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Abstract

A simple signaling method for multi-antenna broadcast channel is proposed. In the proposed
method, for each user, a direction in which that user has the maximum gain is determined. The base
station selects the best user in terms of the larger maximum gain, and allocates the corresponding
direction to that user. In each step, the maximization is performed in the null space of the former
selected coordinates. Finally, the transmitted signal is a superposition of the selected coordinates.
It is shown that in this method, the later selected user has no interference on the former users. A
dirty paper pre-coding on top of the system eliminates the remaining interferences. Note that, in
this method, the set of active users and the power allocated to each of them is easily determined,
which is a significant advantage in the case of large number of users in the system. Furthermore,
this method exploits multiuser diversity.

Further, the proposed algorithm is modified to work with partial side information at the base
station. Simulations show that the achieved rate is close to the sum-rate capacity. In addition, the
asymptotic analysis shows that the increase of the sum-rate with number of transmit antenna is
linear and with the number of users, K, is proportional to log log(K).

I. INTRODUCTION

Recently, Multiple Input Multiple Output (MIMO) systems have received a considerable
attention as a promising solution to provide reliable high data rate communication. MIMO
systems have proved their ability in terms of supporting high bit rates and creating highly
reliable data link [1], [2]. More recently, the work on MIMO systems has been extended to
MIMO multiple access channels [3]–[5].

In [3]–[5], the capacity of the MIMO broadcast channels is investigated. Since MIMO
broadcast channel is non-degraded [3], characterizing of the full capacity region leads to
a non-convex non-linear optimization which is a complex problem [4]. By using a result,
known as dirty paper coding, due to Costa [6] on known interference cancelation at the
transmitter, the sum-rate capacity of the broadcast channels has been fully characterized [3]–
[5]. Dirty paper coding states that in a AWGN channel, if the transmitter non-causally knows
the interference, it can compensate the interference, such that the capacity of the channel with
interference is exactly the same as the capacity of the channel without any interference. A
method of implementing the dirty paper coding are presented in [7], [8]. Using the concept
of dirty paper coding, authors in [3], [4] have introduced duality between broadcast and
multiple access channel to characterize the sum-rate capacity of the broadcast channel with
a convex optimization problem. It has been shown that in the optimal solution, the power is
allocated to at most M 2 users, where M is the number of transmit antennas [9]. In practical
systems, the number of users is large. In this case, finding the set of active users by solving
mentioned optimization problem is a complex operation. In addition, all the channel state
information are required at the base station which needs high data rate feedback link.

On the other hand, in the case of large number of users, we can take advantage of a special
kind of diversity, so-called multiuser diversity [10], [11]. To exploit multiuser diversity, the
channel resource is allocated to the users which results in the highest throughput at that



time. In this paper, we address both problems of the selecting the set of active users which
exploits multiuser diversity and signaling over the selected users.

In the context of signalling over broadcast systems, some different methods are presented .
In [12], a signaling method based on QR decomposition and dirty paper coding is introduced.
In [13], a greedy method for selecting active users which exploit multiuser diversity is
presented. In [14], a variation method of channel inversion is introduced. The inverse of the
channel matrix is regularized and the data is perturbed such that the energy of the transmitted
signal is reduced. However, in this method, the pre-coding matrix depends on the data and
therefore is complex. In addition, the number of users must be equal to the number of transmit
antennas. All the references [12]–[14] assume that the number of antennas at the receiver is
equal to one.

For the case of more than one antennas at the receivers, a zero forcing method is intro-
duced [15], [16]. However, this method is highly restricted in the sense that the number of
transmit antennas must be greater than the total number of the users antennas.

In this paper, a sub-optimum method for finding the set of active users and signaling over
selected users is proposed. In the proposed method, for each user, a direction in which that
user has the maximum gain is determined. The base station selects the best user in terms
of the larger maximum gain, and allocates the corresponding direction to that user. In each
step, the maximization is performed in the null space of the former selected coordinates.
Finally, the transmitted signal is a superposition of the selected coordinates. It is shown that
in this method, the later selected user has no interference on the former users. A dirty paper
pre-coding on top of the system eliminates the remaining interferences. Note that, in this
method, the set of active users and the power allocated to each of them is easily determined,
which is a significant advantage in the case of large number of users in the system. On the
other hand, this method exploits multiuser diversity.

