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On the Complexity of Decoding Lattices
Using the Korkin–Zolotarev Reduced Basis
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Abstract—Upper and lower bounds are derived for the decoding
complexity of a general latticeL. The bounds are in terms of
the dimension n and the coding gain
 of L, and are obtained
based on a decoding algorithm which is an improved version
of Kannan’s method. The latter is currently the fastest known
method for the decoding of a general lattice. For the decoding
of a point xxx, the proposed algorithm recursively searches inside
an n-dimensional rectangular parallelepiped (cube), centered at
xxx, with its edges along the Gram–Schmidt vectors of a proper
basis ofL. We call algorithms of this type recursive cube search
(RCS) algorithms. It is shown that Kannan’s algorithm also
belongs to this category. The complexity of RCS algorithms is
measured in terms of the number of lattice points that need to be
examined before a decision is made. To tighten the upper bound
on the complexity, we select a lattice basis which is reduced in
the sense of Korkin–Zolotarev. It is shown that for any selected
basis, the decoding complexity (using RCS algorithms) of any
sequence of lattices with possible application in communications
(
 � 1) grows at least exponentially withn and 
. It is observed
that the densest lattices, and almost all of the lattices used
in communications, e.g., Barnes–Wall lattices and the Leech
lattice, have equal successive minima (ESM). For the decoding
complexity of ESM lattices, a tighter upper bound and a stronger
lower bound result are derived.

Index Terms—Coding gain, decoding algorithms, decoding com-
plexity, densest lattices, Korkin–Zolotarev reduction, lattices,
successive minima.

I. INTRODUCTION

L ATTICES have two main applications in communica-
tions: i) efficient signaling over band-limited channels,

and ii) vector quantization. In both applications, a finite subset
of points of an -dimensional ( -D) lattice within a bounded
supporting region of is employed. This collection of points
is called alattice code.

The major complexity associated with a lattice code is the
process ofdecoding, that is, finding the point of the code that
has the smallest (Euclidean) distance to an input. Note that
as the number of code points is usually a huge number, one
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cannot use an exhaustive method to implement the decoding
operation. Presenting an efficient decoding algorithm for a
general lattice is one of the purposes of this paper.

There exist very efficient algorithms for the decoding of
well-known lattices with high degree of structure, like the
Leech lattice (see [7, pp. 443–448], [10], [29]). Most of these
algorithms, however, cannot be applied to a general lattice.
There are only two known general-purpose methods to decode
a lattice: the trellis approach and the integer programming
approach based on the geometry of numbers. The purpose of
this paper, which presents part of the results obtained in [3],
is to study and analyze the latter approach.

The trellis approach, mainly due to the valuable contri-
butions of Forney [9]–[11], is currently one of the common
methods in communications for the decoding of lattices. This
approach, which can be applied to any lattice with a finite
trellis (including rational lattices), is based on representing the
lattice by a trellis diagram which reflects the underlying group
structure. Then the Viterbi algorithm [8] is used to decode the
trellis.

The trellis structure of lattices and their trellis complexity
have been the subject of some recent research [3]–[5], [10],
[25]–[27]. In [10], Forney derived lower bounds on the state
complexity of the trellis diagrams of lattices, and constructed
trellises for some important low-dimensional lattices which
either met or nearly met these lower bounds. Subsequently,
Tarokh and Blake [25], [26] gave lower bounds which show
that for sufficiently large coding gains, the average state and
edge complexities of any trellis diagram of lattices grow at
least exponentially with .

Upper bounds on the complexity were derived in [27].
In [3] and [4], these bounds were both improved and gen-
eralized, lower bounds on the number of distinct paths in
trellis diagrams of lattices were derived, and low-complexity
trellises were constructed for some important lattices which
either achieved or nearly achieved the lower bounds. The
trellis complexity of root lattices and their duals was then
investigated to some extent in [3] and [5]. Other relevant
results about trellis structure and trellis complexity of block
codes can be found in papers in [30], and the references
therein.

The problem of lattice decoding also lies at the heart of
many integer programming problems [2], [13]–[16]. The main
approach to the decoding of lattices in integer programming is
based on using a reduced basis for the lattice. The complexity
of such decoding algorithms has two parts: i) computing the
reduced basis of the lattice, and ii) finding the nearest lattice
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point using this reduced basis. In the decoding problems
encountered in communications, the lattice is fixed, so the
basis reduction is performed just once and then the resulting
basis is stored for subsequent use. Thus the complexity of
solving i) is not of major concern. The fastest lattice decoding
algorithm for solving ii) in the context of integer programming
appears to be that of Kannan [16].

