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Abstract— In this work, the problem of reducing the Peak
to Average Power Ratio (PAPR) in an Orthogonal Frequency
Division Multiplexing (OFDM) system is considered. We design
a cubic constellation, called the Hadamard constellation, whose
boundary is along the bases defined by the Hadamard matrix
in the transform domain. Then, we further reduce the PAPR by
applying a Selective Mapping (SLM) technique. The encoding
method, following the method introduced in [1], is derived from
a decomposition, known as the Smith Normal Form (SNF), and
has a minimal complexity. This new technique offers a PAPR
that is significantly lower than that of the best known techniques
without any lose in terms of energy and/or spectral efficiency
and without any side information being transmitted. Moreover,
it has a low computational complexity.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
multicarrier transmission technique which is widely adopted
in different communication applications. OFDM prevents Inter
Symbol Interference (ISI) by inserting a guard interval and
mitigates the frequency selectivity of a multi-path channel by
using a simple equalizer. This simplifies the design of the
receiver and leads to inexpensive hardware implementations.
Moreover, OFDM offers some advantages in higher order
modulations and in the networking operation that position
OFDM as the technique of choice for the next generation
of wireless networks. However, OFDM systems have the
undesirable feature of a large Peak to Average Power Ratio
(PAPR) of the transmitted signals. Consequently to prevent
the spectral growth of the OFDM signal, the transmit amplifier
must operate in its linear regions. Therefore, power amplifiers
with a large linear range are required for OFDM systems, but
such amplifiers will continue to be a major cost component of
OFDM systems. Consequently, reducing the PAPR is pivotal
to reducing the expense of OFDM systems.

A large number of different methods for the PAPR reduc-
tion have been proposed. In [1]–[3], a constellation shaping
technique is proposed to reduce the PAPR of the OFDM
signals. The encoding and decoding algorithms of this method
are based on the relations and generators in a free Abelian
group. Due to the large complexity of this algorithm, its
practical implementation, in the case of Fourier basis, is very
challenging. In this paper, we propose a constellation as a
shaping method in an OFDM system with a low complexity
encoding method, based on [1]–[3], and a considerable PAPR
reduction. A Selective Mapping (SLM) method is applied in

conjunction with our constellation to further reduce the PAPR
in the OFDM signals.

The rest of this paper is organized as follows. After the
preliminary section, constellation shaping is introduced in
Section III. A brief description of the work in [1] is also given.
Section IV describes the Hadamard constellation as a shaping
method in OFDM systems. Some issues of the encoding and
decoding algorithms are also investigated. An SLM method is
applied to the Hadamard constellation in Section V. Section
VI is devoted to some numerical results and a comparison of
our method with some recent works. The paper is concluded
in Section VII.

II. PRELIMINARY

Let x = (x0, x1, · · · , xN−1)
T denote a vector of 2N

Dimensional (2N -D) constellation point selected from a set
of N identical 2-D sub-constellations, {x0, x1, · · · , xN−1}, to
be transmitted by using one OFDM vector of size N ; namely,
y. The discrete time samples of the OFDM signal can be
expressed as

yn =
1√
N

N−1∑
k=0

xkej2π nk
N . (1)

The matrix representation of this signal is

y = FNx, (2)

where y = (y0 · · · yN−1)
T , x = (x0 · · ·xN−1)

T , and FN is
the known IFFT matrix.

The 2-D constellation points, {x0, x1, · · · , xN−1}, may add
constructively and produce a time domain signal with a large
amplitude. Thus, the output signal y can have high output
levels, which leads to the requirement of an expensive analog
front end.

Usually, the level of the amplitude fluctuation of the discrete
time OFDM signal is measured in terms of the peak factors
that indicate the ratio of the peak power to the average envelop
power of the signal as

PAPR(y) =
‖y‖2

∞
Ey

[
1
N ‖y‖2

] . (3)
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III. CONSTELLATION SHAPING

In constellation shaping, a constellation in the frequency
domain must be found such that the resulting shaping region in
the time domain has a low PAPR. A new constellation shaping
method is introduced in [1]–[3] by Kwok and Jones. Based
on the encoding algorithm introduced in [1]–[3], we propose
a cubic constellation, along with an SLM method to reduce
the PAPR in an OFDM system.