In the proposed method, the users have no interference on each other and the decoding
procedure is simple. Furthermore, unlike the former methods [12]–[16], there is no restriction
on the number of transmit/receive antennas. In addition, this method can easily be modified
to work with partial side information at the base station.

Simulation results show that the rate of the proposed method is close to the sum-rate
capacity of the system.

The rest of this paper is organized as follows: In Section II, the system model and
proposed signaling method are presented. In Section III, an algorithm to select active users
and corresponding coordinates is developed. Asymptotic analysis of the sum-rate achieved
by the proposed method is derived in Section IV. In Section V, the simulation results and
comparisons with the sum-rate capacity of the MIMO broadcast are presented. Concluding
remarks are provided in the last section.

II. PRELIMINARIES

Consider a MIMO broadcast channel with M transmit antennas and K users, each of them
equipped with N receive antennas. In the flat fading environment, the baseband model of
this system is defined by

yk = Hks + wk, 1 ≤ k ≤ K (1)

where Hk ∈ C
N×M denotes the channel matrix from the base station to the kth user, s ∈ CM×1

represents the transmitted vector, and yk ∈ C
N×1 signifies received vector by the kth user.

The vector wk ∈ C
N×1 is white Gaussian noise with zero-mean and unit-variance.

In the proposed method, the transmitted vector s carries information for M users, defined
as follows,

s =
M∑

j=1

dπ(j)vπ(j) (2)



where π(j), j = 1 . . . M are the indexes of a subset of users so-called active users, vπ(j) ∈
CM×1, j = 1 . . . M are a set of orthogonal vectors, and dπ(j) includes information for the
user π(j) . In addition, dirty-paper pre-coding is used on top of the system such that if i > j,
the interference of the user π(i) over user π(j) is zero.

For demodulation, the user π(j) multiplies the received vector to a normal vector u′π(j),
where (.)′ denotes transpose conjugate operation.

In the next section, we specify a method to select the set of active users, modulation
vectors vπ(j), and demodulation vectors uπ(j) for j = 1 . . . M .

III. DETERMINATION OF THE ACTIVE USERS, MODULATION, AND DEMODULATION

VECTORS

In this part, it is assumed that the channel state information is available at the transmitter.
Later, this algorithm is modified such that only partial channel state information is required.

Each stage of the algorithm includes two optimizing operations. First, for each user, finding
a direction in which that user has maximum gain. Second, selecting the best user in terms
of the larger gain. This optimization is performed in the null space of the former selected
coordinates. In the following, the proposed algorithm is presented.

1) Set j = 1 and the condition matrix Geq = 0M×M .
2) Find σ2

π(j) where
σ2

π(j) = maxr maxx x
′

H
′

rHrx.

x
′

x = 1
G′

eqx = 0
(3)

Set π(j) and vπ(j) be equal to the optimizing parameter r and x, respectively.
3) Set

uπ(j) =
1

σπ(j)

Hπ(j)vπ(j). (4)

4) Set gj = vπ(j), where gj is the jth column of the matrix Geq.
5) j ← j + 1. If j ≤M go to step two, otherwise stop.
The following theorem proves that if i < j, the interference of the user π(j) over user

π(i) is zero.

Theorem 1 Consider the following optimization problem,

maxx x
′

H
′

Hx,

x
′

x = 1
G′

eqx = 0
(5)

where H and Geq = [g1,g2, . . . ,g%] are complex matrices. Let v1 be the vector that
maximizes (5) and σ2 be the result of optimization. Define a vector u1 as follows:

u1 =
Hv1

σ
. (6)

If there exists a vector v2 such that G
′

eqv2 = 0 and v
′

1v2 = 0, then

u
′

1Hv2 = 0. (7)

Proof: According to (6),

u
′

1Hv2 = (
Hv1

σ
)′Hv2 =

1

σ
v

′

1H
′

Hv2. (8)