This work gives a geometrical interpretation of Kannan’s
algorithm, which clarifies some issues regarding the complex-
ity of the algorithm. Explicit upper and lower bounds on the
complexity of Kannan’s algorithm for a general lattice are
derived. The bounds are in terms of the coding gain and the
dimension of the lattice. For lattices with equal successive
minima (ESM), a tighter upper bound and a stronger lower
bound are obtained. Recalling that extremal lattices (including
the densest lattices) belong to the category of ESM lattices, we
observe that almost all of the lattices used in channel coding
have ESM. It is also proved that lattices , , and
have ESM. This means that the lattices used for quantization
of uniformly distributed inputs [7, p. 61] are also ESM lattices.

To reduce complexity, we then modify Kannan’s algorithm.
By pre-computing the covering radii of the lattice and its
sublattices, decoding is simplified, especially for the lattices
used in communication applications. The modified algorithm
employs the Korkin–Zolotarev reduced basis, and solves the
decoding problem for an -D lattice by reducing it to some
subproblems of dimensionality . Explicit upper and lower
bounds on the complexity of the algorithm are derived. Im-
proved complexity results are also obtained for ESM lattices.
Using the derived lower bound, it is shown that even with
some exponential-time pre-computations (computing the re-
duced basis and the covering radii), one cannot decode any
sequence of lattices with possible application in commu-
nications in polynomial time. The lower bound
also indicates that our upper bound results cannot be much
improved.

This paper concentrates on the lattices used in signal con-
stellations. However, the problems of lattice-based channel
coding and lattice-based vector quantization are closely re-
lated. The decoding algorithm discussed here can be used in
both of these contexts.

This article is organized as follows. Section II gives an
introduction to lattices. Section III explains the concept of cod-
ing gain, and also deals with some of the important known
ESM lattices. Section IV gives an introduction to the idea of
basis reduction, and discusses the Korkin–Zolotarev (K-Z)
reduced basis. Section V presents the proposed decoding
algorithm and discusses its complexity. Kannan’s algorithm is
explained and bounds on its complexity are derived. Finally,
Section VI contains concluding remarks.

II. SOME DEFINITIONS AND FACTS ABOUT LATTICES

Let be the -dimensional real vector space with the
standard inner product , and Euclidean length

. The linear subspace generated by some subset of
is denoted byspan , and its orthogonal complement

by span . A discrete, additive subgroup is

called a lattice. Every lattice is generated as the integer
linear combinations of some set of linearly independent vectors

, where . The set of vectors
is called abasis of . We use the brief notationspan
to denote the real span of the set of basis vectors, i.e.,
span span .

Let denote the lattice with basis .
Its dimension(also calledrank) is and its basis matrix
(also calledgenerator matrix) is the matrix which
has the basis vectors as its rows. The lattice
is called full-dimensionalif . The determinantof ,
denoted by , is defined as .
Geometrically, the determinant of a lattice is the common
volume of itsfundamental regions, where a fundamental region
is a building block which, when translated by lattice vectors,
partitions the whole space with just one lattice point in each
copy. TheVoronoi cell of a point is an example of
a fundamental region for . It consists of those points of
span which are at least as close to as to any other
lattice point. If is a basis of lattice , then

is also a basis of if and only if there exists a
unimodular matrix (integer matrix with determinant )
such that . The dimension and the determinant of a
lattice are independent of the choice of the basis.

On the space of -D lattices, the -neighborhoodof a
lattice with the basis matrix consists of all lattices
having a basis , such that

where is an arbitrary positive number.
The th successive minimum of a lattice is the

smallest real number such that there arelinearly independent
vectors in of length at most . Clearly, we have

(1)

We call a lattice an ESM lattice if its successive minima
are equal. Obviously, lattices which are generated by their
minimum-length vectors have the ESM property, although to
the best of our knowledge the converse to this statement has
not been proved. The notation is used to denote
the length of the shortest nonzero vector(s) in, which is also
equal to the minimum distance between lattice points.

The distance between a vector span and the lattice
is defined as the minimum distance betweenand the points

of . The covering radius of a lattice is the smallest
number such that all vectors span are at distance at
most from the lattice.

To any ordered lattice basis, say , one can
associate a set ofGram–Schmidt(G-S) vectors

, which are computed using the following recursion:

for (2)
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where the G-S coefficients ’s are equal to

(3)

We have and for . Based on the
above relationships, the G-S decomposition may be written in
matrix notation as

(4)

where has as its rows and is the lower
triangular matrix of the G-S coefficients. The vector is
the projection of on span . The vectors

are mutually orthogonal and do not necessarily
belong to the lattice. It will often be very helpful to think of the
basis vectors as being presented in the orthogonal coordinate
system of the G-S vectors. It is also easy to see that

(5)

Using (2) and (3), we see that if have rational coor-
dinates, so do the ’s and they can be computed in polynomial
time (with respect to the input size) from .

