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On the Complexity of Decoding Lattices
Using the Korkin—Zolotarev Reduced Basis

Amir H. BanihashemiMember, IEEE and Amir K. KhandaniMember, IEEE

Abstract—Upper and lower bounds are derived for the decoding cannot use an exhaustive method to implement the decoding
complexity of a general lattice L. The bounds are in terms of gperation. Presenting an efficient decoding algorithm for a
the dimensionn and the coding gain~y of L, and are obtained general lattice is one of the purposes of this paper.

based on a decoding algorithm which is an improved version . . . .
of Kannan’'s method. The latter is currently the fastest known There exist very efficient algorithms for the decoding of

method for the decoding of a general lattice. For the decoding Well-known lattices with high degree of structure, like the
of a point z, the proposed algorithm recursively searches inside Leech lattice (see [7, pp. 443-448], [10], [29]). Most of these
an n-dimensional rectangular parallelepiped (cube), centered at g|gorithms, however, cannot be applied to a general lattice.

z, with its edges along the Gram—-Schmidt vectors of a proper _
basis of L. We call algorithms of this type recursive cube search There are only two known general-purpose methods to decode

(RCS) algorithms. It is shown that Kannan's algorithm also & lattice: the trellis approach and the integer programming
belongs to this category. The complexity of RCS algorithms is approach based on the geometry of numbers. The purpose of
measured in terms of the number of lattice points that need to be this paper, which presents part of the results obtained in [3],
examined before a decision is made. To tighten the upper bound jg tg study and analyze the latter approach.

on the complexity, we select a lattice basis which is reduced in . . -
the sense of Korkin—Zolotarev. It is shown that for any selected The trellis approach, mainly due to the valuable contri

basis, the decoding complexity (using RCS algorithms) of any butions of Forney [9]-{11], is currently one of the common

sequence of lattices with possible application in communications methods in communications for the decoding of lattices. This
(v > 1) grows at least exponentially withn and . It is observed approach, which can be applied to any lattice with a finite
that the densest lattices, and almost all of the lattices used yg|jis (including rational lattices), is based on representing the
in communications, e.g., Barnes—Wall lattices and the LeechI ttice b trellis di hich reflects th derlvi

lattice, have equal successive minima (ESM). For the decoding 'atc€ Py a trellis diagram which refiects the underlying group
complexity of ESM lattices, a tighter upper bound and a stronger ~ Structure. Then the Viterbi algorithm [8] is used to decode the

lower bound result are derived. trellis.

Index Terms—Coding gain, decoding algorithms, decoding com- The trellis structqre of lattices and their trellis complexity
plexity, densest lattices, Korkin—Zolotarev reduction, lattices, have been the subject of some recent research [3]-[5], [10],
successive minima. [25]-[27]. In [10], Forney derived lower bounds on the state

complexity of the trellis diagrams of lattices, and constructed
trellises for some important low-dimensional lattices which
either met or nearly met these lower bounds. Subsequently,
L ATTICES have two main applications in communicaTarokh and Blake [25], [26] gave lower bounds which show
tions: i) efficient signaling over band-limited channelsat for sufficiently large coding gaing the average state and
and ii) vector quantization. In both applications, a finite subsgage complexities of any trellis diagram of lattices grow at
of points of ann-dimensional §¢-D) lattice within a bounded |ga5t exponentially withy.
supporting region oR™ is employed. This collection of points  ypper bounds on the complexity were derived in [27].
is called alattice code In [3] and [4], these bounds were both improved and gen-
The major complexity associated with a lattice code is thgajized, lower bounds on the number of distinct paths in
process ofdecoding that is, finding the point of the code thatyeljis diagrams of lattices were derived, and low-complexity
has the smallest (Euclidean) distance to an input. Note thaljlises were constructed for some important lattices which
as the number of code points is usually a huge number, Qfiéher achieved or nearly achieved the lower bounds. The

Manuscript received December 18, 1995; revised May 27, 1997. This onl?”'s compIeX|ty of root lattices and their duals was then

was supported in part by an Ontario Graduate Scholarship (OGS) andifvestigated to some extent in [3] and [5]. Other relevant

part by the Information Technology Research Centre of Canada (ITRC). Thesults about trellis structure and trellis complexity of block
material in this paper was presented in part at the 39th Annual Conference

Q . .
Information Sciences and Systems, Princeton University, Princeton, NJ, Maﬁ‘:ﬁdes can be found in papers in [30]' and the references
1996, and at the 18th Biennial Symposium on Communications, Queeﬁh;el‘em.

University, Kingston, Ont., Canada, June 1996. The problem of lattice decoding also lies at the heart of

A. H. Banihashemi was with the Department of Electrical and Computer. . . .
Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1. He fany integer programming problems [2], [13]-[16]. The main

now with the Department of Electrical and Computer Engineering, Universigpproach to the decoding of lattices in integer programming is

of Toronto, Toronto, Ont., Canada MSS 1A4. , based on using a reduced basis for the lattice. The complexity
A. K. Khandani is with the Department of Electrical and Computer

Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1. of such deching algorithms has tWO pf':ll’tS: i) computing the
Publisher Item Identifier S 0018-9448(98)00009-1. reduced basis of the lattice, and ii) finding the nearest lattice