In a PAPR reduction problem, the peak value of the signal
vector should be bounded by a specified value (‖y‖∞ ≤ β).
This constraint on the time domain boundary translates to
a parallelotope in the frequency domain. The points inside
this parallelotope are used as constellation points in transmit-
ting the OFDM signals. The main challenge in constellation
shaping is to find a unique way to map the input data to
the constellation points such that the mapping (encoding) and
its inverse (decoding) can be implemented by a reasonable
complexity. In [1], it is shown that the parallelotope boundary
is along the columns of QN , which is based on rounding
off the scaled version of the IFFT matrix. The encoding of
this constellation is performed by the decomposition of the
matrix QN , based on column and row operations. Indeed, in
the mathematical literature this decomposition is known as
Smith Normal Form (SNF) of an integer matrix [4].

Theorem 1: [4] Any integer matrix QN can be decom-
posed into QN = UDV, where D is diagonal with the entries
{σi}N

i=1 such that σ1 | σ2 | · · · | σN , and U and V are
unimodular matrices. The matrix D is called the SNF of the
matrix QN .
The condition σ1 | σ2 | · · · | σN in Theorem 1 is defined
for finding a unique decomposition and can be ignored in the
encoding procedure.

The complexity of the encoding algorithm is the result of
the computation of the SNF decomposition for the matrix QN .
We can use the SNF decomposition methods for the encoding
procedure; however, the computational complexity for OFDM
systems that are defined by the IFFT matrix remains very high.

In [2], it is shown that in a multi-carrier modulation system
whose relation between time and frequency domain signals in
equation (2) is based on the Hadamard matrix1, the encoding
and decoding algorithm can be implemented by a butterfly
structure that uses only bit shifting and logical AND. This
simplicity is hidden in the following recursive formula for the
Hadamard matrix:

H2n =
[

H2n−1 H2n−1

H2n−1 −H2n−1

]
, where H1 = [1] . (4)

The SNF of (4) can be easily computed as follows:

U2n =
[

U2n−1 0
U2n−1 U2n−1

]
D2n =

[
D2n−1 0

0 2D2n−1

]
(5)

V2n =
[

V2n−1 V2n−1

0 −V2n−1

]
U−1

2n =
[

U2n−1 0
−U2n−1 U2n−1

]
,

1The matrix QN is based on the Hadamard matrix.

where U1 = U−1
1 = D1 = V1 = [1]. Therefore, the encoding

algorithm for this constellation can be represented by

x̂ = UNλ

γ =
⌊
HT

N x̂
N

⌋
x = x̂ − HNγ,

(6)

where N = 2n, and λ is the canonical representation of
integers I representing the constellation points. The time
domain signal is computed using the inverse of the Hadamard
matrix. The canonical representation of any integer can be
calculated by the recursive modulo operations; namely,

λ1 = I mod σ1

I1 =
I − λ1

σ1
λi = Ii−1 mod σi

Ii =
Ii−1 − λi

σi
,

(7)

where 1 ≤ i ≤ N .
The reverse operation for finding I from the N -D vector x is
[1]

λ = U−1
N x = (λ1, λ2, · · · , λN )T ,

λ̃i = λi mod σi ,
I = λ̃1 + σ1(λ̃2 + σ2(· · · (λ̃N−1 + σN−1λ̃N ) · · · )).

(8)

IV. HADAMARD CONSTELLATION IN OFDM SYSTEMS

As mentioned in Section III, if the IFFT operation in OFDM
multicarrier modulation could be changed by the Hadamard
matrix, a very simple encoding algorithm would result. How-
ever, this type of multicarrier modulation is not very popular
because it does not offer all the advantages of conventional
OFDM systems [5]. The constellation that should be used in
an OFDM system has a boundary along the bases of the IFFT
matrix, but the encoding of containing constellation points can-
not be easily implemented. The boundary of this constellation
is shown by a solid line in Fig. 1. In this paper, we propose a
cubic constellation, called the Hadamard constellation, for an
OFDM system whose boundary is along the bases defined by
the Hadamard matrix in the transform domain. The boundary
of the Hadamard constellation is depicted by a dashed line in
Fig. 1. The IFFT and Hadamard matrices are both orthogonal
matrices, and therefore, the constellation boundaries along
these orthogonal bases are a rotated version of each other.
However, a large number of points within these boundaries are
the same, as shown in Fig. 1. Therefore, by substituting the
proper constellation along the IFFT matrix by a constellation
along the Hadamard matrix in an OFDM system, the resulting
PAPR is reduced and the encoding of this constellation,
based on the SNF decomposition of the Hadamard matrix,
is simple and practical. Moreover, the encoding algorithm can
be implemented by a butterfly structure that uses bit shifting
and logical AND structures [1].

