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Consider a discrete set of points A composed of K = 4]

elements. A non-negative cost c(a) is associated with
each element ac€ A. The n-fold cartesian product of
A is dented as {A}". The cost of an n-fold element
a=(ag,...,an-1) E{A}" is equal to: c(a)= Y, c(a).
We select a subset of the n-fold elements, S, € {A}",
with a cost less than or equal to a given value cyay. We
refer to A as the constituent subset.

Consider another set of n-tuples X, denoted as
the input set. A non-negative distance is de-
fined between each x=(zo,...,2n-1)€ X, and each
$=(20,...,80_1) € Sn. The distance between z; and s;
is denoted as d(w,s;). The distance between x and s
is equal to: d(x,s)= Y ,d(z;,8:;). Decoding of an ele-
ment x € X, is to find the element s € S, which has the
minimum distance to x.

A major application of this decoding problem is in the
fixed-rate entropy-coded vector quantization where A is
the set of reconstruction vectors of a vector quantizer
and cost is equivalent to self-information.

In this work, the decoding problem is formulated in
terms of a linear (sero-one) program. Using some special
features of the problem, we present methods to substan-
tially reduce the complexity of the corresponding simplex
search. This results in a substantial reduction in com-
plexity with respect to the schemes of 1], {2], [3], [4]. To
formulate the decoding problem as a linear program, the
elements of the ith constituent subset are identified by
the use of a K-D binary vector {§; (j),j=0,. LK-1}
where §i(j)=0,1and 33, 6i(5)=1,i=0,...,n—1. The
vector correspondmg to the jth element is composed of
a single one in the jth position and seros elsewhere. The
cost associated with the jth element of A is denoted as
¢(7). For an n-tuple input x, the distance of the ith
component of x to the jth element of A is denoted as
d;(7). Using these notations, the optimisation problem
is formulated as:
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Each of the equalities 3. 5i(5)=1, i=0,...,n—1, is
called an indicator constraint.

Theorem: There are at least one and at most two basic
variables corresponding to each indicator constraint.

To solve the problem in (1), we relax the zero-one
consiraint and then apply the simplex search. Using the
previous theorem, we conclude that in the final solution
at most two basic variables are different from unity. If
there is only one non-unity basic variable, the vector
obtained by concatenating the nearest points of different
constituent subsets satisfy the cost constraint. If there
are two non-unity basic variables, we set one of them to
zero and the other one to unity. The selection is achieved
such that the cost constraint is not violated.

The problem has some special features which are used
to reduce the complexity of the corresponding simplex
search. These are: (i) All the constituent subsets are
the same. This property allows us to reduce the com-
plexity of the multiply-add operations involved in piv-
oting to one add per dimension and one multiply per

(ii) The set of the indicator conmstraints are non-
overlapping and there is only one constraint involving
all the variables. These properties allow us to solve the
problem using a reduced basis of size 2 x 2, as compared
to (n+2) x (n+ 2), where the basis matrix is upper tri-
angular with a unity element at the upper left corner. It
is very easy to compute the inverse of this matrix.
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