I. INTRODUCTION

0018-9448/98$10.001 1997 IEEE



BANIHASHEMI AND KHANDANI: COMPLEXITY OF DECODING LATTICES USING THE KORKIN-ZOLOTAREV REDUCED BASIS 163

point using this reduced basis. In the decoding problemalled alattice. Every lattice L is generated as the integer
encountered in communications, the lattice is fixed, so thiaear combinations of some set of linearly independent vectors
basis reduction is performed just once and then the resultihg- - -, b, € L, wheren < m. The set of vectorgb,,---,b,}
basis is stored for subsequent use. Thus the complexity i®fcalled abasis of L. We use the brief notatiospan(L)
solving i) is not of major concern. The fastest lattice decodirtg denote the real span of the set of basis vectors, i.e.,
algorithm for solving ii) in the context of integer programmingspan(L) = span(b,---,b,).
appears to be that of Kannan [16]. Let L(b,---,b,) denote the lattice with basks,---.b,.
This work gives a geometrical interpretation of Kannan’s dimension(also calledrank) is n and its basis matrix
algorithm, which clarifies some issues regarding the complefalso calledgenerator matrix is then x m matrix B which
ity of the algorithm. Explicit upper and lower bounds on théas the basis vectorg,---,b, as itsn rows. The lattice
complexity of Kannan’s algorithm for a general lattice arés called full-dimensionalif n = m. The determinantof L,
derived. The bounds are in terms of the coding gain and thenoted bydet (L), is defined aslet (L) = [det (BBT)]'/2.
dimension of the lattice. For lattices with equal successivgeometrically, the determinant of a lattice is the common
minima (ESM), a tighter upper bound and a stronger lowegplume of itsfundamental regionavhere a fundamental region
bound are obtained. Recalling that extremal lattices (includiig a building block which, when translated by lattice vectors,
the densest lattices) belong to the category of ESM lattices, partitions the whole space with just one lattice point in each
observe that almost all of the lattices used in channel codingpy. TheVoronoi cell of a pointv € L is an example of
have ESM. It is also proved that lattice§;;, D7, and £ a fundamental region foL. It consists of those points of
have ESM. This means that the lattices used for quantizatispan(L) which are at least as close # as to any other
of uniformly distributed inputs [7, p. 61] are also ESM latticedattice point. Ifd;,---,b, € R™ is a basis of latticd., then
To reduce complexity, we then modify Kannan's algorithndy, - - -, b, is also a basis of if and only if there exists a
By pre-computing the covering radii of the lattice and itsnimodular matrix UU (integer matrix with determinant-1)
sublattices, decoding is simplified, especially for the latticesich thatl/ B = B’. The dimension and the determinant of a
used in communication applications. The modified algorithfattice are independent of the choice of the basis.
employs the Korkin—Zolotarev reduced basis, and solves theOn the space of-D lattices, the(B, ¢)-neighborhoodof a
decoding problem for am-D lattice by reducing it to some lattice L with the basis matriX3 = [b;;] consists of all lattices
subproblems of dimensionality— 1. Explicit upper and lower having a basisB’ = [b;;], such that
bounds on the complexity of the algorithm are derived. Im-
proved complexity results are also obtained for ESM lattices.
Using the derived lower bound, it is shown that even with
some exponential-time pre-computations (computing the re-
duced basis and the covering radii), one cannot decode aviyere¢ is an arbitrary positive number.
sequence of lattices with possible application in commu- The ith successive minimum; (L) of a lattice L is the
nications (y > 1) in polynomial time. The lower bound smallest real number such that there alieearly independent
also indicates that our upper bound results cannot be mugittors inL of length at most\;(L). Clearly, we have
improved.
This paper concentrates on the lattices used in signal con- AL(L) € X(L) < -+ < A (L). (1)
stellations. However, the problems of lattice-based channel
coding and lattice-based vector quantization are closely e call a lattice an ESM lattice if its successive minima
lated. The decoding algorithm discussed here can be usedts equal. Obviously, lattices which are generated by their
both of these contexts. minimum-length vectors have the ESM property, although to
This article is organized as follows. Section Il gives athe best of our knowledge the converse to this statement has
introduction to lattices. Section Ill explains the concept of codhot been proved. The notatiodL) = A;(L) is used to denote
ing gain, and also deals with some of the important knowhe length of the shortest nonzero vector(sLirwhich is also
ESM lattices. Section IV gives an introduction to the idea afqual to the minimum distance between lattice points.
basis reduction, and discusses the Korkin—Zolotarev (K-Z) The distance between a vectoe span(L) and the lattice
reduced basis. Section V presents the proposed decoding defined as the minimum distance betweend the points
algorithm and discusses its complexity. Kannan’s algorithm ¢§ . The covering radiusu(L) of a lattice L is the smallest
explained and bounds on its complexity are derived. Finalljumber such that all vectors € span(L) are at distance at

1B - B = max{[bij — b} < e

Section VI contains concluding remarks. most p(L) from the lattice.
To any ordered lattice basis, say,---,b, €R™, one can
associate a set dsram-Schmid{G-S vectorsby,---,b, €
Il. SOME DEFINITIONS AND FACTS ABOUT LATTICES R™, which are computed using the following recursion:
Let R™ be them-dimensional real vector space with the .
standard inner product.,.), and Euclidean length|z| = b =b;
(:1:,:1:)1/2. The linear subspace generated by some subset of ) i—1 )
R™ is denoted byspan(---), and its orthogonal complement b =b, - Zﬂi,jbja fori=2,.--,n (2)
by span(---)1. A discrete, additive subgroup C R™ is j=1
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where the G-S coefficientg; ;'s are equal to A. Coding Gain

>

In a lattice-based signal constellation, the constellation
[ = (b, ">_ 3) points belong to a latticd.. As a measure of performance
" b b, of the corresponding lattice codegding gainis defined as
J1 77

(R

We havey; ; = 1, Vi, andy; ; = 0 for ¢ < j. Based on the ~(L) & N2(L)[det (L)]~2/™. (7)

above relationships, the G-S decomposition may be written in

matrix notation as The quantityy(L) is the saving in the average energy due
to using the latticeL for the transmission instead of using

B= [uiyj]f} (4) arectangular grid of points with integer components (@ie

lattice).

where B has 31,---,3n as its rows andy; ;] is the lower Hermite’s constanty,, is defined as the supremum of

triangular matrix of the G-S coefficients. The vectgris Over alln-D lattices. It is known thaty, is attainable [12,

the projection ofd; on span(b;,---,b;_1)*. The vectors P- 267]. The value ofy, is explicitly known only forn < 8.

