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Abstract— Diversity order is an important measure for the
performance of different communication systems over MIMO
fading channels. In this paper, we define the precoding diversity
for the fixed-rate MIMO broadcast systems and we prove that
in these systems, lattice-reduction-aided precoding achieves the
precoding diversity. Also, we prove that lattice-reduction-aided
decoding achieves the receive diversity in MIMO point-to-point
and multiple-access systems1.

I. INTRODUCTION

In the recent years, MIMO communications over multiple-
antenna channels has attracted many researchers. In [1], a
transmission technique called V-BLAST is introduced for
high-rate communications over point-to point MIMO fading
channels. V-BLAST sends independent symbols over different
transmit antennas. Therefore, it can also be used for MIMO
multi-access systems. The basic proposed sub-optimum de-
coding methods for BLAST (such as nulling and cancelling,
zero forcing and GDFE-type methods) can not achieve the
maximum receive diversity which is equal to the number of
receive antennas. In [2], a lattice decoder is proposed for the
decoding of BLAST which achieves the maximum diversity.
However, its complexity is exponential with the number of
antennas. In [3], an approximation of lattice decoding, using
lattice-basis reduction, is introduced which has a polynomial
complexity and the simulation results show that it achieves the
receive diversity.

Recently, new information theoretic results [4], [5], [6], [7],
have shown that also in multiuser MIMO systems we can
exploit many of the advantages of multiple-antenna systems.
In [8], the authors have introduced a vector perturbation
technique which has a good performance in terms of symbol
error rate and they have shown by simulation that it achieves
a diversity order equal to the number of transmit antennas.
Nonetheless, this technique requires a lattice-decoder which is
an NP-hard problem. In [9], the authors have used lattice-basis
reduction to approximate the closest lattice point (using Babai
approximation). Also, in [10], a similar lattice-reduction-
aided precoding is used to reduce the average transmitted
power by reducing the second moment of the fundamental
region of the lattice. In this paper, we define the precoding
diversity for fixed-rate MIMO broadcast systems and prove
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that by using the method based on lattice-basis reduction,
we achieve the maximum precoding diversity in fixed-rate
MIMO broadcast systems. Also, we explain its relation with
MIMO multiple-access and point-to-point systems and give a
mathematical proof for achieving the receive diversity by the
lattice-reduction-aided decoding.

II. SYSTEM MODEL

We consider a multiple-antenna system with M transmit
antennas and M receive antennas. In the broadcast system,
we consider different receive antennas as different users and
in the multi-access system, we consider separate transmit
antennas. If we consider y = [y1, ..., yM ]T , x = [x1, ..., xM ]T ,
w = [w1, ..., wM ]T and the M×M matrix H, respectively, as
the received signal, the transmitted signal, the noise vector and
the channel matrix, we have the following matrix equation:

y = Hx + w. (1)

The channel is assumed to be Raleigh and the noise is
Gaussian, i.e. the elements of H are i.i.d with the zero-mean
unit-variance complex Gaussian distribution. Also, we have the
power constraint on the transmitted signal, E‖x‖2 = 1. The
power of the additive noise is σ2 per antenna, i.e. E‖w‖2 =
Mσ2. Therefore, the signal to noise ratio (SNR) is defined as
ρ = 1

σ2 .
For the broadcast system, in the decoding of the received

signal, the users can not cooperate with each other. To resolve
this problem, we can construct the transmitted signals such that
the interference is cancelled in the receiver, i.e. different users
see independent signals (only their data which is added by the
additive noise). Consider B as the reduced version of H−1

and u as the data vector which consists of integer elements.
At the transmitter we send x = Bu′ where u = u′ mod a,
and a is a constant number, related to the size of constellation.

For the multiple-access system, we send the transmitted
vector x with independent entries from Z

2 and at the receiver,
we find x̃ as the closest integer point to By where B is
the reduced version of H∗−1 (B = H∗−1U where U is a
unimodular matrix). When the data is restricted in a hypercube
with size a, the transmitted vector can be decoded by modulo
operation:

x̂ = Ux̃ mod a



III. DIVERSITY AND OUTAGE PROBABILITY FOR
FIXED-RATE MIMO BROADCAST SYSTEMS

When we have the channel-state information at the trans-
mitter, if there is no assumption on the transmission rates,
the outage probability is not meaningful. However, when we
consider fixed rates R1, ..., RM for different users, we can
define the outage probability Pout as the probability that the
point (R1, ..., RM ) is outside of the capacity region.