Note that in this work, the time domain signal, y, is
obtained by the IFFT transformation of the constellation point,
x (i.e., we do not compute it by the inverse of the Hadamard
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transform). This results in a traditional OFDM signal based
on IFFT/FFT.

The advantage of using the Hadamard constellation is not
only a simple encoding algorithm with a low PAPR, but also
the possibility of concatenating it with other methods for PAPR
reduction. This motivates us to apply a SLM technique [6] to
the Hadamard constellation in an OFDM system. In typical
SLM methods [6], the major PAPR reduction is achieved
by the first few redundant bits. Employing more redundant
bits necessitates a high level of complexity to obtain modest
improvements in the PAPR value. However, in the proposed
SLM method, employing the Hadamard constellation causes
a considerable PAPR reduction by itself. As a result, this
method, by just using one or two redundant bits in SLM, sig-
nificantly outperforms the other PAPR reduction techniques,
reported in the literature. The details of this method will
be explained in the next section and will be confirmed by
simulation results. In [7], we have investigated some issues that
have emerged regarding the use of the Hadamard constellation
in an OFDM system.

Integer Lattice Points
Constellation Boundary Based on FFT Matrix
Constellation Boundary Based on Hadamard Matrix

Fig. 1. N -D signal constellation for IFFT and Hadamard matrix.

A. Complex Representation

Generally, we can distinguish between two classes of
boundaries [8]: 1) Cartesian boundary that is resulted by
viewing the real and imaginary parts of the signal as two
separate real signals, and 2) polar boundary that considers the
envelope and phase of the OFDM signal in a complex plain.
Cartesian boundary limits each component of the complex
signal within a square, while the polar boundary limits this
component within a circle. In this paper, we avoid the complex
representation of the OFDM signal by treating the real and
imaginary parts of the signal separately, which is equivalent
to using a Cartesian boundary.

B. Encoding Procedure

All the points inside the Hadamard constellation should
be mapped by the encoding procedure, introduced in (6) to
(8). The number of points inside the shaped constellation
is determined by the determinant of the Hadamard matrix,
det (H2n) [9].

Theorem 2: [7] The constellation size for a 2n × 2n

Hadamard matrix is det (H2n) = 2n2n−1
.

According to the large Hadamard constellation size, the
canonical representation of the large numbers should be com-
puted in the transmission of the OFDM signals. The canonical
representation can be simplified by using the fact that digital
communication systems deal with binary input streams. Also,
according to (5), for a 2n × 2n Hadamard matrix, all {σi}N

i=1

are powers of 2. Considering these facts, we can represent
each λi by ki = log2 σi bits of the input binary data [7] (Fig.
2). This representation will simplify the encoding algorithm.
Moreover, the problem of using large numbers in the encoding
procedure will be avoided.

b0 b1 b2 b3 b4 · · · bnb−n · · · bnb−1

︸︷︷︸
λ2

︸︷︷︸
λ3

︸ ︷︷ ︸
λ4

︸︷︷︸
λ5

︸ ︷︷ ︸
λ6

· · · ︸ ︷︷ ︸
λN

Fig. 2. Mapping between binary representation of the information and {λi}.

Theorem 2 shows the size of the Hadamard constellation
for a 2n × 2n Hadamard matrix is 2n2n−1

. Therefore, the
transmission rate is related to the number of subcarriers
N = 2n in the OFDM system2. This rate is unacceptable
not only because of the dependency on N but also because
the value is usually much higher than the required rate. A
subgroup of the constellation points is chosen in [7] such that
the constellation has the desired rate, and the constellation
points have a uniform distribution in the cubic constellation.
Relying on the continuous approximation, such a uniform
distribution affects neither the probabilistic behavior of the
PAPR nor the average energy of the constellation points. The
Hadamard constellation is called the root constellation for the
aforementioned set of the uniformly distributed points in the
sequel.

