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Abstract— A method to construct spectral-efficient unitary
space-time codes is proposed for high-rate differential commu-
nications over multiple-antenna channels. Unlike most of the
known methods which are designed to maximize the diversity
product (minimum determinant distance), we aim at increasing
the spectral efficiency. Simulation results indicate that for high
spectral efficiency and for more than one receive antenna, the new
method significantly outperforms the other known alternatives.
In the special case of two transmit antennas, which is the
main focus of this paper, the relation between the proposed
code and the Alamouti scheme helps us to provide an efficient
maximum likelihood decoding algorithm. We also show that
similar ideas can be applied to more than two transmit antennas.
As an example, we present a construction for 4 by 4 unitary
constellations which has a good performance as compared to the
other known codes.

I. INTRODUCTION

Recently, because of the increasing demand for the transmis-
sion of video, voice and data in mobile wireless environments,
reliable high-rate communications over fading channels has
become an important issue. Recent investigations show that
using multiple transmit and receive antennas, high rate com-
munications can be achieved [1] [2]. In [2]–[5], some practical
schemes are proposed to achieve reliable high-rate commu-
nications over multiple-antenna wireless channels. However,
these methods require knowledge of the fading coefficients at
the receiver. Unfortunately, in many scenarios, such as mobile
environments, especially in high-speed vehicles, tracking of
channel coefficients is not feasible.

In [6]–[8], differential space-time modulation schemes
(based on unitary matrices) are presented. These schemes are
suitable for mobile communication applications where fading
coefficients change rapidly with time. In the differential tech-
niques proposed in [7] and [8], the code is full-diverse and the
codewords form a group structure which helps in simplifying
the encoding. In [9], all finite fixed-point-free groups (which
correspond to full-diverse unitary constellations) are classified.
Although some low rate group codes are introduced in [9]
which have excellent performance, no good full-diverse group
constellation are obtained for very high rates. Another attrac-
tive approach is based on using orthogonal designs [6] [10]
which helps to facilitate the decoding. Nonetheless, differential
orthogonal space-time codes do not have a good performance
for very high rates and large number of receive antennas.
To transmit at high rates, in [11], a scheme is proposed for

constructing full-diverse codes in the general case (different
number of transmit antennas and different rates) which is
based on using the Cayley transform to construct unitary
matrices.

All the above differential space-time codes have been de-
signed to produce full diversity. However, by sacrificing the di-
versity, we can increase the rate of the space-time modulation
[12]. Indeed, in wireless environments, we can use multiple
antenna systems to achieve diversity or spatial multiplexing.
For coherent communications, schemes such as BLAST [2]
are proposed to exploit the spatial multiplexing to produce
communications with high spectral efficiencies over Multiple-
Input Multiple-Output (MIMO) channels. Nonetheless, for the
noncoherent case, most of the previous works are based on
achieving the transmit diversity rather than exploiting the
spatial multiplexing.

Although the performance of MIMO fading systems is
determined by diversity product for very high SNRs, maxi-
mizing the diversity product is not the appropriate criterion
for spectral-efficient communications when the number of
receive antennas is greater than one. This is similar to the
coherent case where for spectral-efficient communications and
for a large number of receive antennas, BLAST has a better
performance as compared to full-diverse schemes, such as the
Alamouti code. In some of the previous works [13] [14], there
have been attempts to maximize the diversity sum (minimum
Frobenius distance) as well as the diversity product. However,
those approaches are useful for very low rates [13], or are
based on the exhaustive search [14] which is not feasible in
the case of designing high-rate codes.

This paper addresses the problem of constructing unitary
constellations which are appropriate for spectral-efficient dif-
ferential transmission over multiple-antenna channels. The
proposed approach is based on sacrificing the transmit diver-
sity and using multiple cosets of a full-diverse (or a partial-
diverse) code. Although the main purpose of this paper is to
design unitary constellations for two transmit antennas, we
show that the same ideas can be applied to construct spectral-
efficient codes for more than two antennas. As a special case,
we present a construction for four transmit antennas which for
a large number of receive antennas considerably outperforms
the other known approaches.
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II. SYSTEM MODEL

We consider a multiple antenna system with M transmit and
N receive antennas. The transmitted and the received signals
(in M consecutive channel uses) can be considered as S (an
M × M matrix) and X (an M × N matrix), respectively. We
have,

X =
√

ρSH + W

where H is the M × N channel matrix, W is the M × N
additive noise matrix and ρ is the received Signal to Noise
Ratio (SNR). Entries of H and W are independent identi-
cally distributed (i.i.d.) complex-Gaussian C(0, 1). We assume
that the transmitted matrix S has unit energy per time (i.e.
tr(SS∗) = M ).