b, b, are mutually orthogonal and do not necessariflinkowski’s convex body theorem [12, p. 51] implies that

belong to the lattice. It will often be very helpful to think of the¥n < 47 T'(n/2 + 1)%/™, which yields~,, < 2n/3 for all

basis vectors as being presented in the orthogonal coordiratg: 2- For simplicity, we will use the inequality, < n,
system of the G-S vectors. It is also easy to see that which holds for all values of. It is also known that for large

values ofn, we have [7, p. 20],

det (L) = [ I (5) RPN L (8)
i=1 27e n 2me
Using (2) and (3), we see thatdif, - - -, b, have rational coor- B. Extremal and ESM Lattices

dinates, so do th’s and they can be computed in polynomial A |attice I, is calledextremalif v(Lo) is a local maximum;
time (with respect to the input size) frol, - - -, b,. i.e., if in the space ofi-D lattices, there exists a neighborhood
There exists a Iower.bou.nd on the length of a shqrteﬁ; of Lo such thaty(L) < ~(Lo), for L € . Extremal lattices
nonzero vector of a latticd. in terms of the lengths of its ),ye rejatively high coding gains and may be useful in channel
G-S vectors [21, p. 18]: coding applications. Clearly, the extremal property of a lattice

A(L) > min{[by]), . .., [|ba]]}- (6) Is invariant under scaling and/or orthogonal transformations
i . _ . of the lattice. The following theorem [12, p. 300] is of great
Letbd,---, b, be a fixed ordered basis of a latti¢e Given importance:
v € span(L) andi € {1,---,n}, we use the notation(:) (re-

. AR Theorem 1: Every extremal lattice has ESM.
spectively,L; (b, - - -, b,), to denote the orthogonal projection pq 5 corollary

of v, respectivelyL(by, - --,b,), on thespan(b,---,b;,_;)*.
In particular,v(1) = v and Ly (by,---,b,) = L(by,---,b,).
When no confusion can arise, we ufe as an abbreviated
notation for L;(by,---,b,,). Clearly,

it can be concluded that:
Corollary 1: The densest lattices have ESM.

Proof: The coding gain of the densest lattices are glob-
ally maximum, and therefore locally maximum. (Another
proof of this corollary, independent of Theorem 1, is given

span(b,,---,b;) =span(by,---.,b;), fori<i<n in the Appendix). O

] . ) ) Noting that Fg, E7, and E are the densest lattices in their
andb;(i), - -, b,(¢) is a basis of the latticd;(by, -- -, by). corresponding dimensions, it follows from Corollary 1 that
Throughout the paper, we frequently use important knOV\fHey are ESM lattices.
lattices such asd,, A, (n > 1), Dp,Di(n > 3), Coxeter proved that the lattice$,, and D,, are extremal
Ep, Ef(n = 6,7,8), BWa(n = 2™,m = 2,3,---), Kip, (see [12, p. 404]). Barnes and Wall constructed another infinite
and Ao4. For a comprehensive treatment of their propertle§equence of extremal latticéBW,,), which is probably the
the reader is referred to the excellent encyclopedic book Qfst famous lattice sequence in communications. Two other

Conway and Sloane [7]. well-known extremal lattices are the Lee¢h,,) and Cox-

We assume the bases to be rational. This assumption is m@f&f—Todd(Klg) lattices. We therefore obtain the following
only for computation; all the lemmas, propositions, theoreméorollary.

and corollaries are valid for a general real basis. ), Dn(n > 3)
i) n —_— L

Corollary 2: The lattices A, (n > 1
= 2,3,---), Asy, and

E,(n = 6,7,8), BW,(n = 2™ m
K> are ESM lattices.

Despite these results, the ESM condition does not have a

In this section, we explain the concepts of coding gaistrong impact on the achievable coding gain for a lattice. The
and extremal lattices. Then we show that many well-knowrest lower bound that can be obtained on the coding gain of
lattices and almost all of the lattices used in communicatioasgeneral ESM lattice is trivialy > 1 [6]. It is also shown in
have ESM. Some connections between the coding gain gdbiithat, especially in large dimensions, obtaining large coding
the successive minima of a lattice are also mentioned. gains is possible without having ESM.

I1l. CODING GAIN, EXTREMAL LATTICES,
AND ESM LATTICES
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The following lemma introduces some other classes of ESit$ historical roots in the 18th century, was mainly motivated

lattices. by the classical question of finding the minima of positive-
Lemma 1: The latticesA* (n > 1), Di(n > 3), and definite integral forms. Several distinct notions of reduction
E}(n =6,7,8) are ESM lattices. have been studied, including those associated with the names

Proof: Since the proof is similar for the three classes dflermite, Minkowski, Korkin—Zolotarev (K-Z), and more re-
lattices, only the proof for latticed” is given here. Consider cently Lenstra, Lenstra, and Lasz (L®); see, e.g., [12, pp.
the followingn x (n + 1) basis matrix ford* [7, p. 115]: 147-164]. After the introduction of the3Lreduced basis,
which can be computed in polynomial time, reduction theory

1 -1 0 cee 0 0 L : .
1 0 _1 0 0 has found many applications in a variety of areas (see, e.q.,
B = ] ) ] ) ) [2], [13]-[16], [19]-[21], [24, pp. 71-74]). HoweVer, it can be
1 0 0 ] 0 shown that for the decoding of lattices, the K-Z reduced basis
- 1 1 .1 1 is a more powerful tool than the3Lreduced basis [6]. In the
nl ntl ntl ntl n+l following, we explain the K-Z reduced basis, which is used
Using this basis matrix, we obtaih = /n/(n+ 1). It is In our decoding algorithms.
not difficult to see that the: lattice vectorsb,, b, + by, Let L C Q™ be a lattice with ordered basts, - - - ,b,,

b, +bo, -, b, +b,_; are independent and have length] and corresponding G-S vectots,---,b, (Q is the set of