C. Decoding Procedure

A conventional Fast Fourier Transform (FFT) based receiver
is considered for the OFDM signal. At the receiver end, the
time domain signal is filtered by a low pass filter and sampled
at the Nyquist rate. The samples are processed by an FFT
to recover the constellation point in the frequency domain.
For an Additive White Gaussian Noise (AWGN) channel, the
received vector is given by

z = y + n, (9)

where y is the transmitted time domain signal in (6) and n is
a zero-mean complex AWGN. The approximated constellation

2For N = 2n, the rate for each real component is log2(2n2n−1
)/N =

n

2
.
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point is written as

x̂ = FFT(z) = x + FFT(n) = x + n′, (10)

where x is the transmitted constellation point, and n′ is a
zero-mean complex AWGN. The maximum likelihood decoder
simply rounds off the received constellation point x̂ in the
integer domain. Then, the resulting constellation point is
employed in (8) to decode the transmitted information.

V. SELECTIVE MAPPING

As mentioned in Section III, the complexity of using the
Hadamard constellation in an OFDM system is very low, and
this shaping method can be concatenated by other methods. In
the following, we propose an SLM technique, applied to the
Hadamard constellation to further reduce the PAPR.

SLM is a method to reduce the PAPR in an OFDM system
which involves generating a large set of data vectors that
represent the same information, where the data vector with the
lowest PAPR is used for the transmission. Here, we present
a method to apply the SLM technique to further reduce the
PAPR in the constellation developed earlier.

Assume that the data rate to be transmitted is r bits per
block of length-N FFT symbol. Let rs denote the number
of redundant bits of r bits specified for SLM (rs � r
and r = log2(Hadamard constellation size)). Consequently,
Ns = 2rs constellation points should represent the same
information. In this method, the input integers I are mapped to
the Hadamard constellation points, and the output integers are
classified by the sets with the same rs Most Significant Bits
(MSBs). All the corresponding constellation points in each
set represent the same information. The IFFT operation for
all these constellation points in each set is computed, and the
constellation point with the lowest PAPR is transmitted.

The operation of our scheme can be described as follows.
In the first step, a binary information sequence is divided
into blocks of r − rs bits. rs bits of zeros are added to
each information block, and then it is divided into subblocks
of lengths equal to log2 σi, i = 1, · · · , N , bits (refer to
Fig. 2). The binary representations of these subblocks form
the vector λ in (6). The other multiples of this vector are
obtained by changing all the possible values for rs MSBs of
the binary information sequence. Then, Ns different Hadamard
constellation points are produced by (6). The corresponding
time domain OFDM signals result in various values for the
PAPR. Finally, the constellation point with the lowest PAPR
is selected for transmission.

All the different constellation points that represent the same
information have the same r − rs bits. Thus, at the receiver
end, the constellation point is decoded by (8), and the rs extra
bits are discarded, since the transmitted information is in the
remaining r−rs bits. Therefore, this method can be expressed
as a variant of SLM in which no side information on the
choice of the transmit signal needs to be transmitted. The
degradation in the data rate can be ignored, since by using
only one or two redundant bits a significant PAPR reduction
is obtained. To be fair in viewing the potential loss in the

data rate, we have to include the impact of using the SLM
method on the average energy of the constellation as well.
The Hadamard constellation has a zero shaping gain3, due
to its cubic boundary. Numerical results show applying the
SLM method to the resulting cubic constellation and selecting
the point with the lowest PAPR result in a reduction in the
average energy, reflected in a small, however positive shaping
gain. This justifies our earlier claim that the reduction in the
PAPR is achieved at no extra cost in terms of a reduction in
the spectral efficiency and/or an increase in the average energy
of the constellation.

VI. SIMULATION RESULTS

In this section, we present simulations for a complex base-
band OFDM system with N = 128 subchannels employing
16-QAM by using 107 randomly generated OFDM symbols.
Our simulation results are presented as the Complementary
Cumulative Density Function (CCDF) of the PAPR of the
OFDM signals, expressed as follows:

CCDF {PAPR(y)} = P {PAPR(y) > γ} . (11)

This equation can be interpreted as the probability that the
PAPR of a symbol block exceeds some clip level γ (it is
referred as symbol clip probability [8]).

According to our simulations, the use of the Hadamard
constellation in OFDM systems as a constellation shaping
method considerably reduces the PAPR with a low complexity
encoding and decoding algorithm.

Fig. 3 shows the simulation results of implementing our
SLM technique, applied to the Hadamard constellation in the
simulated OFDM system. The PAPR probability for rs =
1, 2, and 4 redundant bits is depicted. As it is illustrated in Fig.
3, using only one bit in 4 × 128 bits per block of length 128
FFT symbol 4 results in a 5.6dB improvement in the PAPR.
Simulations show that by employing more redundant bits the
PAPR can be close to that of a cubic constellation, , namely
10 log10(3)5.