There exists a lower bound on the length of a shortest
nonzero vector of a lattice in terms of the lengths of its
G-S vectors [21, p. 18]:

(6)

Let be a fixed ordered basis of a lattice. Given
span and , we use the notation (re-

spectively, ), to denote the orthogonal projection
of , respectively , on thespan .
In particular, and .
When no confusion can arise, we use as an abbreviated
notation for . Clearly,

span span for

and is a basis of the lattice .
Throughout the paper, we frequently use important known

lattices such as , , ,
, BW ,

and . For a comprehensive treatment of their properties,
the reader is referred to the excellent encyclopedic book of
Conway and Sloane [7].

We assume the bases to be rational. This assumption is made
only for computation; all the lemmas, propositions, theorems,
and corollaries are valid for a general real basis.

III. CODING GAIN, EXTREMAL LATTICES,
AND ESM LATTICES

In this section, we explain the concepts of coding gain
and extremal lattices. Then we show that many well-known
lattices and almost all of the lattices used in communications
have ESM. Some connections between the coding gain and
the successive minima of a lattice are also mentioned.

A. Coding Gain

In a lattice-based signal constellation, the constellation
points belong to a lattice . As a measure of performance
of the corresponding lattice code,coding gainis defined as

(7)

The quantity is the saving in the average energy due
to using the lattice for the transmission instead of using
a rectangular grid of points with integer components (the
lattice).

Hermite’s constant is defined as the supremum of
over all -D lattices. It is known that is attainable [12,
p. 267]. The value of is explicitly known only for .
Minkowski’s convex body theorem [12, p. 51] implies that

, which yields for all
. For simplicity, we will use the inequality ,

which holds for all values of . It is also known that for large
values of , we have [7, p. 20],

(8)

B. Extremal and ESM Lattices

A lattice is calledextremalif is a local maximum;
i.e., if in the space of -D lattices, there exists a neighborhood

of such that , for . Extremal lattices
have relatively high coding gains and may be useful in channel
coding applications. Clearly, the extremal property of a lattice
is invariant under scaling and/or orthogonal transformations
of the lattice. The following theorem [12, p. 300] is of great
importance:

Theorem 1: Every extremal lattice has ESM.
As a corollary, it can be concluded that:
Corollary 1: The densest lattices have ESM.

Proof: The coding gain of the densest lattices are glob-
ally maximum, and therefore locally maximum. (Another
proof of this corollary, independent of Theorem 1, is given
in the Appendix).
Noting that and are the densest lattices in their
corresponding dimensions, it follows from Corollary 1 that
they are ESM lattices.

Coxeter proved that the lattices and are extremal
(see [12, p. 404]). Barnes and Wall constructed another infinite
sequence of extremal latticesBW , which is probably the
most famous lattice sequence in communications. Two other
well-known extremal lattices are the Leech and Cox-
eter–Todd lattices. We therefore obtain the following
corollary.

Corollary 2: The lattices , ,
, BW , , and

are ESM lattices.
Despite these results, the ESM condition does not have a

strong impact on the achievable coding gain for a lattice. The
best lower bound that can be obtained on the coding gain of
a general ESM lattice is trivial: [6]. It is also shown in
[6] that, especially in large dimensions, obtaining large coding
gains is possible without having ESM.
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The following lemma introduces some other classes of ESM
lattices.

Lemma 1: The lattices , , and
are ESM lattices.

Proof: Since the proof is similar for the three classes of
lattices, only the proof for lattices is given here. Consider
the following basis matrix for [7, p. 115]:

Using this basis matrix, we obtain . It is
not difficult to see that the lattice vectors , ,

are independent and have length.
The above results imply that almost all of the lattices

currently used in communications, either in channel coding
or in quantization applications, are ESM lattices.

IV. K ORKIN–ZOLOTAREV (K-Z) REDUCED BASIS

The algorithm for finding the closest point of the-D integer
lattice to an arbitrary point is particularly simple.
For a real number , let denote the nearest integer
to . It is not difficult to see that is
the closest point of to . We call this method of decoding
the “round-off procedure.”