In differential space-time coding with M transmit antennas,
an identity matrix S0 = IM is transmitted in the first M
channel uses. After that, for the t’th block (which consists
of M consecutive channel uses), the information is encoded
into an M × M unitary matrix Vt, transmitting

St = VtSt−1. (1)

For differential space-time codes, it is known that the
pairwise error probability satisfies the following upper bound
[7]:

P (V −→ V′) ≤ 1
2

M∏
m=1

[
1 +

ρ2

4(1 + 2ρ)
σ2

m

]−N

(2)

where σm denotes the m’th singular value of V −V ′. At high
SNR, we have [7]

P (V −→ V′) ≤ 1
2

(
8
ρ

)MN 1
|det (V − V ′) |2N

. (3)

Thus, similar to the case of coherent space-time communica-
tion, at very high SNR, the performance of the code is related
to the minimum determinant distance or the diversity product
[7]:

ζ =
1
2

min
l �=l′

|det (Vl − Vl′) | 1
M . (4)

Based on this fact, almost all the design schemes have fo-
cused on finding constellations of unitary matrices with large
diversity products [7] [8] [6] [9] [15], or an averaged version
of it [11]. However, for a large number of receive antennas,
practical SNR values and reasonable bit error rates, the low-
SNR approximation of (2) is more appropriate (using the first
order approximation):

Pr(V −→ V′) ≤ 1
2

[
1 +

ρ2

4(1 + 2ρ)

M∑
m=1

σ2
m

]−N

Therefore, for a large number of receive antennas, maximizing
the minimum Frobenius distance (diversity sum [13]) will be
more useful:

dmin = min ‖V − V′‖F (5)

where ‖V − V′‖F = tr
[
(V − V′)(V − V′)∗

]
.

III. CODE DESIGN FOR TWO TRANSMIT ANTENNAS

The unitary matrices can be parameterized by M2 real pa-
rameters. In order to construct good unitary constellations with
high spectral-efficiency, we must exploit all of these degrees
of freedom. For this purpose, we can use parametrization
methods for unitary matrices. We need simple parametrization
methods which easily construct a family of unitary matrices
with certain distance properties.

Here, we consider the especial case of two transmit anten-
nas. Every 2×2 complex unitary matrix A can be represented
by

A =
[

aej(θ1+θ3) bejθ2

−b∗ej(−θ2+θ3) a∗e−jθ1

]
(6)

where |a|2+|b|2 = 1. The resulting set can be seen as the union
of cosets of a full-diverse subset consisting of the following
matrices: [

aejθ1 bejθ2

−b∗e−jθ2 a∗e−jθ1

]
, |a|2 + |b|2 = 1 (7)

which is the same as the Hamiltonian constellation, mentioned
in [9].

If we choose eiθ3 from a PSK constellation withsize K3,
the minimum Frobenius distance among the codewords from
different cosets is

4 sin2(π/K3) ≥ dmin−inter−coset ≥ 2 sin2(π/K3). (8)

no matter how we choose the full-diverse subcode.
The full-diverse subcode corresponds to a set of points on

S3 (the unit sphere in R4). The pairwise Euclidean distances of
the points in S3 are directly related to the pairwise determinant
distances, as well as to the pairwise Frobenius distances,
of the corresponding codewords [9]. Therefore, to maximize
the minimum distance (Frobenius distance as well as the
determinant distance) among the codewords of the subcode,
in general, we must find a good packing in S3.

However, to simplify the decoding process, as well as the
encoding, we impose some restrictions on the constellation
and assume that for each a and b, θ1 and θ2 are independent
from each other. This restriction helps us to use the Alamouti
decoder to find θ1 and θ2, conditioned on a and b.