In [7], it is shown that the slope of the CCDF vs. PAPR
graph increases in the SLM method. However, there is a satura-
tion effect on the PAPR reduction by the successively doubling
of Ns. As mentioned in Section V, the method employing only
the Hadamard constellation considerably reduces the PAPR.
By adopting the Hadamard constellation in the proposed SLM
method, not only can we lower the PAPR considerably, but
also we can approximately maintain the slope of the CCDF vs.
PAPR curve, i.e., we gain a considerably lower PAPR by a few
number of redundant bits before saturation effect. Therefore,
by using just one or two redundant bits, we can significantly
reduce the PAPR.

3Shaping gain is defined as the relative reduction in the required average
energy for a given number of constellation points with respect to a cubic
constellation [10].

4By using 16-QAM in a 128 channel OFDM system, there are 16128 =
24×128 constellation points.

5The PAPR of a cubic constellation is computed using continuous approx-
imation.
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Fig. 3. CCDF of PAPR by SLM method based on Hadamard constellation
in a 128 channel OFDM system employing 16-QAM constellation.

A. Comparison

In numerical simulations, we have selected the system
parameters to be compatible with some recent works on PAPR
reduction reported in [6], [8], [11].

As a complexity measurement, the main complexity of our
method comes from the encoding algorithm and the multi-
IFFT computations in the SLM technique. The complexity of
the encoding algorithm is in the matrix multiplications of (6).
As mentioned in section III, all the elements of the Hadamard
matrix and its SNF decomposition matrices are +1,−1, or 0,
and we just have additions which can be easily implemented
by a butterfly structure. In SLM technique, for each of the Ns

time domain signals we shall compute one IFFT and as we
showed, for Ns = 4 to 16, we can significantly lower PAPR.

In [6], an SLM method based on multiplying the constella-
tion point by Ns different and pseudo-random but fixed vectors
is introduced. For the same system as ours, with Ns = 4
different vectors, the PAPR reduction of 3dB close to 10−5

symbol clip probability is gained; however, at the same symbol
clip rate and Ns, we have a 6dB reduction by using our SLM
method. Also, note that in [6] some side information needs to
be sent, and receiving accurate side information is important.

The tone reservation [11] is a well known method for PAPR
reduction in multicarrier systems, provided it can converge
quickly to a good PAPR solution. In [8], an efficient approx-
imation for the the tone reservation approach is developed
with a faster convergence. However, we have about 3dB lower
PAPR than that in [11] or [8] for the similar system parameters.
Note that in the tone reservation method, some tones are
reserved for the PAPR reduction and some of the tones are
not used for transmitting, implying a loss in data rate.

In [8], a minimax problem is solved by an interior-point
method which requires a descent direction and a constraint
to find the solution recursively. The complexity of solving
this optimization problem shall be compared with that in
our encoding algorithm. As mentioned in [8], the complexity
per iterations for finding the descent direction will increase

with each iteration and the complexity for finding the next
constraint for the next iteration is computationally intensive 6.

Recently, we became aware of the work by Ochiai [12]. For
a 256 complex channel OFDM system employing 256-QAM a
4.5dB reduction in the PAPR is obtained using trellis shaping
technique. In our method, for a 128 complex channel OFDM
system employing up to 128-QAM a 6dB reduction is gained.

In [12], the main complexity is in finding the path with
minimum cost through a trellis diagram, where the complexity
of finding such a path is considerably higher than that of a
Viterbi decoder. However, the author investigates methods to
reduce this complexity by window truncation and sacrificing
PAPR reduction, but still the overall complexity in [12] is
significantly higher as compared to the method proposed here.

VII. CONCLUSION

We have proposed a constellation shaping method that
achieves a substantial reduction in the PAPR in an OFDM
system with a low complexity. An SLM technique is applied
to this constellation to further reduce the PAPR of the OFDM
signal. The proposed scheme significantly outperforms other
PAPR reduction techniques reported in the literature .

It is also possible to apply a PTS method [6] to our
Hadamard constellation, especially since the PTS is consid-
erably better with respect to PAPR reduction vs. additional
system complexity (the number of IFFTs) [6] as compared to
the SLM method.
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