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Abstractl: Consider two sets of points X, A and their n-
fold cartesian products {A}", {X}". A non-negative cost
is associated with each element of A. A measure of distance
is defined between an element of A and an element of X. It
is assumed that the cost and also the distance in the n-fold
space has an additive property. The shaped set is composed
of a subset of elements of { A}™ of the least cost. Decoding
of an element x € { X }" is the process of finding the element
of the shaped set which has the minimum distance to x. Us-
ing the additivity property of cost and distance measures,
the decoding problem is formulated as a linear program.
Using the generalized upper bounding technique of linear
programming in conjunction with some special features of
the problem, we present methods to substantially reduce
the complexity of the corresponding simplex search. The
proposed method is used for the fixed-rate entropy-coded
vector quantization of a Gaussian source. For n = 128
(space dimensionality) using 8 points per dimension and for
a 1ate of 2.5 bits/dimension, we need about 52 additions,
87 comparisons, 0.2 divisions, and 0.4 multiplications per
dimension to achieve SNR = 13.31 dB (the bound obtained
from the Rate-distortion curve is 13.52 dB). This is sub-
stantially less complex than the traditional methods based
on the dynamic programming.

1 Introduction

Consider a discrete set of points A composed of K = |4|
elements. A non-negative cost c(a) is associated with
each element a € A. Consider the n-fold cartesian prod-
uct of A dented as {A}". It is assumed that the cost
of an n-fold element a=(aq,...,a,-1) € {A}" is equal to:
c(a) = 3, c(a;). Shaping is achieved by selecting a subset
of the n-fold elements, S, € {A}", with a cost less than or
equal to a given value cpmax. We refer to, A as the constituent
subset and to S, as the shaped set.

Two major applications of this problem are in: (i) quan-
tizer shaping (fixed-rate entropy-coded vector quantiza-
tion) of an independent source [1], [2] where A4 is the set
of reconstruction vectors of an £-D vector quantizer (for
a given £) and cost is equivalent to self-information, and,
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(i) constellation shaping [3], [4] where A is the set of points
of an £-D subconstellation and cost is equivalent to energy.

Consider another set of n-tuples X,, denoted as the in-
put set. A non-negative distance is defined between each
x=(20,...,8n-1) € X, and each s=(s0,...,8n-1) € Sa.
The distance between z; and s; is denoted as d(z;, s;). It
is assumed that the distance between x and s is equal to:
d(x,s)= 3, d(z;, s;). Decoding of an element x€ X, is
to find the element s€& S, which has the minimum dis-
tance to x. Selecting a point with a larger distance than
the minimum possible value results in some degradation in
performance.

The immediate approach to decoding is to perform an
exhaustive search. This is achieved by computing the dis-
tance of x to all the elements of S,, and finding the smallest
value. In most cases S, has a huge cardinality and, conse-
quently, the exhaustive search is impractical. In this case,
one needs an algorithmic approach for decoding. The basic
frameworks to develop such an algorithm are: (i) additivity
property of cost, and, (ii) additivity property of distance.

A class of decoding schemes are based on replacing the
shaping region by the Voronoi region of a lattice [5]. These
schemes do not rely on the two additivity properties men-
tioned earlier. Another known approach for decoding is
based on dynamic programming [6], [7], [8]. In this case,
the states of the system correspond to the accumulative
cost. One major problem associated with this approach is
that the number of states can be a huge value. An effec-
tive rule for the quantization of the state space (merging
of states) is presented in [8]. This results in a suboptimum
shaping region with low decoding complexity and small per-
formance degradation. Although for moderate values of n
(say m = 32) this approach is quite effective, for larger val-
ues of n the decoding complexity to keep the performance
degradation small still remains quite high.

In this paper, we introduce a method based on a linear
programming approach which makes use of the additivity
properties mentioned earlier in a more useful way. Decod-
ing is achieved in a number of steps where each step finds a
point of the shaped set with a smaller distance. This prop-
erty enables us to provide a tradeoff between the search
complexity and the performance.

This is the first time that the problem of decoding of
a shaped set, and in specific the problem of fixed-rate



entropy-coded vector quantization, is formulated in terms
of a linear program. This formulation enables us to ap-
ply the rich ideas developed in various contexts of linear
programming to this new application.

In most parts of the paper, it is assumed that the reader
is familiar with the general idea of linear programming and
knows the details of the technique developed in [9].

2 Formulation of decoding as a lin-
ear program

A linear program is an optimization problem involving a
linear objective function and also linear constraints. The
basic theorem of linear programming says that in a problem
composed of M equality constraints?, the optimum answer
is composed of M nonzero components. Any solution with
M nonzero components, denoted as basic variables or ba-
sis, and satisfying the set of the constraints is called a basic
feasible solution. This theorem also gives the necessary and
sufficient conditions for a basic feasible solution to be op-
timum. Simplex method is a systematic search procedure
which searches among the basic feasible solutions and finds
the optimum answer in a finite number of steps. The search
is composed of a set of pivoting operations where each such
operation brings one of the nonbasic variables into the basis
and replaces it with a basic variable. This is achieved such
that the corresponding change in the objective function is
maximized.