Theorem 1: For a MIMO broadcast system with M trans-
mit antennas and M single-antenna receivers and fixed rates
R1, ..., RM ,

lim
ρ→∞

− logPout

log ρ
≤ M.

Proof: If we consider Pout1 as the probability that the
capacity of the point-to-point system consisting of M transmit
antennas and one receive antenna (with independent channel
coefficient and CSI at the transmitter) is less than R1,

Pout ≥ Pout1

Pout1 = Pr{log
(
1 + ρ|h1|2

) ≤ R1}

By using the Chernoff bound, we have,

lim
ρ→∞

−Pr{log
(
1 + ρ|h1|2

) ≤ R1}
log ρ

≤ M

=⇒ lim
ρ→∞

− log Pout

log ρ
≤ lim

ρ→∞

− logPout1

log ρ
≤ M.

We can also define the diversity gain of a MIMO broadcast

constellation or its precoding diversity as limρ→∞

− logPe

log ρ
where Pe is the probability of error. Based on theorem 1,
the maximum achievable diversity is M . We show that the
proposed method (based on lattice-basis reduction) achieves
the maximum diversity.

Lemma 1: Consider B = [b1...bM ] as an M × M matrix,
with the orthogonality defect2 δ, and (B−1)∗ = [a1...aM ] as
the Hermitian of its inverse. Then,

max{‖b1‖, ..., ‖bM‖} ≤
√

δ

min{‖a1‖, ..., ‖aM‖} . (2)

Proof: Consider bi as an arbitrary column of B. The
vector bi can be written as b′

i +
∑

i�=j ci,jbj where b′
i is

orthogonal to bj for i �= j. Now,

‖b1‖...‖bi−1‖.‖bi‖.‖bi+1‖...‖bM‖ = detB
√

δ

= det[b1...bi−1b
′
ibi+1...bM ]

√
δ (3)

Acoording to the Hadamard theorem:

2orthogonality defect is defined as δ =

(‖b1‖
2‖b2‖

2
...‖bM‖2)

detBB∗

det[b1...bi−1b
′
ibi+1...bM ] ≤

‖b1‖...‖bi−1‖.‖b′
i‖.‖bi+1‖...‖bM‖ (4)

Therefore,

‖b1‖...‖bi−1‖.‖bi‖.‖bi+1‖...‖bM‖ ≤
‖b1‖...‖bi−1‖.‖b′

i‖.‖bi+1‖...‖bM‖
√

δ

=⇒ ‖bi‖ ≤ ‖b′
i‖
√

δ. (5)

Also, B−1B = I, resulting in <ai,bi> = 1 and <ai,bj>
= 0 for i �= j. Therefore,

1 = <ai, (b
′
i +

∑
i�=j

ci,jbj)> = < ai,b
′
i > = ‖ai‖.‖b′

i‖ (6)

=⇒ ‖ai‖.‖bi‖ ≤
√

δ (7)

=⇒ ‖bi‖ ≤
√

δ

‖ai‖ (8)

The above relation is true for every i, 1 ≤ i ≤ M .
Therefore, without loss of generality, we can assume that
max{‖b1‖, ..., ‖bM‖} = bi:

max{‖b1‖, ..., ‖bM‖} = bi ≤
√

δ

‖ai‖ (9)

≤
√

δ

min{‖a1‖, ..., ‖aM‖} . (10)

Lemma 2: Consider B = [b1...bM ] as an LLL-reduced
basis for the lattice generated by H−1 and dH∗ as the
minimum distance of the lattice generated by H∗. Then, there
is a constant αM (independent of H) such that

max{‖b1‖, ..., ‖bM‖} ≤ αM

dH∗

. (11)

Proof: For a lattice basis obtained by LLL reduction
[11], √

δ ≤ 2M(M−1)/4. (12)

Consider (B−1)∗ = [a1, ...,aM ]. By using (2) and (12),

max{‖b1‖, ..., ‖bM‖} ≤
√

δ

min{‖a1‖, ..., ‖aM‖} ≤

2M(M−1)/4

min{‖a1‖, ..., ‖aM‖} (13)