Let be a lattice in given by a basis and
suppose that is an arbitrary point. Let
with span and span . Clearly, the nearest
point of to is the one nearest to . Let

The round-off procedure on the basis in span
decodes to

Geometrically, this is equivalent to employing a parallelotope
decision region1 spanned by vectors centered at
each lattice point. It can be shown that although the round-
off procedure is a very efficient polynomial-time algorithm, it
obtains the nearest point of the lattice if and only if the basis
vectors are mutually orthogonal. Unfortunately, for lattices
with , such a basis does not exist (as can easily be
proved by contradiction).

The nice properties of orthogonal bases motivate search-
ing for bases of a lattice that are nearly orthogonal. The
problem of transforming a given lattice basis into a basis
consisting of vectors which are pairwise nearly orthogonal is
called lattice basis reduction.2 Reduction theory, which has

1The decision regionof a pointPPP i belonging to a discrete collection of
pointsfPPP 1; PPP 2; � � �g � span(L) consists of those points ofspan(L) which
are decoded toPPP i.

2More generally, reduction theory is concerned with selecting a basis with
desirable properties.

its historical roots in the 18th century, was mainly motivated
by the classical question of finding the minima of positive-
definite integral forms. Several distinct notions of reduction
have been studied, including those associated with the names
Hermite, Minkowski, Korkin–Zolotarev (K-Z), and more re-
cently Lenstra, Lenstra, and Lovász (L ); see, e.g., [12, pp.
147–164]. After the introduction of the Lreduced basis,
which can be computed in polynomial time, reduction theory
has found many applications in a variety of areas (see, e.g.,
[2], [13]–[16], [19]–[21], [24, pp. 71–74]). However, it can be
shown that for the decoding of lattices, the K-Z reduced basis
is a more powerful tool than the Lreduced basis [6]. In the
following, we explain the K-Z reduced basis, which is used
in our decoding algorithms.

Let be a lattice with ordered basis
and corresponding G-S vectors ( is the set of
rational numbers). In the lattice decoding algorithm presented
in Subsection V-A, one needs to check the distance between
a given vector span and a subset of the lattice
vectors. The upper bound on the number of candidates needed
to be checked depends on the lengths of the G-S vectors.
Consequently, it is desirable to make these lengths as small as
possible by finding a properly reduced basis of the lattice.
By the reduction theory introduced by Korkin and Zolotarev
[17], the vectors of a basis can be selected such that the lengths
of the corresponding G-S vectors are minimized successively,
i.e.,

for (9)

where is the length of a shortest vector of theth
projected lattice . In particular, . K-Z
reduced bases are extensively studied in [18].

It can be shown that each lattice has at least one K-Z
reduced basis (see [16] or [23]). There is no polynomial-time
algorithm known for K-Z reduction. Finding a K-Z reduced
basis of a lattice is actually polynomial-time equivalent to
finding a shortest vector of the lattice. The fastest known
algorithm for K-Z reduction of a basis
with and is due to
Schnorr [23] and has a theoretical worst case time bound of

arithmetic steps on -bit
integers. This algorithm is an improved version of Kannan’s
shortest lattice vector algorithm [16].

Example 1: The following are K-Z reduced bases for the
lattices and (see the top of the following page).

The following lemma is subsequently of great importance.
Lemma 2: If is a K-Z reduced basis of an-D

ESM lattice, then

(10)

Proof: First, we consider an arbitrary lattice. By the
definition of , there exist at least linearly independent
vectors of of length at most . Under the projection

, at least one of them, say, has a nonzero projection
. Therefore, we have . This inequality

combined with the fact that results
in . Combining this with (9), we obtain
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. The proof then follows by putting this result together
with the facts that for an ESM lattice ,
and for a K-Z reduced basis .

It is interesting to note that the above result can be equiv-
alently expressed as

Comparing this equality with (6) gives further evidence for
the strength of the K-Z reduction.

As already mentioned, in applications to communication
systems, we assume that the computation devoted to finding a
reduced basis is done once (off-line), and we do not consider
this computation as a part of the decoding complexity.

In the rest of the paper, the lattices are assumed to be full-
dimensional, i.e., . This assumption simplifies some of
the discussions without loss of generality.

V. LATTICE DECODING PROBLEM

In this section, we first discuss Kannan’s decoding algorithm
and its complexity. Then, in Subsection V-A, we propose some
modifications which increase the efficiency of Kannan’s algo-
rithm, especially in communication applications. Complexity
bounds for the proposed algorithm are derived in Subsection
V-B.

Consider the following lattice decoding problem:

given the vector and lattice

find a lattice vector

such that is minimized. (11)

In 1981, Van Emde Boas proved that the LDP is NP-hard [28].
A simpler proof was subsequently given by Kannan in 1987
[16]. More recently, it has been shown by Aroraet al. that even
approximating the solution within any constant factor is NP-
hard [1]. Some other relevant results regarding approximate
solutions for the LDP can be found in [2], [13], and [18].