To optimize the cost function in (5), we use the Lagrange multiplier method,

L(x, λ,Θ) = x
′

H
′

Hx + λ(1− x
′

x) + Θ G′

eqx, (9)

where λ and Θ = diag([θ1, θ2, . . . , θ%]) are Lagrange multipliers. The gradient of L(x, λ,Θ)
corresponding to the vector x is,

∇xL(x, λ,Θ) = 2H
′

Hx− 2λx +

%∑

τ=1

Θτgτ . (10)

Since v1 maximizes the cost function, it satisfies (10). Therefore, we have,

∇xL(v1, λ,Θ) = 2H
′

Hv1 − 2λv1 +

%∑

τ=2

θτgτ = 0. (11)

Multiplying both sides of (11) to v′2 results in

v
′

2∇xL(v1, λ,Θ) = 2v
′

2H
′

Hv1 − 2λv
′

2v1 + v
′

2

%∑

τ=2

θτgτ = 0. (12)

Substituting v1
1v2 = 0 and v′2gτ = 0 (τ = 1, . . . , %) in (12), we have

v
′

2H
′

Hv1 = 0. (13)

Finally, (8) and (13) result in,
u

′

1Hv2 = 0. (14)

The interference of the user π(i) over user π(j) is equal to u′π(j)Hπ(i)vπ(i). According
to the theorem 1, if j > i, the interference of the user π(i) over user π(j) is zero. Recall
that if i > j, the interference of the user π(i) over user π(j) is already canceled with dirty
paper pre-coding. Therefore, the broadcast channel is reduced to a set of independent parallel
channels with gain σπ(j), j = 1, . . . ,M . As a result, the sum-rate of the system is,

R =
M∑

j=1

log2(1 + σ2
π(j)Pj), (15)

where Pj is the power allocated to the user π(j) and
∑M

j=1 Pj ≤ P . (Note that in the channel
model, the power of the noise is normalized.) The power can optimally allocated by using
water-filling method [17].

A. Modified Algorithm

As it has been mentioned before, in this algorithm, a major part of the processing can be
accomplished at the receivers. Therefore the perfect channel state information is not required
at the transmitter which results a significant decreasing in the rate of feedback.

The modified algorithm is as follows:
1) Set j = 1 and Geq = 0M×M .
2) Each user calculates σ2

r(j), defined as follows

σ2
r(j) = maxx x

′

H
′

rHrx.

x
′

x = 1
G′

eqx = 0
(16)

vr(j) represents the optimizing parameter x.



3) Each user calculates

ur(j) =
1

σr(j)

Hrvr(j). (17)

4) Each user sends σ2
r(j) and vr(j) to the base station, if σ2

r(j) ≥ th(j). th(j) is a threshold
which is predetermined by the base station.

5) Base station selects the user with the largest σ2
r(j). Let π(j) be the index of the

selected user. The corresponding gain and coordinate of that user are σ2
π(j) and vπ(j),

respectively.
6) The π(j)th user sends uπ(j)Hπ(j)vπ(i), i = 1, . . . , j − 1, to the base station.
7) Base station sends vπ(j) to all users. All users include vπ(j) in Geq as the jth column.
8) j ← j + 1. If j ≤M go to step two, otherwise stop.
Note that the performance of this method is exactly the same as the first algorithm.

However, the rate of the feedback required in the modified algorithm is less than that of
the first algorithm. Also for dirty paper coding, the partial channel state information is
required. In step 6, required information for dirty paper coding is sent to the receiver.

IV. PERFORMANCE ANALYSIS

The distribution of the σ2
π(j), j = 1, . . . ,M is required to analyze the performance of the

system. The following lemma leads us to these distributions.

Lemma 1 Consider a vector space Ω defined by,

Ω = {x | x ∈ CM×1, G′

eqx = 0}, (18)

where Geq is a complex matrix. Assume that Ω is spanned by a set of orthogonal vectors
{φ1, φ2, . . . , φν}, ν ≤M , then for a complex matrix H,

maxxx
′H′Hx = σ2

x′x = 1
x ∈ Ω

(19)

where σ is the maximum singular value of the matrix Ĥ 1, where

Ĥ = HΦ (20)

and
Φ = [φ1, φ2, . . . , φν ]. (21)

Proof: σ2, the square of the maximum singular value of the matrix Ĥ is equal to [18],

