which is proved in [1], shows the
optimality of our proposed method in the asymptotic case of
N → ∞:

Theorem 2- Consider a MIMO-BC in which a base station
with M transmit antennas, and total power constraint P
communicates with N users, each equipped with K antennas.
Then as N → ∞, using the proposed algorithm and applying
zero-forcing beam-forming at the base station, the optimum
sum-rate capacity can be achieved, i.e.,

lim
N→∞

RProp −ROpt = 0. (16)

Theorem 2 implies that using the proposed algorithm for
user selection, and applying zero-forcing beam-forming at the
base station, the same performance as when the optimum
user selection algorithm, and optimum precoding scheme is
utilized, can asymptotically be achieved.



B. Simulation Results

In this section, we provide some numerical results to eval-
uate the performance of our scheme.

Figures 1-4 represent the graphs of sum-rate capacity for our
proposed scheme (with using zero-forcing beam-forming), as
well as the optimal scheme (using DPC) and TDMA (Time
Division Multiple Access). The Signal to Noise Ratio (SNR),
which is equal to the transmitted power P , is fixed at 10 dB
in these figures. Also, in all simulations, the optimum value
for the threshold is used. For the cases that the base station
and the users have 2 antennas (figures 1 and 2), it can be
observed that the performance of our scheme is very close to
the optimum performance. In the case that the base station
has 4 antennas (figures 3 and 4), there is a gap between the
same-rate achieved by our method and the optimum sum-rate,
but the performance is still acceptable (especially for the case
M = K = 4). Moreover, it is observed that TDMA method
has a weak performance in all cases (refer to [1] for more
details about TDMA).

Figure 5 represents the plots of sum-rate capacity versus
SNR, for M = 2,K = 1 and M = 4,K = 1. The number of
users is fixed to 100 in this case. It can be observed that the
proposed scheme has a good performance for all SNRs.
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Fig. 1. Sum-rate capacity, M = 2, K = 1

V. COMPLEXITY ANALYSIS

The use of zero-forcing beam-forming at the base station,
has significantly decreased the complexity of precoding in the
proposed algorithm. In this section, we investigate the com-
plexity of our algorithm in terms of the amount of feedback
required from the users to the base station, and the number of
searches required for selecting the best set of users.

A. Amount of Feedback Required

As can be observed in the proposed algorithm, only the
eigenvectors that belong to S0, defined in (6), must be sent
back to the base station, along with their corresponding
singular values. For the asymptotic case of N → ∞, from
Lemma 2, we conclude that the cardinality of S0 scales as
[log N ]M

Γ(M)Γ(K) . Assuming that for each eigenvector and its singular
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Fig. 2. Sum-rate capacity, M = 2, K = 2
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value 2M real values must be fed back, the total number
of real values required at the base station is asymptotically
equal to 2M [log N ]M

Γ(M)Γ(K) . To achieve the optimum performance,
the transmitter must have perfect knowledge about all users’
channels. Therefore, the total number of real values should
be sent to the base station, is equal to 2NMK. As a result,
the amount of feedback is significantly decreased. We can also
decrease the amount of feedback further, by using the modified
algorithm in [1].

B. Search complexity

Since at the first step of the algorithm, only a portion of
eigenvectors are pre-selected, the size of search space for next
steps is decreased from NK to L. As can be observed, at the
mth step of the algorithm, the base station searches for the
dimension with the smallest γk,j(m−1) among Sm−1, which
requires L − m + 1 searches. Therefore, the total number of
searches for selecting the desired set is equal to

∑M
m=1 L −

m + 1 = ML − M(M−1)
2 , which is linear in L. Again, we

can restrict our search space if the modified algorithm stated
in [1] is used.

As mentioned earlier, the best M eigenvectors for maximiz-
ing the sum-rate capacity can be found by exhaustive search.
In this case, the size of the search space is equal to

(
NK
M

)
.

In the asymptotic case of N → ∞, the total number of
searches is Θ([log N ]M ) for the proposed algorithm, which is
much less than that of exhaustive search (Θ(NM )). Therefore,
using our algorithm the complexity of search at the base station
is decreased significantly.

VI. CONCLUSION

In this paper, we have considered a downlink communica-
tion system, in which a base station equipped with M transmit
antennas communicates with N users, each equipped with K
receive antennas. We have proposed an efficient suboptimum
algorithm for selecting a set of users in order to maximize the
sum-rate throughput of the system. For the asymptotic case of
N → ∞, it is shown that by using a very simple precoding

scheme of zero-forcing beam-forming, the optimum sum-rate
which behaves like M log log N can be achieved. We have
also investigated the complexity of our scheme in terms of
the required amount of feedback from the users to the base
station, as well as the number of searches needed for selecting
the coordinates. It is shown that our algorithm, despite having
a very good performance, has a very low complexity.
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