The above results imply that almost all of the latticegational numbers). In the lattice decoding algorithm presented
currently used in communications, either in channel codirl Subsection V-A, one needs to check the distance between
or in quantization applications, are ESM lattices. a given vectorz € span(L) and a subset of the lattice
vectors. The upper bound on the number of candidates needed
to be checked depends on the lengths of the G-S vectors.
] o ] ] Consequently, it is desirable to make these lengths as small as

The algorithm for_flndlng t_he closes_t pomt_of theD m_teger possible by finding a properly reduced basis of the latfice
lattice 2" to an arbitrary point: € R™ is particularly simple. gy the reduction theory introduced by Korkin and Zolotarev
For a real number, let [r] € Z denote the nearest integen; 7] the vectors of a basis can be selected such that the lengths

. gt A .
to r. Itis not difficult to see thafz| = ([x1],...,[¢x]) 1S of the corresponding G-S vectors are minimized successively,
the closest point oZ™ to z. We call this method of decoding; o

the “round-off procedure.” .
Let L be a lattice inR™ given by a basid,, - -,b,, and 18] = A(Ly), fori=1,---,n 9)

suppose thag € R™ is an arbitrary point. Lett = &' + 2"

with o’ € span(L) andz” € span(L)*. Clearly, the nearest Where A(

IV. KORKIN-ZOLOTAREV (K-Z) REDUCED BASIS

L;) is the length of a shortest vector of theh

. reduced bases are extensively studied in [18].
2 — Zo“b‘ It can be shown that each lattice has at least one K-Z
B gt e reduced basis (see [16] or [23]). There is no polynomial-time

_ _ algorithm known for K-Z reduction. Finding a K-Z reduced
The round-off procedure on the badis ---,b, in span(L) basis of a lattice is actually polynomial-time equivalent to

decodesz’ to finding a shortest vector of the lattice. The fastest known
n algorithm for K-Z reduction of a basi$,,---,b, € 7™
y=> [ailbi. with ¢ = max (||b1]|%, -+ -, ||b]|?) andm = O(n) is due to

i=1 Schnorr [23] and has a theoretical worst case time bound of

Geometrically, this is equivalent to employing a parallelotope” "™ + O (n*log ¢) arithmetic steps ol (n log )-bit
decision regioh spanned by vectord,,---,b,, centered at integers. This algorithm is an improved version of Kannan’s
each lattice point. It can be shown that although the roungortest lattice vector algorithm [16].

off procedure is a very efficient polynomial-time algorithm, it Example 1: The following are K-Z reduced bases for the
obtains the nearest point of the lattice if and only if the basiattices D, and Es (see the top of the following page).
vectors are mutually orthogonal. Unfortunately, for lattices The following lemma is subsequently of great importance.

with v > 1, such a basis does not exist (as can easily beLemma 2:1f by, ---,b, is a K-Z reduced basis of an-D
proved by contradiction). ESM lattice, then

_ The nice properties qf orthogonal bases motivate search- max ||i’z‘|| _ ||I;1||- (10)
ing for bases of a lattice that are nearly orthogonal. The 1<i<n

problem of transforming a given lattice basis into a basis
consisting of vectors which are pairwise nearly orthogonal (i]seﬁ
called lattice basis reductiod Reduction theory, which has

Proof: First, we consider an arbitrary lattick. By the
nition of \;(L), there exist at least linearly independent
vectors of L of length at most\;(L). Under the projection

The decision regionof a point P; belonging to a discrete collection of [, — L;, at least one of them, say has a nonzero projection
points{ Py, P,,---} C span(L) consists of those points apan(L) which ,U(L) Therefore. we have\(L<) < ||”(L)|| This inequality
are decoded td;. . oy A

gembined with the fact thafju(i)|| < [jv]| < Ai(L) results

2More generally, reduction theory is concerned with selecting a basis wil o i - )
desirable properties. in A(L;) < X\;(L). Combining this with (9), we obtaifjb; || <
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1 1 1 1 0 0 0 0
0 0 -1 -1 1 1 0 0

-1 -1 0 0 0 -1 0 -1 1 0 1 0

1 0 -1 0 -1 0 -1 0 0 1 o0 1

Bo,=1 1 o 1 o Bes=| o 1 21 0 -1 0 o 1
0 -1 0 -1 -1 1 -1 -1 0 0 0 o0

-1 -1 1 -1 0 0 0 o0

1 0 1 0 0 -1 0 1

A:(L). The proof then follows by putting this result togetheand shows that for some particulgr such that
with the facts that for an ESM latticg; = Ay = -+ = A, N N )
and for a K-Z reduced basif: || = A;. O ||bi, || = max ||b; ||, je{l,--,n}

ale';{i/'gf;?j;g‘gdtgsnme that the above result can be CAUNere exists a subset a@"—i+l of cardinality at most

(n + /n)(»~41+1) that contains the value§3;,,--,/3,) of

ML) = max{||by]], -, [1ball}. the nearest point. Now, & solves the LDP for the vector
Comparing this equality with (6) gives further evidence for 1
the strength of the K-Z reduction. - Z Pibi
As already mentioned, in applications to communication =
systems, we assume that the computation devoted to findingrgy the latticeL(b;, - - -,b;,_1), then
reduced basis is done once (off-line), and we do not consider
this computation as a part of the decoding complexity. b+ z": 3b,
In the rest of the paper, the lattices are assumed to be full- AR
dimensional, i.e.n = m. This assumption simplifies some of =
the discussions without loss of generality. is a solution candidate of the problem teand L(by , - - -, b,,).
Therefore, the original problem can be reduced to at most
V. LATTICE DECODING PROBLEM (n++/n)"~F1) subproblems, each of dimensionalify— 1.