σ2 = maxy y′Ĥ′Ĥy

y′y = 1
(22)

By substituting (20) in (22), we have,

σ2 = maxy y′Φ′H′HΦy.
y′y = 1

(23)

Let x = Φy =
∑ν

ν=1 yνφν . Since {φ1, φ2, . . . , φν} are an orthogonal vector set, y′y = x′x.
In addition, x is a linear combination of vectors {φ1, φ2, . . . , φν} and x ∈ Ω. Consequently,

σ2 = maxxx
′H′Hx.

x′x = 1
x ∈ Ω

(24)

1Square of the maximum singular value of a matrix A is equal to the maximum eigenvalue of the matrix A
′
A [18].



According to lemma 1, σ2
π(j) in (3) is equal to,

σ2
π(j) = max

r
σ2

(r,j), (25)

where σ2
(r,j) is the square of maximum singular value of Ĥ(r,j) = HrΦj (or maximum

eigenvalue of Ĥ(r,j)Ĥ
′

(r,j)) and Φj is a matrix with orthogonal columns which span the the
complex vector space Ω = {x| x ∈ CM×1 G′

eqx = 0}.
Note that in (3), G′

eq has j − 1 non-zero orthogonal rows. Therefore, the dimension of
the complex vector space Ω is M − (j − 1), resulting in Φj ∈ C

M×(M−j+1). Since Φj has
orthogonal columns and Hr has Gaussian distribution, the distribution of Ĥ(r,j) ∈ C

N×(M−j+1)

is Gaussian as well. Therefor, Ĥ′

(r,j)Ĥ(r,j) has Wishart distribution. The following lemma
formulates the distribution of the maximum eigenvalue of a Wishart matrix.

Lemma 2 [19] Assume that the entries of A ∈ Cm×n has zero mean, unit variance Gaussian
distribution, then, the Cumulative Distribution Function (CDF) of the maximum eigenvalue
of the matrix A′A is equal to,

F (z) = Pr(λmax ≤ z) =
1∏a

k=1 Γ(b− k + 1)Γ(a− k + 1)
det(Ψ) (26)

where a = min{m,n}, b = max{m,n}, and Ψ is an a × a Hankel matrix of z ∈ (0,∞),
with entries given by

Ψ(p, q) = γ(b− a + p + q − 1, z), p, q = 1, . . . , s (27)

and γ is incomplete gamma function.

By using lemma 1 and lemma 2, Fj(z), the CDF of the σ2
(r,j) is determined, by substituting

a = min{M − j + 1, N}

b = max{M − j + 1, N}, (28)

in (26).
Since σ2

(r,j), r = 1, . . . , K are independent for different r, according to (25) [20]

P (σ2
π(j) < z) = [Fj(z)]K . (29)

By using (15) and (29), we can calculate the average sum-rate of the proposed method,

R = E{R} =
M∑

j=1

E
{
log2(1 + σ2

π(j)Pj

}
. (30)

Analysis of the the asymptotic behavior (K −→ ∞) of the average sum-rate provides
a good insight about the performance of the proposed method. For simplicity, we assume
that the allocated powers to active users are the same (no water-filling). Note that in high
Signal-to-Noise-Ratio (SNR), the optimal allocated powers are almost equal for different
coordinates. Therefore, in high SNR regime the investigation of the sum-rate without using
water-filling provides a tight lower bound for sum-rate with optimal power allocation.

When K −→ ∞, the behavior of σ2
π(j) depends on the tail of the distribution function

Fj(z) [10]. The following lemma allows us to use this fact to derive limiting distribution.



Lemma 3 [20] Let z1, z2, . . . , zK be i.i.d random variable with with a common CDF F (.)
and probability density function f(.) satisfying that F (.) is less than one for all z and is
twice differentiable, and is such that

lim
z−→∞

1− F (z)

f(z)
= c > 0 (31)

for some constant c. Then,
max

1<r<K
zr − lK (32)

converge in distribution to a limiting random variable with CDF

exp(−e−
u

c ). (33)

In the above, lK is given by F (lk) = 1− 1
K

.

Lemma 3 states that the maximum of such i.i.d random variables grows like lK [10].
It is easy to see that Fj(z) satisfies all conditions required in lemma 3.
By substituting the expansion [21],

γ(n + 1, z) = n!