The basis B can be written as B = H−1U for some
unimodular matrix U:

(B−1)∗ = ((H−1U)−1)∗ = (U−1H)∗ = H∗(U−1)∗ (14)

Thus, (B−1)∗ = [a1, ...,aM ] is another basis for the lattice
generated by H∗. Therefore, the vectors a1, ...,aM are vectors
from the lattice generated by H∗, and therefore, the length of
each of them is at least dH∗ :

‖ai‖ ≥ dH∗ for 1 ≤ i ≤ M (15)



=⇒ min{‖a1‖, ..., ‖aM‖} ≥ dH∗ (16)

(13) and (16) =⇒ max{‖b1‖, ..., ‖bM‖} ≤ 2M(M−1)/4

dH∗

.

(17)

Lemma 3: Assume that the entries of the M × M matrix
H has independent complex Gaussian distributions with zero
mean and unit variance and consider dH as the minimum
distance of the lattice generated by H. Then, there is a constant
βM such that [12],

Pr{dH ≤ ε} ≤ βM ε2M . (18)
Sketch of the proof: We prove this lemma by induction on

M , the number of vectors. We should show that the probability
that a lattice, generated by M independent Gaussian N -
dimensional vectors, has a point inside the sphere, centered at
origin and with radius ε, is bounded by C(N,M)ε2M where
C(N,M) is a constant value. Indeed, we prove a stronger
statement. We show that When we have M vectors v1, ...,vM

with independent complex Gaussian elements (with zero mean
and unit variance) in an N dimensional complex space (N ≥
M ), for any sphere S (with radius ε and centered at r where
|r| = R):

Pr{L(v1,...,vM) ∩ S �= ∅}

≤



C(N,M)ε2N for R ≤ 1
C(N,M)ε2N

R2N−2M+2
for R > 1

. (19)

When M = 1, the lattice generated by v1 consists of the
integer multiples of v1. Therefore, the probability of existing
a lattice point in S is equal to the probability that v1 is in
at least one of the spheres {Sz} (z = n + im can be every
nonzero Gaussian integer) where Sz is the sphere which is
centered at r/z and its radius is equal to

ε

|z| .

Pr{v1 ∈ Sz} ≤




22N ε2N

|z|2N
for R ≤ 1

22N ε2N

|z|2N
e−R2

for R > 1

(20)

=⇒ Pr{L(v1) ∩ S �= ∅} ≤
∑

z

Pr{v1 ∈ Sz}

≤



C(N,1)ε2N for R ≤ 1
C(N,1)ε2N

R2N
for R > 1

. (21)

Now, we prove the induction step from M to M + 1.
Consider L(v1,...,vM+1) as the lattice generated by the vec-
tors v1, ...,vM ,vM+1. Each point of L(v1,...,vM+1) can be
represented by ivM+1 + v where v is point in the lattice,
generated by v1, ...,vM and i is a Gaussian integer. Therefore,

the probability of existing a lattice point in S is equal to the
probability that there is least one point of L(v1,...,vM) in one
of the spheres {S(M)

z }, where S(M)
z is the sphere with center

r− zvM+1 and radius ε and z is a nonzero Gaussian integer.
If |vM+1| = x,

Pr{L(v1,...,vM) ∩ S(M)
i �= ∅}

≤




C(N,M) ε2N

|i|2N
for Rz ≤ 1

C(N,M) ε2N

R2N−2M+2
z

for Rz > 1

(22)

=⇒ Pr{L(v1,...,vM ,vM+1) ∩ S �= ∅}

≤
∑

z

Pr{L(v1,...,vM) ∩ S(M)
z �= ∅}

≤




1

x2
c′ε2N for R ≤ 1

1

x2

c′ε2N

R2N−2(M+1)+2
for R > 1

(23)

where c′ is a constant. Now, by obtaining the average over x:

=⇒ Pr{L(v1,...,vM ,vM+1) ∩ S �= ∅}

≤



C(N, M + 1)ε2N for R ≤ 1

C(N,M+1)ε2N

R2N−2(M+1)+2
for R > 1

. (24)