In this section, we first discuss Kannan's decoding algorithlfl the f?IIOWi”Q' we present a geometrical interpretation of
and its complexity. Then, in Subsection V-A, we propose sonfé@nnan’s algor_lthr_n which _prowdes a better understanding of
modifications which increase the efficiency of Kannan’s alg§®Me complexity issues discussed later.

rithm, especially in communication applications. Complexity L€t indicesio,-- -, wherek < n is a constant integer,
bounds for the proposed algorithm are derived in SubsectiBfi Successively defined by
Ve B0l = _ max bl

Consider the following lattice decoding problem: " 1<m<i;_ -1

for 1 < j < k, with
(LDP) given the vector € Q"and latticeL(by, - - -, by)

Cc Q", find a lattice vector ntl=to>i>->0 =1
Herei; is the same index as defined in the last paragraph. A
careful inspection of Kannan’'s algorithm [16] reveals that if
i; < ¢ £ i;1 — 1, then the algorithm recursively searches
In 1981, Van Emde Boas proved that the LDP is NP-hard [28br the candidated such that the projection length ¢§ — )

A simpler proof was subsequently given by Kannan in 198fong the G-S vectof)q is at most

[16]. More recently, it has been shown by Aratzal. that even

b= _p;b; such that|z — b|| is minimized. (11)

=1

approximating the solution within any constant factor is NP- io-l 1/2
hard [1]. Some other relevant results regarding approximate 4= Z ||brm||? /2_
solutions for the LDP can be found in [2], [13], and [18]. m=1

The fastest (best upper bound on the complexity) known ) ]
algorithm for solving the LDP for a general lattice is due td 'uS the algorithm may be thought of as searching among

Kannan [16], an improved version of his earlier work in [15]/@tticé points in a rectangular parallelepiped centere wiith
Prior to [16], Helfrich [14] also made some improvements ifd9es pointing parallel to the G-S vectors of the lattice. The
the running time of some of the algorithms in [15]. In [16]€dge length of the parallelepiped alobgis 2/;. (Note that
Kannan uses the same reduced basis as used in this pager>> - > £x). For simplicity, we think of such rectangular

3 ) . a{allelepipeds as cubes, and we call the algorithms of this
The reduced basis used by Kannan has an extra condition on the valug of . B . .
the G-S coefficients.; , i.e., [ui; ;| < 1/2 for 1 < j < i < n. However, YP€ ‘T€CUrsive cube search” (RCS) algorithms. As we will see

this condition does not affect the G-S orthogonalization of the basis. later, our proposed algorithm also belongs to this category.
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The computational complexity of Kannan'’s algorithm de- Theorem 2: For ann-D ESM lattice L. with coding gairvy
pends on the values af,---,i;_1. One can see that =1 and K-Z reduced basi$, and for any given vectox € R™,
leads to the highest complexity. In this case, the originie complexity of Kannan’s algorithm satisfies
problem is reduced to at mosih + /n)" 0-dimensional
subproblems. Each subproblem is solved by just checking the N(z,L,B) < (v/n+1)"y"/2. (13)
distance betweem and a certain point of the lattice. It can be
shown that the number of arithmetic operations for Kannan's  proof: Using the notations already used in describing
algorithm is bounded above bi2n)"+“®).# This bound is Kannan's algorithm, we have an upper bound of
obtained based on the amount of computation required for the
worst case of; = 1, and the fact that the number of arithmetic (2fj/||i)q||) +1
operations needed to find a candidate and check its distance
to the given vec_tor IS polynom|ally t_)ounded by on the number of possible values for each integgrwhere

We are also interested in obtaining lower bounds on ttzg_ ¢ < i;_.— 1. For ESM lattices, using Lemma 2, we have
complexity of such algorithms. To gmphasuz_e the |mportan%é: 1 (i, = 1), and each integef,, g = 1,---,n, takes at
of lower bounds, we pose the following question: “Is there an - ) .
sequence of lattices with possible application in communicéOSt(.%l/”bq”) +1 dn‘ferent. values. This corresponds to the
llowing upper bound onV:

tions (v > 1) such that Kannan’s algorithm can decode ther?

in polynomial time for an arbitrarg?” As we will see later,
using the derived lower bound, the answer to this question is / i ||i)m||2
negative even if one finds the best possible basis. n m=1
In the following, the number of lattice pointd/(.) that N < H W
should be checked is defined as the measure of decoding =1 ¢
complexity. This can be easily translated to a statement in
terms of the required number of arithmetic operationgJin ! \/7_1||271||
notation. For both Kannan’s and our proposed algorithity,) < H W +1
depends not only on the selection of basis, but also on the 7=l a
vector ¢ and the structure of the lattice itself. The notation < (a+1)" [161]| (14)

N(z,L, B) is therefore used for the number of candidates, n i '
where B is the generator matrix of the lattice. For the sake ql;ll 1B
of simplicity, we sometimes use the notatigw instead of

N(z,L, B). We _also sometimes use the '09"?‘““”‘ of thEor the last two steps, we have used the fact fbat| < |/b ]|
number of candidates as an index of complexity, referred Fo

i . . orm = 1,---,n. The proof then follows by applying (5), the
hereafter as thk?g cgmplexny(the base of the logarithm CaNtact that for a K-Z reduced basji; || = A, and the definition
be selected arbitrarily).

Let S denote the region of the space that an RCS algorit ?rf1 coding gain. O

searches to solve the LDP. As a rough approximation to t n fact, for ESM lattices, the algorithm searches among the

X ; : zﬁtice points in the cube centeredatwith edges of length
complexity measureV, one can consider its average valugi .
= ¢, oriented along the G-S vectors.