(
1−

n∑

m=1

xm

m!

)
(34)

in (26), we have

Fj(z) = Pr(λmax ≤ z) = 1−
e−zza+b−2

(a− 1)!(b− 1)!

(
1 + O(z−1e−z)

)
. (35)

According to the lemma 3, σ2
π(j) grows like lK,j which is given by 1 − Fj(lK,j) = 1

K
.

Considering (35), lK,j is defined by

lK,j = log(K) + (a + b− 2) log log(K)− log[(a− 1)!(b− 1)!] + O(log log(K)). (36)

Finally, by substituting (28) in (36), we have,

lK,j = log(K)+(N +M− j−1) log log(K)− log[(N−1)!(M− j)!]+O(log log(K)). (37)

It can be shown that [22],

Pr
{
lK,j − c log log(k) ≤ σ2

π(j) ≤ lK,j + c log log(k)
}
≥ 1−O

(
1

log K

)
. (38)

Since log(.) is an increasing function and according to (38), we have

Pr
{
log2 (1 + ρ[lK,j − c log log(k)]) ≤ log2(1 + ρσ2

π(j)) ≤ log2 (1 + ρ[lK,j − c log log(k)])
}

≥ 1−O

(
1

log K

)
,(39)

and

Pr

{
M∑

j=1

log2 (1 + ρ[lK,j − c log log(k)]) ≤ R ≤

M∑

j=1

log2 (1 + ρ[lK,j − c log log(k)])

}

≥ 1−MO

(
1

log K

)
. (40)

where ρ is the SNR of the active users, if the allocated power to the active users are the
same.

Equation (40) shows that the average sum-rate of the proposed method linearly increases
with the number of transmit antennas. Furthermore, its increase with the number of users in
the system is proportional with log log(K).



V. SIMULATION RESULTS

In this section, the sum-rate of the proposed method is compared with the sum-rate
capacity. In these simulations, the perfect channel state information is assumed to be available.
In addition, the total power is equal to 15 which is optimally allocated to active users by
using water-filling method. To simulate sum-rate capacity, the algorithm represented in [23]
is used.

Figure 1 depicts the average sum-rate of the proposed method and average sum-capacity
versus the number of users in the system for different number of receive antennas. In Fig. 1,
the number of transmit antennas, M , is equal to 4. It is apparent that the average sum-rate
increases with the number of receive antennas. In addition, the sum-rate of the proposed
method is very close to the sum-capacity.

Figure 2 shows the sum-rate of the proposed method versus the number of transmit
antennas for different number of receive antennas. In Fig. 2, the number of users is equal to
128. It can be seen that the average sum-rate linearly increases with the number of transmit
antennas.

VI. CONCLUSION

In this paper, a simple signaling method for multi-antenna broadcast channel is proposed.
In the proposed method, for each user, a direction in which that user has the maximum
gain is determined. The base station selects the best user in terms of the larger maximum
gain, and allocates the corresponding direction to that user. In each step, the maximization is
performed in the null space of the former selected coordinates. In the proposed method, for
each user, a direction in which that user has maximum gain is determined. The base station
selects the user with the maximum gain, and allocates the corresponding coordinate to that
user. In each step, the optimization is performed in the null space of the former selected
coordinates. Finally, the transmitted signal is a superposition of the selected coordinates. It
is shown that in this method the later selected user has no interference on the former users.
A dirty paper pre-coding on top of the system eliminates the remaining interferences.

Note that, in this method, the set of active users and the power allocated to each of them
is easily determined, which is a significant advantage in the case of large number of users
in the system. Furthermore, this method exploits multiuser diversity.

Further, the proposed algorithm is modified to work with partial side information at the
base station. In the modified algorithm, the rate of the required feedback is low. However,
the performance of this algorithm is the same with the performance of the main algorithm.

Simulations show that the achieved rate is close to the sum-rate capacity. In addition, the
asymptotic analysis shows that the increases of the sum-rate with number of transmit antenna
is linear and with the number of users, K, is proportional to log log(K).
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Fig. 1. Average sum rate of the proposed method and average sum capacity versus number of users
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