The fastest (best upper bound on the complexity) known
algorithm for solving the LDP for a general lattice is due to
Kannan [16], an improved version of his earlier work in [15].
Prior to [16], Helfrich [14] also made some improvements in
the running time of some of the algorithms in [15]. In [16],
Kannan uses the same reduced basis as used in this paper,3

3The reduced basis used by Kannan has an extra condition on the value of
the G-S coefficients�i;j , i.e., j�i;j j � 1=2 for 1 � j < i � n. However,
this condition does not affect the G-S orthogonalization of the basis.

and shows that for some particular such that

there exists a subset of of cardinality at most
that contains the values of

the nearest point. Now, if solves the LDP for the vector

and the lattice , then

is a solution candidate of the problem forand .
Therefore, the original problem can be reduced to at most

subproblems, each of dimensionality .
In the following, we present a geometrical interpretation of
Kannan’s algorithm which provides a better understanding of
some complexity issues discussed later.

Let indices where is a constant integer,
be successively defined by

for , with

Here is the same index as defined in the last paragraph. A
careful inspection of Kannan’s algorithm [16] reveals that if

, then the algorithm recursively searches
for the candidates such that the projection length of
along the G-S vector is at most

Thus the algorithm may be thought of as searching among
lattice points in a rectangular parallelepiped centered at, with
edges pointing parallel to the G-S vectors of the lattice. The
edge length of the parallelepiped along is . (Note that

). For simplicity, we think of such rectangular
parallelepipeds as cubes, and we call the algorithms of this
type “recursive cube search” (RCS) algorithms. As we will see
later, our proposed algorithm also belongs to this category.
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The computational complexity of Kannan’s algorithm de-
pends on the values of . One can see that
leads to the highest complexity. In this case, the original
problem is reduced to at most -dimensional
subproblems. Each subproblem is solved by just checking the
distance between and a certain point of the lattice. It can be
shown that the number of arithmetic operations for Kannan’s
algorithm is bounded above by .4 This bound is
obtained based on the amount of computation required for the
worst case of , and the fact that the number of arithmetic
operations needed to find a candidate and check its distance
to the given vector is polynomially bounded by.

We are also interested in obtaining lower bounds on the
complexity of such algorithms. To emphasize the importance
of lower bounds, we pose the following question: “Is there any
sequence of lattices with possible application in communica-
tions such that Kannan’s algorithm can decode them
in polynomial time for an arbitrary ?” As we will see later,
using the derived lower bound, the answer to this question is
negative even if one finds the best possible basis.

In the following, the number of lattice points that
should be checked is defined as the measure of decoding
complexity. This can be easily translated to a statement in
terms of the required number of arithmetic operations in-
notation. For both Kannan’s and our proposed algorithm,
depends not only on the selection of basis, but also on the
vector and the structure of the lattice itself. The notation

is therefore used for the number of candidates,
where is the generator matrix of the lattice. For the sake
of simplicity, we sometimes use the notation instead of

. We also sometimes use the logarithm of the
number of candidates as an index of complexity, referred to
hereafter as thelog-complexity(the base of the logarithm can
be selected arbitrarily).

Let denote the region of the space that an RCS algorithm
searches to solve the LDP. As a rough approximation to the
complexity measure , one can consider its average value

, averaged over all vectors which are uniformly
distributed in a fundamental region of. It can be seen that
this is equal to

(12)

where is the volume of and is the volume
of a fundamental region of .

Using as the measure of complexity, the complexity of
Kannan’s algorithm for the decoding of a general-D lattice
for an arbitrary is upper-bounded by . This upper
bound can be improved for ESM lattices.

4Kannan’s result in [16] is slightly different, however. It is claimed in
[16, Theorem 4.5] that the number of arithmetic operations performed by
the algorithm isO(nn). The authors believe that this is an underestimate,
since for the worst case ofi1 = 1, even the number of candidates, i.e.,
(n+

p
n)n, cannot be upper-bounded byCnn, for any positive constantC.

The mistaken component in the proof turns out to be the wrong assumption
that the maximum off(i � 1)=(n+

p
n)g(i�1) for 1 � i � n is attained

at i = n. It is not difficult, however, to see that the maximum is1, and is
obtained fori = 1.