If we choose a and b from a set of possibilities
{(a1, b1), .., (an, bn)}, the full-diverse subcode consists of n
subsets. For the i’th subset, the minimum determinant distance
(diversity product) and the minimum Frobenius distance are
respectively equal to

ζ(i) = min
{

1
2
di1,

1
2
di2

}

dmin(i) = 8ζ2(i)

where di1 and di2 are the minimum Euclidean distances of the
constellations related to θ1 and θ2 for each subset. For fixed
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sizes of these constellations, di1 and di2 will be maximized if
θ1 and θ2 are chosen from a PSK constellations. In this case,

ζ(i) = min
{
|ai| sin

(
π

Ki1

)
, |bi| sin

(
π

Ki2

)}

dmin(i) = 8ζ2(i)

where Ki1 and Ki2 are the sizes of the PSK constellations
related to θ1 and θ2 for the i’th subset.

For the special case of n=2, we assign (a1, b1) = (α, β)
and (a2, b2) = (βejϕ, αejϕ) where 0 < α < 1√

2
< β and

α2 + β2 = 1. To have the largest minimum distance between
two subsets, we must maximize the minimum phase difference
among the points of two PSK constellations corresponding to
α and β. If we choose PSK constellations with sizes M1 and
M2, corresponding to the amplitudes α and β (in general,
M1 ≤ M2), then the minimum phase difference will be
maximized when ϕ = π

l.c.m(M1,M2)
where l.c.m(M1,M2) is

the least common multiplier of M1 and M2. In this case:

dmin−intersubset = 2β2 sin2 ϕ + 2(β cos ϕ − α)2,

dmin−intrasubset =

min
{
8α2 sin2(π/M1), 8β2 sin2(π/M2)

}
.

For fixed M1 and M2, when α increases, dmin−intersubset

and 8β2 sin2(π/M2) will decrease and 8α2 sin2(π/M1) will
increase. Thus, to maximize dmin, we must choose α such
that

2β2 sin2 ϕ + 2(β cos ϕ − α)2 = 8α2 sin2(π/M1) (9)

or
8β2 sin2(π/M2) = 8α2 sin2(π/M1). (10)

For n = 2, by using the above formulas, for each choice
of the constellation sizes (i.e. K3, M1, M2), we can compute
other parameters of the code (i.e. α, β, ϕ). To choose the size
of the constellations, corresponding to θ1, θ2 and θ3, we must
balance inter-coset, inter-subset and intra-subset distances.
This situation is quite similar to the rate assignment for
the different levels of a multilevel code or a trellis coded
modulation scheme, to have balanced distances.

IV. DECODING

For the t’th block (consisting of M consecutive channel
uses), the transmitted signal can be represented by

Xt = StSt−1...S1S0 (11)

where S0 is the initial matrix and can be any unitary matrix
(with a proper scaling). At the receiver, we have

Rt = StSt−1...S1S0H + Wt (12)

where Wt is the additive noise at the receiver and HM×N

is the matrix of fading coefficients. Received signal can be
written as

Rt = StRt−1 + Wt − StWt−1. (13)

In this case, if the elements of the noise matrices are i.i.d.
with CN(0, σ2) distribution, elements of StWt−1 will be i.i.d.
with the same distribution (because St is unitary). Thus, W′ =
Wt−StWt−1 will have i.i.d. complex Gaussian elements with
the variance 2σ2:

Rt = StRt−1 + W′ (14)

To decode the received signal, receiver must find Ŝ such that
ŜRt−1 has the minimum Euclidean distance to Rt.

For the proposed code, for fixed values of θ3 and a and b,
we can easily use a decoding method similar to the Alamouti
scheme:

θ̂1 = arg min
θ1

|rt,1r∗t−1,1e
jθ3 − rt,2r∗t−1,2 − ‖Rt−1‖aejθ1 |

θ̂2 = arg min
θ2

|rt,1r∗t−1,2 + rt,2r∗t−1,1e
jθ3 − ‖Rt−1‖bejθ2 |,

where rt,i is the i’th row of Rt. By using the above method,
decoding of the proposed code is equivalent to nK3 parallel
Alamouti decoder for PSK signals.

