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Abstract— A simple signaling method for multi-antenna broad-
cast channels is proposed. This method converts the interference
matrix – but not necessarily the channel matrix – to a lower-
triangular form. Dirty paper coding is used to cancel the remaining
interference. The proposed scheme offers several desirable features
in terms of: (i) accommodating users with different number of
receive antennas, (ii) providing fairness and quality-of-service
(QoS), (iii) requiring low feedback rate. The simulation results
indicate that the achieved sum-rate is close to the sum-capacity of
the underlying broadcast channel. An asymptotic analysis shows
that the diversity order of the jth data stream, 1 ≤ j ≤ M is
equal to NK(M − j + 1), where M , N , and K indicate the
number of transmit antennas, the number of receive antennas,
and the number of users, respectively. Furthermore, it is shown
that the throughput of this scheme scales asM log log(K) and
asymptotically (K −→∞) tends to the sum-capacity of the MIMO
broadcast channel.

1 INTRODUCTION

Recently, multiple input multiple output (MIMO) systems
have received considerable attention as a promising solution
to provide reliable and high data rate communication. More
recently, the work on MIMO systems has been extended to
MIMO multi-user channels [1], [2]. In [1], a duality between
the broadcast channel and the multiple access channel is
introduced. This duality is applied to characterize the sum-
capacity of the broadcast channel as a convex optimization
problem. In [2], a reformulation of the sum-capacity as a min-
max optimization problem is introduced and a signaling method
which achieves the sum-capacity is presented. It is shown that
in an optimal signaling (maximizing the sum-rate), the power
is allocated to, at most,M2 uses (active users), whereM
is the number of transmit antennas [3]. In practical systems,
the number of users is large. In this case, finding the set of
active users by solving the optimization problem is a complex
operation. In addition, to perform such a computation, all the
channel state information is required at the base station which
necessitates a high data rate feedback link.

The duality and signaling method introduced in [1], [2] are
based on a result, known asdirty paper coding, on cancelling
known interference at the transmitter [4]. A method for approx-
imate implementation of the dirty paper coding is presented
in [5].

A number of research works have focused on practical
methods for signaling over MIMO broadcast channels. In [6],
a simple method that supports one user at a given time is
presented. This method exploits a special kind of diversity,
multiuser diversity, which is available in the multiuser system
with independent channels. Unlike [6], the signaling method

presented in other related works support multiple users at a
given time. In [7], a variation of channel inversion method is
used, where the inverse of the channel matrix is regularized
and the data is perturbed to reduce the energy of the transmitted
signal. However, in this method, the pre-coding matrix depends
on the data, and therefore, the method is computationally
extensive. In addition, no method for selecting active users
is suggested. In [8], a signaling method based on the QR
decomposition and dirty paper coding is introduced. The QR
decomposition converts the channel matrix, and consequently
the interference matrix, to a lower triangular form, where
the entry (p, q) denotes the interference of userp over user
q. Dirty paper coding eliminates the remaining interference.
By modifying the QR decomposition, a greedy method for
selecting active users which exploits multiuser diversity is
presented in [9]. References [7]–[9] present methods to support
M simultaneous users, each with one receive antenna.

When there is more than one antenna at the receiver, a
generalized version of the zero forcing method is utilized
in [10]. However, the methods of [10] are highly restrictive in
the sense that the number of transmit antennas must be greater
than the total number of the receive antennas. In addition,
similar to the conventional zero forcing, the method presented
in [10] degrades the signal-to-noise-ratio (SNR).

In this paper, an efficient sub-optimum method for selecting
the set of active users and signaling over such users is proposed.
This method converts the interference matrix – but not neces-
sarily the channel matrix – to a lower-triangular form. This is
in contrast to the earlier method proposed in [8], [9] which uses
QR decomposition to triangularis the channel matrix.

The rest of the paper is organized as follows: In Section
2, the system model and the proposed signaling method are
presented. In Section 3, an algorithm to select the active users
and the corresponding MVs is developed. The asymptotic sum-
rate and diversity order, achieved by the proposed method, are
derived in Section 4. In Section 5, the simulation results and
comparisons with the sum-capacity of the MIMO broadcast are
discussed.