Theorem 2: For an -D ESM lattice with coding gain
and K-Z reduced basis , and for any given vector ,
the complexity of Kannan’s algorithm satisfies

(13)

Proof: Using the notations already used in describing
Kannan’s algorithm, we have an upper bound of

on the number of possible values for each integer, where
. For ESM lattices, using Lemma 2, we have

, and each integer takes at
most different values. This corresponds to the
following upper bound on :

(14)

For the last two steps, we have used the fact that
for . The proof then follows by applying (5), the
fact that for a K-Z reduced basis , and the definition
of coding gain.
In fact, for ESM lattices, the algorithm searches among the
lattice points in the cube centered at, with edges of length

oriented along the G-S vectors.
In the next subsection, we modify Kannan’s algorithm by

reducing the length of each edge of the search cube. Therefore,
all the lower bounds derived on the complexity of the modified
algorithm are also valid for Kannan’s algorithm. The bounds,
which are in terms of coding gain and dimension, imply
that for any sequence of lattices with possible application
in communications , and any selected basis, the
complexity of Kannan’s algorithm grows at least exponentially
with and .

A. Modified Kannan’s Algorithm

Consider the lattice decoding problem defined in (11). Based
on the definition of covering radius, the candidates for the
nearest vector of to a given vector are the lattice points
inside the sphere of radius , centered at . However, a
good algorithm for finding the lattice points inside a sphere
does not exist. The proposed approach for solving the LDP
is to consider the lattice points inside a properly selected
cube, centered at. To search inside the cube, we devise the
following RCS algorithm.
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Modified Recursive Cube Search Algorithm:Let be a
candidate for the nearest vector of to a given
vector

and let

The candidates can be checked by enumerating the coefficients
from to , successively. This can be done efficiently

by noticing that we just need to search foramong the lattice
points such that

(15)

where is the projection of along the G-S vector
. The last inequality in (15) enables us to enumeratefor

the lattice points under consideration. Now, if solves the
LDP for the vector and the lattice ,
then is a solution candidate of the problem forand

. Therefore, the original problem can be reduced
to several subproblems, each of dimensionality .

Let , for , and let
denote the region of that the algorithm searches to solve the
LDP for a given vector . It is not difficult to see that
is a cube centered at, with edges of length
oriented along the G-S vectors , respectively. The
volume of is therefore equal to

(16)

Note that, in general, inequalities of the form

for

do not hold. Therefore, to reduce complexity, one can select
the edge length of the search cube in the direction ofto be
the minimum of and . All the bounds derived later
in Subsection V-B remain valid for this case.

Using the modified RCS algorithm, it appears that we only
need to enumerate relatively few candidate integer-tuples

. To derive a proper upper bound on the number
of candidates, we first prove the following proposition.

Proposition 1: Let be an ordered basis of the
lattice , with G-S orthogonalization . Then, we
have

(17)

where the inequality holds with equality if and only if there
exists an orthogonal basis forwith the lengths of its vectors
equal to .

Proof: To each lattice point, we assign a cubic subop-
timum decision region centered atwith its edges along the
G-S coordinates . The edge lengths are selected as

, respectively. It is not difficult to see that these
cubic regions partition (each of them is a fundamental
region for the lattice). Using the fact that the maximum
distance between a lattice point and the points of its decision
region is and the definition of covering radius, the inequality
follows immediately.

It is easy to see that if the basis is orthogonal, the inequality
in (17) holds with equality. In this case, the Voronoi cells
for the lattice points coincide with the aforementioned cubic
decision regions. We sketch a proof to show that if ,
then there exists a basis of which is orthogonal. Suppose
that such a basis does not exist. Consider an arbitrary lattice
point and call its corresponding cubic decision region .
Except for the vertices of , we have , for
every vector . Let be an arbitrary vertex of .
Since we are assuming thatis not rectangular, and because
of the congruence of the structure, there should exist a decision
region adjacent to which has at its intersection
with , but is not a vertex of , and therefore

. It can be seen that if such a region does not
exist, in other words, if all the adjacent cubic regions have
as their vertex, then for the whole structure all the adjacent
cubes coincide in their vertices and, consequently, the lattice
is rectangular and has an orthogonal basis. This shows that
there exists no vector such that the distance between

and the lattice is greater than or equal to, which results in
.

It can be concluded from the proof of Proposition 1 that for
any given , there exists a unique such that

where is located inside the cubic decision region of point.
In the following, we derive lower and upper bounds on

for the modified RCS algorithm.
Proposition 2: For any basis of a lattice and any

, the number of candidate points of the
modified RCS algorithm satisfies

(18)

Proof: We enumerate the ’s from to , succes-
sively. This means that for each the values
taken by have been already selected. Starting
from , using (15) and the fact that is an integer, we
obtain the lower bound of and the upper bound
of on the number of possible values for .
Using similar bounds for every the inequality
follows. Note that for , , and the number of
possible values for is at least .