Theorem 2: For a MIMO broadcast system with M trans-
mit antennas and M single-antenna receivers and fixed rates
R1, ..., RM , using the lattice-basis-reduction method,

lim
ρ→∞

− logPe

log ρ
= M. (25)

Proof: Consider B = [b1...bM ] as the LLL-reduced ba-
sis for the lattice, generated by H−1. Each transmitted vector s

is inside the paralletope, generated by r1b1, ..., rMbM where
r1, ..., rM are constant values, determined by the rates of the
users. Thus, every transmitted vector s can be wtitten as

s = t1b1 + ... + tMbM ,
−ri

2
≤ ti ≤ ri

2
(26)

For each of the transmitted vectors, the energy is

P = ‖s‖2 = ‖t1b1 + ... + tMbM‖2 (27)

=⇒ P ≤ 1

4
r2
1‖b1‖2 + ... +

1

4
r2
M‖bM‖2 (28)

Thus, the average transmitted energy is

Pav ≤ c1(‖b1‖2 + ... + ‖bM‖2) ≤
c1M.(max{‖b1‖2, ..., ‖bM‖2}) (29)



where c1 = 1
4 max

{
r2
1 , ..., r

2
M

}
. The received signals (with-

out the effect of noise) are points from the Z
2M lattice.

If we consider the normalized system, d2 =
1

Pav
≥

1

c1(‖b1‖2 + ... + ‖bM‖2)
is the squared distance between the

received signal points and
M

ρ
is the energy of the noise at the

receiver.
Now, for any positive number γ,

Pr{d2 ≤ γM

ρ
} (30)

≤ Pr{ 1

c1M max{‖b1‖2, ..., ‖bM‖2} ≤ γM

ρ
} (31)

Using lemma 2,

max{‖b1‖, ..., ‖bM‖} ≤ αM

dH∗

(32)

=⇒ Pr{d2 ≤ aM

ρ
} ≤ Pr{ d2

H∗

c1αMM
≤ γM

ρ
} (33)

Therefore, according to lemma 3,

Pr{d2 ≤ aM

ρ
} = Pr{d2

H∗ ≤ γc1αMM2

ρ
} (34)

≤ c2γ
M

ρM
(35)

where c1, c2 are constant numbers and dH∗ is the minimum
distance of the lattice generated by H∗. If the magnitude of
the noise component in each dimension is less than 1

2d, the
transmitted data will be decoded correctly. Thus, we can bound
the probability of error by the probability that |wi|2 is greater
than 1

4d2 for at least one i, 1 ≤ i ≤ M . Therefore,

Pe ≤ M

(
Pr

{
|w1|2 ≥ 1

4
d2

})

≤ M

(
Pr{d2 ≤ 22M

ρ
}+

Pr{22M

ρ
≤ d2 ≤ 42M

ρ
}. Pr

{
|w1|2 ≥ 22M

ρ

}

+ Pr{42M

ρ
≤ d2 ≤ 82M

ρ
}. Pr

{
|w1|2 ≥ 42M

ρ

}
+ ...

)
(36)

The components of the noise vector have complex Gaussian
distribution with unit variance. Therefore,

Pr

{
|w1|2 ≥ γM

ρ

}
≤ e−γ for γ ≥ 1 (37)

=⇒ Pe ≤ M

(
Pr

{
|w1|2 ≥ 1

4
d2

})
(38)

≤ M

(
c2

ρM
+

4Mc2

ρM
e−4 +

16Mc2

ρM
e−16 + ...

)
(39)

= M

(
c2

ρM
(1 + 4Me−4 + 16Me−16 + ...)

)
(40)

≤ cM

ρM
(41)

where cM is a constant number which only depends on M.
Thus,

lim
ρ→∞

− logPe

log ρ
≥ M. (42)

According to Theorem 2, this limit can not be greater than M .
Therefore,

lim
ρ→∞

− logPe

log ρ
= M. (43)

Corollary 1: Perturbation technique achieves the maximum
precoding diversity in fixed-rate MIMO broadcast systems.