2 PRELIMINARIES

Consider a MIMO broadcast channel withM transmit an-
tennas andK users, where thekth user is equipped withNk

receive antennas. In a flat fading environment, the baseband
model of this system is given by,

yk = Hks + wk, 1 ≤ k ≤ K, (1)
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whereHk ∈ CNk×M denotes the channel matrix from the base
station to userk, s ∈ CM×1 represents the transmitted vector,
andyk ∈ CNk×1 signifies the received vector by userk. The
vectorwk ∈ CNk×1 is white Gaussian noise with a zero-mean
and unit-variance.

In the proposed method, each time, the base station supports
M data streams, distributed among at mostM users called
active users, indexed byπ(j), j = 1, . . . , M . The transmitted
vectors is equal to:

s =

M∑
j=1

djvj , (2)

wherevj ∈ CM×1, j = 1, . . . , M , is the MV corresponding
to user π(j), π(j) ∈ {1, 2, . . . , K}, and dj contains the
information for userπ(j). Vectorsvj , j = 1, . . . , M , form
an orthonormal set. Dirty-paper coding is used such that for
i > j, the interference of data streami over data streamj
is cancelled. To detect the data streamj, userπ(j) multiplies
the received vector by a demodulation vectoru†j , where(.)†

denotes transpose conjugate operation.
In the next section, we propose a method to select the set

of active users{π(1), π(2), . . . , π(M)} ⊂ {1, 2, . . . , K} ,
modulation vectorsvj , and demodulation vectorsuj for j =
1 . . . M .

3 SELECTING ACTIVE USERS, MODULATION,
AND DEMODULATION VECTOR

Assuming channel state information (CSI) available at the
base station, the proposed algorithm works as follows. First, for
each user, the maximumgain and the correspondingdirection
are determined1. Next, the best user, in terms of the largest
gain, is chosen as an active user. The MV for the selected
user is along the corresponding direction. These steps repeat
recursively until theM MVs and the set of active users
are determined. In each step, the search for the best user is
performed in the null space of the previously selected MVs.
It is shown that in this manner, the selected MV has no
interference over the previously selected MVs. In the following,
the proposed algorithm is presented in details.

1) Set j = 1 andΞ = [0]M×M .
2) Find σ2

j , where

σ2
j = max

r
max

x
x†H†

rHrx.

s.t. x†x = 1

Ξ†x = 0. (3)

Setπ(j) andvj equal to the optimizing parametersr and
x, respectively.

3) Set

uj =
1

σj
Hπ(j)vj . (4)

4) Substitutevj in column j of matrix Ξ.
5) Set j ← j + 1. If j ≤ M , move to step two; otherwise,

stop.

In Step 2 of the algorithm, maximization overr selects
the best user, and therefore exploits the multiuser diversity.

1The gain of the channelH along the direction (unit vector)x is
defined as the square root ofx†H†Hx.

Maximization overx determines the best MV for each user, and
at the same time, converts the interference matrix to a lower
triangular form, implying that data streamj has no interference
over data streami, i = 1, . . . , j − 1. This property has been
proven in the following theorem.

Theorem 1:Consider the following optimization problem:

max
x

x†H†Hx,

s.t. x†x = 1

Ξ†x = 0, (5)

whereH and Ξ = [ξ1, ξ2, . . . , ξ%] are complex matrices. Let
v be the vector that maximizes (5) andσ2 be the result of the
optimization. Define vectoru as follows:

u =
Hv

σ
. (6)

If there exists a vector̂v such thatΞ†v̂ = 0 and v†v̂ = 0,
then

u†Hv̂ = 0. (7)
Proof: Refer to [11].

The interference of data streami over data streamj is equal
to u†jHπ(j)vi. Noting (3) which derivesvj and according to
v†jvi = 0, Theorem 1 implies thatu†jHπ(j)vi = 0, for i > j.
This means that data streami has no interference over data
streamj, j = 1, . . . , i− 1. Note that ifi < j, the interference
of data streami over data streamj is cancelled by dirty paper
coding. Therefore, the MIMO broadcast channel is effectively
reduced to a set of parallel sub-channels with gainsσj , j =
1, . . . , M . As a result, the sum-rate of the system is equal to
R =

∑M
j=1 log2(1+σ2

j Pj), wherePj is the power allocated to
data streamj, and

∑M
j=1 Pj ≤ P . To maximizeR, the power is

allocated based on water-filling. However, regarding the parallel
structure of the resulting channel, the power allocation can be
easily performed to satisfy the required QoS.