N(L, B), averaged over all vectors which are uniformly . ) , .
N . : In the next subsection, we modify Kannan'’s algorithm by
distributed in a fundamental region d@f. It can be seen that .
this is equal to reducing the length of each edge of the sear_ch cube. Ther_e_fore,
all the lower bounds derived on the complexity of the modified
~ vol (S) algorithm are also valid for Kannan’s algorithm. The bounds,
N(L,B) = (12) which are in terms of coding gain and dimension, imply
det (L) ; . . S
that for any sequence of lattices with possible application
in communications(y > 1), and any selected basis, the
complexity of Kannan'’s algorithm grows at least exponentially

wherevol (S) is the volume ofS anddet (L) is the volume
of a _fundamental region aof. . . \fvith n and 7.
Using N as the measure of complexity, the complexity o
Kannan’s algorithm for the decoding of a genexaD lattice - _
for an arbitraryz is upper-bounded b{n + /n)". This upper A. Modified Kannan's Algorithm
bound can be improved for ESM lattices. Consider the lattice decoding problem defined in (11). Based
on the definition of covering radius, the candidates for the
4Kannan's result in [16] is slightly different, however. It is claimed innearest vector of to a given vector: are the lattice points
[16, Theorem 4.5] that the number of arithmetic operations performed Byside the sphere of radiys(L), centered ate. However, a
the algorithm isO(n™). The authors believe that this is an underestimate . - L Lo '
since for the worst case ofi = 1, even the number of candidates, i.e.990d algorlthm for finding the lattice points |n5|d§ a sphere
(n+ /n)™, cannot be upper-bounded &y, for any positive constar®. does not exist. The proposed approach for solving the LDP
Thhe 'L"Stake’.‘ component in the proof turns out to be the wrong ass“g‘pt'ig“ to consider the lattice points inside a properly selected
i—1)/(n+ymi-Dior1<i<ni i > :
that the maximum of (i = 1)/(n + )} orls s nisattaned o o centered at. To search inside the cube, we devise the

at¢ = n. It is not difficult, however, to see that the maximumlisand is . :
obtained fori = 1. following RCS algorithm.
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Modified Recursive Cube Search Algorithibet b be a Proof: To each lattice poinb, we assign a cubic subop-
candidate for the nearest vector bfb,---,b,) to a given timum decision region centered awith its edges along the
vector G-S coordinatedy, - - -, b,. The edge lengths are selected as

n [1B1]l, - - -, ||bn]|, respectively. It is not difficult to see that these
z = Zaibi’ a; €Q, Vi cubic regions partitiorR™ (each of them is a fundamental
i=1 region for the lattice). Using the fact that the maximum

distance between a lattice point and the points of its decision

and let region isd and the definition of covering radius, the inequality
n follows immediately.
b= Z pibi, picZ, Vi It is easy to see that if the basis is orthogonal, the inequality
=1 in (17) holds with equality. In this case, the Voronoi cells

The candidates can be checked by enumerating the coefficidffsthe lattice points coincide with the aforementioned cubic
3; from $,, to f;, successively. This can be done efficientlflecision regions. We sketch a proof to show that(it) = d,
by noticing that we just need to search toamong the lattice then there exists a basis df which is orthogonal. Suppose

points such that that such a basis does not exist. Consider an arbitrary lattice
pointb and call its corresponding cubic decision regiB(b).
Ib—z| < (L) = Except for the vertices oRR(d), we have||b — v|| < d, for
(b= z)(n)|| = |8, — Oén|||i3n|| < u(L) (15) every vector € R(b). Let p be an arbitrary vertex oR(b).

Since we are assuming thatis not rectangular, and because
where(b—z)(n) is the projection ob—z along the G-S vector of the congruence of the structure, there should exist a decision
b,. The last inequality in (15) enables us to enumergtdor regionR(4") adjacent toR(b) which hasp at its intersection
the lattice points under consideration. Now bif solves the With R(b), but p is not a vertex ofR(b'), and therefore
LDP for the vectorz — 8,b, and the latticeL(by, -- -, b,_;), I = pll < d. It can be seen that if such a region does not
thend’ + 3,b,, is a solution candidate of the problem feand  €Xist, in other words, if all the adjacent cubic regions have

L(by,---,b,). Therefore, the original problem can be reduce@s their vertex, then for the whole structure all the adjacent
to several subproblems, each of dimensionatity 1. cubes coincide in their vertices and, consequently, the lattice
Let yi; = pu(L(by,---,b;)), fori =1,---,n, and letS(zx) is rectangular and has an orthogonal basis. This shows that

denote the region d&" that the algorithm searches to solve th&1€re exists no vectar € R™ such that the distance between
LDP for a given vectoe. It is not difficult to see thatS(z) v and the lattice is greater than or equakfavhich results in

is a cube centered at, with edges of lengtiRuy, - -, 2u, H(L) <d. N U
oriented along the G-S vectols, - - -, b,, respectively. The It can be concluded from the proof of Proposition 1 that for
volume of S(z) is therefore equal to any givenz € R", there exists a uniquiz€ L such that
vol (8) = 2" [ ] - (16) L 1 1,
=b ibi, 5 <m<g, Vi

Note that, in general, inequalities of the form

wherez is located inside the cubic decision region of pdint
In the following, we derive lower and upper bounds on

do not hold. Therefore, to reduce complexity, one can seld¥{®, L, B) for the modified RCS algorithm.

the edge length of the search cube in the directiob; @6 be Propnosition 2: For any basisB of a lattice L and any
the minimum of2;; and24(L). All the bounds derived later £ € R", the number of candidate poinfs(z, L, B) of the

NiSNn:N(L)v fori=1,---,n

in Subsection V-B remain valid for this case. modified RCS algorithm satisfies
Using the modified RCS algorithm, it appears that we only
need to enumerate relatively few candidate integeuples " o " o
(B1,--+,3,). To derive a proper upper bound on the number < — — 1) < N(z,L,B) < H <A—Z + 1>. (18)
of candidates, we first prove the following proposition. =z \llb:]] =1 \ 1|
Proposition 1: Let b,,---.,b, be an ordered basis of the
lattice L, with G-S orthogonalizatiorby, - - -, b,. Then, we Proof: We enumerate thg;’s from /3, to 3;, succes-
have sively. This means that for eagh, ¢ = 1,--.,n, the values
taken by 41, -+, 3, have been already selected. Starting

(17) from f,, using (15) and the fact that, is an integer, we
obtain the lower bound R, /||b.||)—1 and the upper bound
of (2un/||i?n||) + 1 on the number of possible values f65.