For very high rates and large values of n and K3, it is more
appropriate to use bucket algorithms [16] to find a, b and θ3

(in the process of decoding). This approach helps us to reduce
the number of parallel Alamouti decoders. In general, bucket
algorithms operate on the data which are partitioned into d-
dimensional hyper-rectangles, called cells or buckets. For our
problem, the idea is similar to the Kannan strategy to find the
closest lattice point [17]. Indeed, we can restrict the search
to a neighborhood of the starting point. Complexity of these
algorithms is essentially independent of K3 and n (indeed,
independent of the rate), because the number of the points in
the search neighborhood is almost independent of the overall
size of the constellation [17]. However, for practical rates and
practical values of K3 and n, the first approach is quite simple
and bucket algorithms are not helpful.

V. DIFFERENTIAL CODES FOR MORE THAN TWO TRANSMIT

ANTENNAS

To generalize the proposed double-antenna system for more
than two transmit antennas, we can consider the cosets of a
good full-diverse (or a code which has a partial diversity)
for more than two transmit antennas. Also, we can use the
proposed double-antenna construction instead of the Alamouti
code in the codes which use the Alamouti scheme as the
building block.

As an example, for 4 transmit antennas, we can use the
cosets of a code from Sp(2) (the Lie group consisting of 4 by 4
symplectic unitary matrices). The set of 2N by 2N symplectic
matrices consists of the matrices which can be presented as
the following: [

A B
−B̄ Ā

]
where A and B are two N by N matrices. Codes obtained from
Sp(2) have a diversity of order 2 [15].

It is shown that a matrix S belongs to Sp(2) iff there exist
2 by 2 unitary matrices U and V and diagonal matrices D1

and D2 such that [15]:
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S =
[

UD1V UD2V̄
−ŪD2V ŪD1V̄

]
(15)

where D1D∗
1 + D2D∗

2 = I2 and Ū means the complex
conjugate of U. In [15], authors have chosen U and V which
have Alamouti structures with PSK signals and they have
considered D1 and D2 as the identity matrix. Also, the size
of the PSK constellations are chosen such that the resulting
code is full-diverse (the constellation sizes must be relatively
prime). Instead, we can exploit more degrees of freedom to
construct the subcode from Sp(2) in order to obtain codes with
greater spectral-efficiencies. For this purpose, we can consider
U and V as two independent 2 by 2 unitary matrices. These
matrices can be constructed by the method which we used for
2 transmit antennas. As another parametrization for Sp(2), we
can use the following structure:[

ejθ1UD1V ejθ2UD2V̄
−e−jθ2ŪD2V e−jθ1ŪD1V̄

]
(16)

where U and V are unitary matrices from SU(2) (Hamiltonian
constellation [9]). The problem is that these two parameteri-
zations are not one-to-one. Therefore, to construct codewords
by using these parameterizations, we must impose some re-
strictions to avoid the overlap of the codewords.

We consider D1 = D2 = I (the identity matrix) and U
and V as the Alamouti structures. If we assume that 0 ≤
θ1, θ2, θ3, ...θ6 < π (where θ3, ...θ6 are the parameters of the
Alamouti structures, U and V) and θ3 ± θ5 �= θ4 ∓ θ6, then
the resulting codewords from (16) will be distinct and we can
use them as the codewords of the basic subcode.

Cosets of this subcode are obtained by multiplying the first
two columns of the codewords of the subcode by arbitrary
unit-norm scalars.