IV. RELATION WITH LATTICE DECODING FOR MIMO
SYSTEMS

Similar to the previous section, by considering the outage
probability, we can show that the maximum achievable di-
versity for a MIMO multiaccess system with fixed rates is
equal to the number of receive antennas. When we have a
finite constellation, for each pair of constellation points, the
pair-wise error probability can be bounded by Chernoff bound
(similar to [13]) and by using the union bound, we can show
that the exact ML decoding achieve the diversity order of
M , the number of antennas. However, when we use lattice
decoding for a finite constellation and consider the out-of-
region decoded lattice points as errors, achieving the maximum
diversity by lattice decoding is not trivial anymore. However,
by using Theorem 2, we can show that the imperfect lattice
decoding still achieve the maximum diversity.

Lemma 4: Consider B = [b1...bM ] as a reduced basis
(LLL) [11] for the lattice generated by H∗−1, B∗−1 =
[a1...aM ], and δ as the orthogonality defect of the reduction.
Then, if the magnitude of the noise vector is less than
‖amin‖
2
√

Mδ
, the LLL-aided decoding method correctly decodes

the transmitted signal.
Proof: When we use the LLL-aided decoding method, we

find the nearest integer point to By. We should show that this
point is the same as the transmitted vector; or in the other
words, all the elements of Bw are in the interval (− 1

2 , 1
2 ). To

prove this, we show that ‖Bw‖ ≤ 1
2 :

‖Bw‖ ≤
√

M‖bmax‖.‖w‖
Now, according to lemma 1,

max{‖b1‖, ..., ‖bM |} ≤
√

δ

min{|a1‖, ..., ‖aM‖}



Therefore,

‖Bw‖ ≤
√

Mδ.‖w‖
‖amin‖

≤

√
M.

1

2
√

M

√
δ‖amin‖

√
δ.‖amin‖

=⇒ ‖Bw‖ ≤ 1

2
.

Lemma 5: Consider B = [b1...bM ] as a reduced basis
(LLL) [11] for the lattice generated by H and dH as the
minimum distance of the lattice generated by H. Then, there
is a constant number cM (independent of H) such that the
LLL-aided decoding method correctly decodes the transmitted
signal, if the magnitude of the noise vector is less than cMdH.

Proof: For an LLL reduction,
√

δ ≤ 2M(M−1)/4.

Therefore, if we consider cM =
2−1−M(M−1)/4

√
M

,

‖w‖ ≤ cMdH

=⇒ ‖w‖ ≤ 1

2
√

Mδ
dH

The basis B can be written as B = (H)∗−1
U for some

unimodular matrix U:

(B−1)∗ = ((H−1∗U)−1)∗ = (U−1H∗)∗ = H(U−1)∗ (44)

Thus, (B−1)∗ = [a1, ...,aM ] is another basis for the lattice
generated by H. Therefore, the vectors a1, ...,aM are vectors
from the lattice generated by H, and therefore, the length of
each of them is at least dH. Therefore,

‖w‖ ≤ 1

2
√

Mδ
‖amin‖.

Thus, according to lemma 4, LLL-aided decoding method
correctly decodes the transmitted signal.

Theorem 3: For a MIMO multi-access system (or a point-
to-point MIMO system with the V-BLAST transmission
method) with M transmit antennas and M single-antenna
receivers and fixed rates R1, ..., RM , when we use the LLL
lattice-basis-reduction method [14],

lim
ρ→∞

− logPe

log ρ
= M.

Proof: When ‖w‖ ≤ cMdH, we have no decoding error.
Thus, similar to the proof of theorem 2,

Pe ≤ Pr{c2
Md2

H
≤ M

ρ
}

+ Pr{c2
Md2

H
≤ 22M

ρ
}. Pr

{
‖w‖2 ≥ M

ρ

}

+ Pr{c2
Md2

H ≤ 42M

ρ
}. Pr

{
‖w‖2 ≥ 22M

ρ

}
+ ...

=⇒ Pe ≤ c′

ρM

where c′ is a constant. Therefore,

lim
ρ→∞

− logPe

log ρ
≥ M.

V. CONCLUSIONS

We have shown that LLL reduction, which is a polynomial-
time algorithm, achieves the maximum precoding diversity in
fixed-rate MIMO broadcast systems. Also, we have shown that
by using LLL reduction we can achieve the maximum receive
diversity in MIMO decoding. By using LLL reduction and the
Babai approximation, the complexity of the MIMO decoding
is equal to the complexity of the zero-forcing method with an
additional polynomial time preprocessing.
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