where the inequality holds with equality if and only if therdJsing similar bounds for every = 1,---,n, the inequality

exists an orthogonal basis férwith the lengths of its vectors follows. Note that fori = 1, z1; = ||b1]|/2, and the number of

equal t0||13i||,i =1,---,n. possible values fop; is at leastl. O
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Remark: Applying (5) and Proposition 1 to the upper boundalid for the proposed algorithm. Tighter bounds, however,
in inequality (18), we obtain can be found as follows.
Theorem 3: For ann-D lattice L with a K-Z reduced basis

1L <\/,§1||3jll2+ ||in||> B, and for anyz € &
N(z,L,B) < — = . 19)

det (L) N(z,L,B) < [[(Vi+ 1"/ (20)

=1

For a fixed latticeL, det (L) has a fixed value, and the
bound in (19) is just a function of the lengths of the G-s _ Proof: From the proof of Lemma 2, we know that for a
vectors. This justifies the selection of a K-Z reduced badfgZ reduced basis|lb;|| < A;(L) for j = 1,---,n. Putting
for the decoding algorithm. Note that although ife||'s are this together with (19), we obtain

minimized successively for a K-Z reduced basis, this selection n i
does not necessarily result in minimizing the upper bound in I1 AZ(L) 4+ (L)
i=1 j=1

(19). N <

In an efficient implementation of the algorithm, one can det (L)
simply update the distances from point to point, and keep Ce ‘
only the nearest vectob™ € L to # found so far. Noting < il;[l(\ﬂJr DA(L) 21
that the coefficient matrix in (4) is triangular, a more efficient = det (L) (21)

represent the basis vectors. In this work, however, our majfj€re for the last step, we have used (1). Combining inequality

concern is complexity bounds. From this point of view, it i 21) W'ﬂl/g result of Minkowski which implies\; - -- A, <
clear that the number of required arithmetic operations f8ft (L)'~ [12, p. 195] completes the proof. o
finding a candidate lattice point and checking its distance to”S @ corollary of Theorem 3, we obtain the following upper
the given vector is polynomially bounded by bound on complexity. . _ _

Having selected the valugd, 1, - -, 3., One can also use Corollary 3: For ann-D lattice L with a K-Z reduced basis
branch-and-bound, and prune any further search of vectorstf@nd for anyz € R*

the form N(z,L,B) < (vn+ 1),/ (22)

implementation is possible if one uses the G-S coordinates?';g

b=t + Z B3:b;, with & € L(by, -, by) For ESM lattices, the bound in (20) can be improved as
ikl follows. The two bounds coincide for the densest lattices.
Theorem 4: For ann-D ESM lattice L with coding gairnry

if [|(b —2)(k+ DI = [Ib* — x|, where (b —2)(k +1) IS 419 K-Z reduced basi®, and for anyz € R"
the orthogonal projection df— z on span(b;, - - -, b;)+. One

can also stop enumeratiiy when||b — || starts increasing.
Moreover, there is a quick certificate for the closest vector
of a lattice L to a given vectore, i.e., if for a candidate,

N(z,L,B) < [ [(Vi+ 1D)y2, (23)

—.

=1

|b — || < A(L)/2, thenb is the closest vector of, to z. Proof: The result follows by applying, = --- = A, to
This condition can be checked for each candidate, and if it (1), and using the definition of coding gain. [
satisfied one can stop the algoritGm. As a corollary of the above theorem, we obtain the same

It is conceivable that by embedding the above modificatiot$Per bound as given in Theorem 2 on the complexity of
in the algorithm, not every lattice vector in the cubic regiof€ algorithm for ESM lattices. Using,, < n, inequality
S(z) must be examined. This could affect the derived lowdg2) corresponds to a boungn)"+© ) for the required
bounds on the complexity of RCS algorithms. However, thi{umber of arithmetic operations, and to a log-complexity of
effect is presumably small, especially for the asymptotics 8flog n+O (n). Although this bound cannot be improved for

Example 2: Consider the Barnes—Wall lattices BWh =
B. Complexity Bounds for the Modified RCS Algorithm 2", > 2), ith coding gainy = /n/2. Substituting this
lexitwsi y .. quantity in (13), we obtainV(BW,,) < (1 + /n)"(n/2)"/%.
1) Upper Bounds on Cpmp ex'tWS'“g Proposition 1 ItIS 1t is not difficult to see that the corresponding log-complexity
clear that Kannan's algorithm searches in a larger region of the 5 . log n)/4 + O (n)
space as compared to the modified algorithm, and consequentlé) Lower Bounds on.COmpIexit)As we already know
has a larger number of candidate points to ctfeThis implies s, 1ing the LDP for a general lattice is NP-hard. Combining

that the upper bounds derived for Kannan'’s algorithm are alﬁﬂs fact with the widely believed conjecture of NPP implies

5This point was suggested by one of the reviewers. that no proposed algorithm can solve the LDP for a general
®Note that even if we use the upper bounds;ofs given by (17) instead lattice in polynomial time. Now, one might ask the following

of the u;’s themselves, in general, the algorithm still searches in a smallahestion. “|s it possible to solve the LDP in polynomial time
cube and therefore has a lower complexity compared to Kannan’s method, In ’

this case, the difference between complexities could be especially large lBrCommUnication application§?” When posing this PrOblem,
the decoding of lattices witmax; ||b;|| = ||b1 || (including ESM lattices). ~ one might have the idea of doing some precomputations (e.qg.,
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finding an appropriate basis and/or computing the coveriffigote that./2i/(¢+ 1) is a uniformly increasing function
radii of the lattice and its sublattices). In the following, wef 7). O
show that for lattices withy > 1, there does not exist any For the densest lattices and for large values,afombining
basis such that using the proposed algorithm, and therefditeeorem 6 with the lower bound in (8) results in a log-
Kannan’s algorithm, one can solve the LDP in polynomialomplexity of at least{n/2) log n + O (n) for the decoding
time. To show this, we first prove the following theorem. algorithm.