BANIHASHEMI AND KHANDANI: COMPLEXITY OF DECODING LATTICES USING THE KORKIN–ZOLOTAREV REDUCED BASIS 169

Remark: Applying (5) and Proposition 1 to the upper bound
in inequality (18), we obtain

(19)

For a fixed lattice , has a fixed value, and the
bound in (19) is just a function of the lengths of the G-S
vectors. This justifies the selection of a K-Z reduced basis
for the decoding algorithm. Note that although the ’s are
minimized successively for a K-Z reduced basis, this selection
does not necessarily result in minimizing the upper bound in
(19).

In an efficient implementation of the algorithm, one can
simply update the distances from point to point, and keep
only the nearest vector to found so far. Noting
that the coefficient matrix in (4) is triangular, a more efficient
implementation is possible if one uses the G-S coordinates to
represent the basis vectors. In this work, however, our main
concern is complexity bounds. From this point of view, it is
clear that the number of required arithmetic operations for
finding a candidate lattice point and checking its distance to
the given vector is polynomially bounded by.

Having selected the values , one can also use
branch-and-bound, and prune any further search of vectors of
the form

with

if , where is
the orthogonal projection of on span . One
can also stop enumerating when starts increasing.
Moreover, there is a quick certificate for the closest vector
of a lattice to a given vector , i.e., if for a candidate ,

, then is the closest vector of to .
This condition can be checked for each candidate, and if it is
satisfied one can stop the algorithm.5

It is conceivable that by embedding the above modifications
in the algorithm, not every lattice vector in the cubic region

must be examined. This could affect the derived lower
bounds on the complexity of RCS algorithms. However, this
effect is presumably small, especially for the asymptotics of
the algorithm, and in any case it cannot be mathematically
analyzed in a reasonable way.

B. Complexity Bounds for the Modified RCS Algorithm

1) Upper Bounds on Complexity:Using Proposition 1, it is
clear that Kannan’s algorithm searches in a larger region of the
space as compared to the modified algorithm, and consequently
has a larger number of candidate points to check.6 This implies
that the upper bounds derived for Kannan’s algorithm are also

5This point was suggested by one of the reviewers.
6Note that even if we use the upper bounds on�i ’s given by (17) instead

of the �i’s themselves, in general, the algorithm still searches in a smaller
cube and therefore has a lower complexity compared to Kannan’s method. In
this case, the difference between complexities could be especially large for
the decoding of lattices withmaxi k^bbbik = k^bbb1k (including ESM lattices).

valid for the proposed algorithm. Tighter bounds, however,
can be found as follows.

Theorem 3: For an -D lattice with a K-Z reduced basis
, and for any

(20)

Proof: From the proof of Lemma 2, we know that for a
K-Z reduced basis, for . Putting
this together with (19), we obtain

(21)

where for the last step, we have used (1). Combining inequality
(21) with a result of Minkowski which implies

[12, p. 195] completes the proof.
As a corollary of Theorem 3, we obtain the following upper

bound on complexity.
Corollary 3: For an -D lattice with a K-Z reduced basis
, and for any

(22)

For ESM lattices, the bound in (20) can be improved as
follows. The two bounds coincide for the densest lattices.

Theorem 4: For an -D ESM lattice with coding gain
and K-Z reduced basis , and for any

(23)

Proof: The result follows by applying to
(21), and using the definition of coding gain.

As a corollary of the above theorem, we obtain the same
upper bound as given in Theorem 2 on the complexity of
the algorithm for ESM lattices. Using , inequality
(22) corresponds to a bound for the required
number of arithmetic operations, and to a log-complexity of

. Although this bound cannot be improved for
the densest lattices, for most ESM lattices better complexity
bounds can be found based on (13).

Example 2: Consider the Barnes–Wall lattices BW
, with coding gain . Substituting this

quantity in (13), we obtain BW .
It is not difficult to see that the corresponding log-complexity
is .

2) Lower Bounds on Complexity:As we already know,
solving the LDP for a general lattice is NP-hard. Combining
this fact with the widely believed conjecture of NPP implies
that no proposed algorithm can solve the LDP for a general
lattice in polynomial time. Now, one might ask the following
question: “Is it possible to solve the LDP in polynomial time
in communication applications?” When posing this problem,
one might have the idea of doing some precomputations (e.g.,
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finding an appropriate basis and/or computing the covering
radii of the lattice and its sublattices). In the following, we
show that for lattices with , there does not exist any
basis such that using the proposed algorithm, and therefore
Kannan’s algorithm, one can solve the LDP in polynomial
time. To show this, we first prove the following theorem.