As mentioned, one part of the algorithm is to find the
direction in which each user has maximum gain. This part of
the processing can be accomplished at the receiver and then
if the maximum gain of the user is larger than a threshold,
the gain and the corresponding direction are reported to the
transmitter. The base station selects the best user in terms of
the largest gain. By using this technique, the complete channel
state information is not required at the transmitter and the rate
of the feedback is significantly reduced.

4 ASYMPTOTIC ANALYSIS OF THE
PERFORMANCE

In this section, the asymptotic performance (K → ∞) of
the proposed algorithm is investigated. We assume: (i) available
powerP is divided equally among the active users, (ii) at most,
one data stream can be assigned to each user.

To study the performance of the system, we first derive the
outage probability of each sub-channel which is defined as
Pr(σ2

j < z), j = 1, . . . , M , j = 1, . . . , K, for a given z.
The following lemma helps us to derive the outage probability
functions.

Lemma 1:Consider a vector spaceΩ defined by

Ω = {x | x ∈ CM×1, Ξ†x = 0}, (8)
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whereΞ is a complex matrix. Assume thatΩ is spanned by a set
of orthogonal vectors{φ1, φ2, . . . , φν}, whereν ≤ M . Then,
for complex matrixH, the result of the following optimization,

max
x

x†H†Hx,

s.t. x†x = 1

x ∈ Ω, (9)

is equal toσ2, whereσ is the maximum singular value of matrix
Ĥ, where

Ĥ = HΦ (10)

and
Φ = [φ1, φ2, . . . , φν ]. (11)

Proof: Refer to [11]
According to Lemma 1,σ2

j in (3) is equal to

σ2
j = max

r∈Tj

S2
max(Ĥr,j), (12)

where setTj = {1, 2, · · · , K} − {π(1), π(2), ..π(j − 1)},
S2

max(Ĥr,j) is the square of maximum singular value of
Ĥr,j = HrΦj (or is the maximum eigenvalue of̂Hr,jĤ

†
r,j

2)
and Φj is a matrix with orthogonal columns which span the
complex vector spaceΩ = {x|x ∈ CM×1 Ξ†x = 0}.

Note that in (3),Ξ† has j − 1 non-zero orthogonal rows.
Therefore, the dimension of the complex vector spaceΩ is
M−(j−1), resulting inΦj ∈ CM×(M−j+1). In the following,
we assume users equipped withN receive antennas. For large
K, since the columns ofΦj are orthonormal and the entries
of Hr have independent unit variance Gaussian distributions
(Rayleigh channel), the entries of̂Hr,j ∈ CN×(M−j+1) have
independent unit variance Gaussian distributions. Consequently,
according to the definition,̂H†

r,jĤr,j , r = 1, . . . , K − j + 1
have a Wishart distribution, which are identical and independent
for different r.

The following lemma formulates the distribution of the
maximum eigenvalue of a Wishart matrix.

Lemma 2: [13] Assume that the entries ofA ∈ Cm×n

have a zero mean, unit variance Gaussian distribution; then,
the Cumulative Distribution Function (CDF) of the maximum
eigenvalue of the matrixA†A is equal to

F (z) = Pr(λmax ≤ z) =
1∏a

k=1 Γ(b− k + 1)Γ(a− k + 1)
det(Ψ), (13)

wherea = min{m, n}, b = max{m, n}, andΨ is an a × a
Hankel matrix which is a functionz ∈ (0,∞) defined as

Ψ(p, q) = γ(b− a + p + q − 1, z) p, q = 1, . . . , a, (14)

andγ is incomplete gamma function.
Regarding the above statements and using Lemma 1, Lemma

2, and (15), we conclude the following corollary.
Corollary 1: SetFj(z) be the CDF ofS2

max(Ĥr,j) defined
as follows,

Fj(z) = Pr
(
S2

max(Ĥr,j) < z
)

. (15)

2The square of the maximum singular value of a matrixA is equal
to the maximum eigenvalue of the matrixA†A [12].

Then,Fj(z) is equal toF (z), defined in Lemma 2, where,

a = min{M − j + 1, N},
b = max{M − j + 1, N}. (16)

As it has been mentioned,S2
max(Ĥr,j), r ∈ Tj are indepen-

dent random variables for differentr’s, therefore according to
(12), the outage probability of the sub-channelj is equal to

Pr(σ2
j < z) = [Fj(z)]K−j+1. (17)

In deriving (17), we have used the expression for the CDF of
the maximum ofK − j + 1 i.i.d random variables [14].