VI. SIMULATION RESULTS

Fig. 1 compares the proposed unitary space-time code and
the differential methods based on orthogonal designs [6], the
Cayley transform [11] and the TAST code [18]. We see that for
the same spectral efficiency (same as used in [11] and [18]),
the proposed method has a considerably better performance.
We see that exploiting the maximum degrees of freedom (for
example, using two choices for a and b in this case, i. e.
n = 2) can be very useful in high rates. For the proposed
code, 4, 4 and 3 bits are transmitted by θ1, θ2 and θ3 and
one bit corresponds to the choice of the layer (choosing a and
b). ML decoding of the proposed codes is reasonably simple
(only 16 = 2×8 linear processing) and compared to TAST, we
have about 2 dB improvement with a simpler decoder (even as
compared to the suboptimal decoder for TAST which is based
on sphere decoder). In this case, K3 = 8 and M1 = M2 = 16.
We have used ϕ = π/l.c.m(16, 16) = π/16 and based on (9),
we have chosen α = 0.895, β = 1.095 to have relatively
balance distances (among dmin−intersubset, dmin−intrasubset

and dmin−intercoset).
Fig. 2 shows the performance of the proposed code for 4

transmit antennas for 1, 2 and 4 receive antennas, compared

20 21 22 23 24 25 26 27 28 29 30
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Cayley code, linearized decoder
Deifferential TAST
Proposed scheme

N
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=2, N

R
=2, Rate = 6 bits per channel use 

Block
Error
Rate 

SNR (dB)

Fig. 1. Block Error Rate of the proposed codes (with one and two layers),
orthogonal code, Cayley code and TAST code for M = 2 tranmit and N = 2
receive antennas with rate=6 bits per channel use.

to the performance of the code presented in [15]. For the
proposed code, we have used (16) with Alamouti structure
for U and V. To have a fair comparison, we have considered
a rate of 3.25 bits per channel use for the proposed code
which is more than the rate for the code in [15] which is
3.13 bits per channel use. To transmit at the rate of 3.25
bits per channel use, 13 bits per matrix must be transmitted.
We have considered θ1, θ2, θ4, θ5, θ6 ∈ {0, π/4, 2π/4, 3π/4}
and θ3 ∈ {π/8, 3π/8, 5π/8, 7π/8}, to transmit 12 bits by
choosing the codeword from the subcode. These sets are
chosen such that the overlap among the codewordes is avoided
(i.e. θ3 ± θ5 �= θ4 ∓ θ6 and 0 ≤ θ1, θ2, θ3, ...θ6 < π). To have
two cosets to transmit one extra bit, the first two columns of the
unitary codewords are multiplied by ejθ7 where θ7 ∈ {0, π}.
The resulting code still has a diversity of order two. It is
observed that for two and four receive antennas, the proposed
code considerably outperforms the full-diverse code in [15].
Also, for reasonable probability of errors, the proposed code
has a better performance, even for one receive antenna.

Figure 3 compares the performance of the proposed code,
the full-diverse code based on Sp(2) [15] and the modified
diagonal code [14] for the rates around 2 bits per channel use
1. The modified diagonal code of [14] is designed to have
a larger diversity sum as compared to the original diagonal
code [7] [8], to be more appropriate for a large number of
receive antennas. We see that the proposed code has a better
performance, even as compared to the modified diagonal code
of [14] which is obtained by computer search over various
diagonal codes. It must be noted that for higher rates, the
approaches based on computer exhaustive search (such as [14])
are not feasible.

1Due to the size constraints for the underlying PSK constellations in the
code in [15], comparison with exactly the same rate is not possible. To have
a fare comparison, we have chosen a higher rate for the proposed code
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Fig. 2. Block Error Rate of the proposed code and the Full-diverse code
(based on Sp(2) [15]) for M = 4 transmit and N = 1, 2 and 4 receive
antennas.
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Fig. 3. Block Error Rate of the proposed code, the full-diverse code (based
on Sp(2) [15]) and the modified diagonal code (modified for large number
of receive antennas) for M = 4 transmit and N = 4 receive antennas.

VII. CONCLUSIONS

A new method to construct unitary space-time codes have
been presented. Instead of having maximum diversity, these
codes are designed to have high rates with appropriate Eu-
clidean distance. For two transmit antennas, the proposed
structure allows a simple addressing and encoding method and
helps us to have an efficient ML decoding. We see that by
relaxing the full diversity restriction, we have a substantial
improvement compared to the best differential schemes in the
literature, for more than one receive antenna. Also, a similar
structure is proposed for four transmit antennas. simulation
results show that this structure can be very useful to construct
spectral-efficient differential space-time codes.
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