Theorem 5: For an -D lattice with any basis

(24)

Proof: For the modified RCS algorithm, using (12) and
(16), we have

(25)

A result due to Ryskov [22] implies that for an -D lattice,
. Applying this inequality for dimensions

to (25), and using the fact that
, for we obtain

(26)
For the last step, we have used the definition of , and the
fact that is a uniformly increasing function of
with the value of at . The proof then immediately
follows from (26).

Note that for a K-Z reduced basis ,
for . However, this cannot improve the lower
bound in (24). The following corollary is a consequence of
Theorem 5.

Corollary 4: For an -D lattice with any basis , there
exists some such that

(27)

Inequality (27) shows that for lattices with sufficiently large
coding gains, for a general given vector, the complexity of
the modified RCS algorithm grows at least exponentially with

and (note that ).
As a complement to Theorem 4, we derive the following

lower bound on the decoding complexity of ESM lattices
which is stronger than Corollary 4.

Theorem 6: For an -D ESM lattice with coding gain
and K-Z reduced basis , and for any

(28)

Proof: Starting from the lower bound in (18), we first
multiply it by , then use (5), Lemma 2, Ryskov’s
inequality for dimensions and finally the fact
that for a K-Z reduced basis , for

, to obtain

(29)

Applying the definition of coding gain , and substituting
in all the terms in the above product complete the proof

(note that is a uniformly increasing function
of ).

For the densest lattices and for large values of, combining
Theorem 6 with the lower bound in (8) results in a log-
complexity of at least for the decoding
algorithm.

VI. CONCLUDING REMARKS

Solving the lattice decoding problem (LDP) is the major
obstacle associated with using lattices in communication ap-
plications. There exist very efficient algorithms for solving
the LDP in the case of lattices with strong algebraic structure.
However, this is not the case for a general lattice. In this
paper, we have obtained some results regarding the complex-
ity of solving the LDP for a general lattice. These results
relate the decoding complexity to the coding gain and the
dimension of the lattice, and are obtained based on a decoding
approach which is an improved version of Kannan’s algorithm.
Improved complexity results have been obtained for ESM
lattices.

It has been shown that Kannan’s algorithm, which is cur-
rently the fastest known algorithm for solving the LDP for a
general lattice, is a search method inside a rectangular paral-
lelepiped (cube) with edges oriented along the Gram–Schmidt
vectors of the lattice. Explicit lower and upper bounds on the
complexity of Kannan’s algorithm have been derived.

The proposed algorithm solves the LDP recursively by
reducing the dimension of the problem by one in each step.
It employs a Korkin–Zolotarev (K-Z) reduced basis of the
lattice. To increase the efficiency for the decoding of lattices
in communications, it also uses the knowledge of the covering
radii of the lattice and its sublattices. It has been shown that the
algorithm searches in a cube similar to Kannan’s, except that
the edges of the cube are shorter for the proposed algorithm.
Explicit lower and upper bounds have been derived on the
complexity of the algorithm in terms of the coding gain and
the dimension of the lattice.

It was proved in [26] that the trellis decoding complexity
of lattices grows exponentially with coding gain. Our lower
bounds prove a parallel result for RCS algorithms, i.e., the
decoding complexity of any sequence of lattices with coding
gain increases exponentially with dimension and coding
gain. This suggests that RCS algorithms are not going to be
attractive for decoding dense lattices in high dimensions. The
lower bound also indicates that our upper-bound results cannot
be much improved.

The densest lattices and most of the lattices used in com-
munications have equal successive minima. Upper and lower
bounds of the forms and ,
respectively, have been established on the decoding com-
plexity of ESM lattices. The lower bound indicates that for
any given vector, the decoding complexity of ESM lattices
with sufficiently large coding gain grows exponentially with
dimension and coding gain. Using the above bounds, we
have obtained and as
upper and lower bounds on the decoding log-complexity of
the densest lattices, respectively. It has also been shown that
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tighter upper bounds in terms of dimension can be found for
many interesting sequences of ESM lattices.

Finally, the results of this work along with the bounds of
[4] on the trellis complexity of lattices can be used to compare
the RCS and trellis methods for any particular lattice with a
finite trellis diagram.

APPENDIX

AN INDEPENDENT PROOF OFCOROLLARY 1

Corollary 1: The densest lattices have ESM.
Proof: Suppose to be an arbitrary -D lattice with

successive minima . A famous result of Minkowski
implies that [12, p. 195]. Combining
this inequality with the fact that for ,
results in . Dividing both sides of
the last inequality by and using (7), we obtain

. For the densest lattices, we have ,
and the inequality results in . Comparing this with (1)
proves the corollary.
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