4.1 Diversity Analysis

The diversity order in a wireless channel is equal to the
asymptotic slope (z → 0) of the outage probability curve. This
quantity determines the asymptotic slope of the curve of the
symbol error rate versus signal-to-noise-ratio. In the following
theorem, we use this definition to establish the diversity order
of the j th data stream.

Theorem 2:For large K, the diversity order of the sub-
channelj is equal to(K − j + 1)N(M − j + 1).

Proof: The diversity order of sub-channelj is equal to the
degree ofz in the outage probability Pr(σ2

j < z) whenz → 0.
In [11], it is shown that

lim
z→0

Fj(z) = cjz
ab, (18)

wherecj is equal to

cj =
Πa−1

i=1 (a− i)!∏a
k=1(b− k)!Πa

i=1(b− a + i)i(b + a− i)i
. (19)

wherea andb are defined in (16). Regarding (17) and (18),

lim
z→0

Pr(σ2
j < z) = cK−j+1

j z(K−j+1)N(M−j+1). (20)

Therefore, the diversity order of the sub-channelj, 1 ≤ j ≤ M ,
is equal to(K − j + 1)N(M − j + 1).

4.2 Asymptotic Rate Analysis

By using (17), the average sum-rate of the proposed method
can be computed. However, an examination of the asymptotic
behavior (K → ∞) of the rate provides insight into the
performance of the proposed algorithm. WhenK → ∞, the
behavior ofσ2

j depends on the tail of the distribution function
Fj(z), the CDF of S2

max(Ĥr,j) [6]. The following lemma
allows us to derive limiting distribution ofσ2

j .
Lemma 3: [14] Let z1, z2, . . . , zK be i.i.d random variable

with a common CDFF (.) and probability density function
f(.), satisfying the following conditions: (i)F (z) is strictly
less than one for all finitez, (ii) F (z) is twice differentiable,
(iii)

lim
z−→∞

g(z) = c > 0, (21)

whereg(z) = 1−F (z)
f(z)

andc is a constant. Then,

max
1<r<K

zr − l(K) (22)

converges in distribution to a limiting random variable with
CDF,

exp[− exp(−u

c
)]. (23)
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wherel(K) = F−1(1− 1
K

) andF−1(.) represents the inverse
function of F (.)

Lemma 3 states that the maximum of such i.i.d random
variables grows likel(K) [6].

It is easy to see that: (i)Fj(z) is less than one for all finitez,
(ii) Fj(z) is twice differentiable, and (iii)limz→∞ gj(z) = 1,
wheregj(z) =

1−Fj(z)

F
(1)
j (z)

, andF (1)(z) denotes the derivative of

Fj(z). By substituting the following expansion,

γ(n + 1, z) = n!

(
1− e−z

n∑
m=1

zm

m!

)
, (24)

into (14) and regarding Corollary 1, we obtain [11]

Fj(z) = Pr(S2
max(Ĥr,j) < z) =

1− e−zza+b−2

(a− 1)!(b− 1)!

(
1 + O(z−1e−z)

)
. (25)

According to Lemma 3,σ2
j grows likelj(K) which is given

by lj(K) = F−1
j (1 − 1

K
). Using (25) and (16),lj(K) is is

equal to

lj(K) = log(K)+(N+M−j−1) log log(K)+o(log log(K)).
(26)

Using equation (26), we can prove the following theorem (refer
to [11]).

Theorem 3:

lim
K→∞

R

M log( P
M

log(K))
= 1, (27)

whereR is the sum-rate of the proposed method. In addition,

lim
K→∞

Rsum-capacity−R −→ 0 (28)

where Rsum-capacity indicates the sum-capacity of the MIMO
broadcast channel.
Note that these results are derived with two assumptions
of equal power distribution among active users (no water-
filling) and allocation of at most one data stream to each
user. Apparently, Theorem 3 is valid when these two restrictive
assumptions are relaxed.

5 SIMULATION RESULTS

Figure 1 depicts the average sum-rate of the proposed method
and average sum-capacity versus the number of users for
different number of receive antennas. In this simulation, the
power is optimally allocated to active users by using the water-
filling method. This figure shows that the sum-rate of the
proposed method is very close to the sum-capacity of the
system, even when the number of the users is small. This result
shows that with onlyM data streams, the major part of the
sum-capacity of the MIMO broadcast systems is achieved, no
matter what the number of receive antennas is.
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Fig. 1. Average Sum Rate of the Proposed Method and Average Sum
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