Theorem 5: For ann-D lattice L with any basisB

N(L, B) > 0.866[1.333v(L)]"/2. (24) VI. CONCLUDING REMARKS
Proof: For the modified RCS algorithm, using (12) and Solving the lattice decoding problem (LDP) is the major
(16), we have obstacle associated with using lattices in communication ap-
plications. There exist very efficient algorithms for solving
on ﬁ L the LDP in the case of lattices with strong algebraic structure.
N(L,B) = —=L_ (25) However, this is not the case for a general lattice. In this
’ det (L) paper, we have obtained some results regarding the complex-

ity of solving the LDP for a general lattice. These results
relate the decoding complexity to the coding gain and the
dimension of the lattice, and are obtained based on a decoding
approach which is an improved version of Kannan'’s algorithm.
Improved complexity results have been obtained for ESM

n N n lattices.
N(L,B) =[] iiLl (f;t((]z)) > (1.1547)" 7 [y(L)]"/2. It has been shown that Kannan’s algorithm, which is cur-
=1 26 rently the fastest known algorithm for solving the LDP for a
general lattice, is a search method inside a rectangular paral-
lelepiped (cube) with edges oriented along the Gram—-Schmidt

with the value 0f1.1547 ati = 2. The proof then immediately vectolrs (')tf th? |I<att|ce. !EXp:'Clt _L(r)]we;]and tL)Jpperdbo_un(;s on the
follows from (26). complexity of Kannan’s algorithm have been derived.

Note that for a K-Z reduced basiL(b;, -, b)) = M\(L), ;hg pr(t)hpozgd alg_orlthTthsoIvesblthe EDP ref:urswily tby
for ¢ = 1,---,n. However, this cannot improve the lower © u0|rllg € }Lmir)smg Iot N pr}g Zem dy oréet;n gacf?hep.
bound in (24). The following corollary is a consequence } employs a Korkin-Zolotarev (K-Z) reduced basis of the
Theorem 5. _attlce. To increase fthe efficiency for the decoding of Iattlc_es

Corollary 4: For ann-D lattice L with any basisB, there in c_(_)mmunlca_tmns, it _also uses the knowledge of the covering

. n radii of the lattice and its sublattices. It has been shown that the
exists somer € R™ such that . . o

algorithm searches in a cube similar to Kannan'’s, except that
N(z, L, B) > 0.866[1.333~(L)]"/%. (27) the edges of the cube are shorter for the proposed algorithm.
_ _ _ o Explicit lower and upper bounds have been derived on the

Inequality (27) shows that for lattices with sufficiently largeomplexity of the algorithm in terms of the coding gain and
coding gains, for a general given vectarthe complexity of the dimension of the lattice.
the modified RCS algorithm grows at least exponentially with |t was proved in [26] that the trellis decoding complexity
n andy (note thatn > 7). _ ~ of lattices grows exponentially with coding gain. Our lower

As a complement to Theorem 4, we derive the followingounds prove a parallel result for RCS algorithms, i.e., the
lower bound on the decoding complexity of ESM latticegecoding complexity of any sequence of lattices with coding

A result due to Rgkov [22] implies that for am-D lattice,
w/A > /n/(2n + 2). Applying this inequality for dimensions
¢t =1,---,nto(25), and using the fact that L(b;,---,b;)) >
A(L), for i = 1,---,n, we obtain

For the last step, we have used the definition@E), and the
fact that/2:/(i + 1) is a uniformly increasing function of

which is stronger than Corollary 4. . _ . gainy > 1 increases exponentially with dimension and coding
Theorem 6: For ann-D ESM lattice L with coding gainy  gain. This suggests that RCS algorithms are not going to be
and K-Z reduced basi®, and for anyz € R attractive for decoding dense lattices in high dimensions. The
N(z,L,B) > 6.464(0.0237)"/2. (28) lower bound also indicates that our upper-bound results cannot

be much improved.

Proof: Starting from the lower bound in (18), we first The densest lattices and most of the lattices used in com-
multiply it by 241 /||b1|| = 1, then use (5), Lemma 2, RyoV's munications have equal successive minima. Upper and lower
inequality for dimensions = 1,---,n, and finally the fact Pounds of the formg1 + v/n)"y"/* and 6.464(0.0237)"/?,

that for a K-Z reduced basia(L(b,,--,b;)) = A(L), for respectively, have been established on the decoding com-
i =1, m to obtain T plexity of ESM lattices. The lower bound indicates that for

any given vector, the decoding complexity of ESM lattices
. [ 2 A™(L) with sufficiently large coding gain grows exponentially with
N(z,L,B) > H< i+1 1) det (L) (29) dimension and coding gain. Using the above bounds, we
=2 have obtained:log n 4+ O (n) and (n/2)log n + O (n) as
Applying the definition of coding gainy, and substituting upper and lower bounds on the decoding log-complexity of
1 = 2 in all the terms in the above product complete the prodiie densest lattices, respectively. It has also been shown that
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tighter upper bounds in terms of dimension can be found for
many interesting sequences of ESM lattices.

Finally, the results of this work along with the bounds o

7

[4] on the trellis complexity of lattices can be used to comparés]

the RCS and trellis methods for any particular lattice with
finite trellis diagram.

%o

[10]
APPENDIX [11]
AN INDEPENDENT PROOF OF COROLLARY 1
Corollary 1: The densest lattices have ESM. [12]
Proof: SupposeL to be an arbitraryn-D lattice with
successive minimay, - - -, A,. A famous result of Minkowski [13]

implies thatA; - -

An < det (L)y/? [12, p. 195]. Combining [14]

this inequality with the fact thak; < A\; for 1 < i< n -1,
results in A7\, < det(L)y~/?. Dividing both sides of °
the last inequality byA7 and using (7), we obtait,,/A; <

{vn/7(L)}*/2. For the densest lattices, we hayeL) = v,,,

[16]

and the inequality results ik, < A;. Comparing this with (1) (17]
proves the corollary.

(28]
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