To formulate the decoding problem as a linear program,
the elements of the ith constituent subset are identified
by the use of a K-D binary vector {6;(5),7=0,..., K — 1}
where §;(7)=0,1 and 3°.8:(5)=1, ¢=0,...,n—1. The
vector corresponding to the jth element is composed of a
single one in the jth position and zeros elsewhere.

The cost associated with the jth element of A is denoted
as ¢(j). For an n-tuple input x, the distance of the ith com-
ponent of x to the jth element ofA is denoted as d;(j). The
overall distance and cost are equal to: 3, 3. 6;(7)d;(j) and
20i 25 6i(7)e(4), respectively. The optimization problem is
formulated as:
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where s, is the slack variable of the cost constraint. Each
of the equalities Y. 8:(j)=1, ¢=0,...,n—1, is called an
indicator constraint.

2]n the case of an inequality constraint, by introducing an extra
variable for each such constraint (denoted as the slack variable), it is
transformed into the form of an equality.

The immediate problem in applying the simplex method
to solve (1) is that the variables §;(7) axe restricted to be in-
teger numbers, or more specifically 0 and 1. In the context
of linear programming, this is called a zero-one program.
Fortunately, in the present case, one can avoid this com-
plexity using the following simple theorem:

Theorem: There are at least one and at most two basic
variables corresponding to each indicator constraint.

Proof: To satisfy the equality, there should be at least one
basic variable corresponding to each indicator constraint.
Considering that: (i) each indicator constraint is composed
of a disjoint set of variables, and, (ii) the number of basic
variables is.equal to the number of indicator constraints
plus one (because we have just one extra constraint namely
the cost constraint), we conclude that there can not be
more than two basic variables corresponding to each of
them. An indicator constraint with two basic variables is
called an essential constraint. The theorem says that the
number of essential constraints is either zero or one.

The standard form for the resulting problem is given
in (4). The constituent subsets are indexed by 0,...,n—1
(set-indez). The set-indices are shown in the upper row
of (4). The subset indexed by n will be defined later. The
rows in (4), which are indexed by 0,...,n+1 (row-indez),
are generally denoted as the equality constraints. The row-
indices are shown in the first column of (4). Each of the
basic variables (in a given iteration of the simplex search)
corresponds to one of the equality constraints. The indi-
cator constraints are a subset of the equality constraints
indexed by 2,...,n+ 1.

To solve the problem in (4), we just relax the zero-one
constraint and then apply the simplex search. Using the
previous theorem, we conclude that in the final solution at
most two basic variables are different from unity. One of
the following two cases may happen in the final answer:

Case I: If there is only one non-unity basic variable, it
corresponds to the slack variable of the cost constraint and
indicates that the cost constraint is satisfied with inequal-
ity. In this case, the vector obtained by concatenating the
nearest points of different constituent subsets satisfy the
cost constraint and is the optimum answer. By performing
a simple test before starting the search procedure, one can
avoid the computation associated with such cases.

Case II: If there are two non-unity basic variables, it
means that the cost constraint is satisfied with equality. In
this case, we set one of the non-unity basic variables to zero
and the other one to unity. The selection is achieved such
that the cost constraint is not violated. Obviously, such a
selection is always possible and it can be shown that the
resulting solution in indeed the optimum answer subject to
the zero-one constraint [11].

Using the revised simplex method to solve the linear pro-
gram given in (4) results in a basis of size (n+ 2) x (n+ 2).
The problem has a special structure which can be used to
substantially reduce the effective size of the basis. This is
due to the fact that the set of the indicator constraints are
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non-overlapping. To use this structure, one basic variable
in each indicator constraint is denoted as the key variable.
If there are two basic variables (corresponding to an essen-
tial constraint), one of them is selected arbitrarily. The
basic variable of an essential constraint which is not key
is called the non-key basic variable. In the following, we
see how one can perform the steps of the revised simplex
search without considering the effect of the key variables
in an explicit way.

Consider the system obtained by subtracting the column
cortesponding to each key variable from every other column
in their respective set. This operation is equivalent to a
linear change of variable and results in the so-called derived
system. It can be easily shown that in this new system, the
values of the key variables corresponding to any feasible
solution is equal to one. These variables are treated as
the variables at upper-bound in an upper bounded variable
algorithm for the revised simplex method. In this way,
one can assume that the key variables are absent from the
derived system. This results in a reduced system. It can be
shown that the basis for the reduced system, denoted as B,
is composed of the basic variables which are not key. The
main idea is that the steps of the revised simplex search
can be carry out using just the inverse B~! of B and the
corresponding basic solution of the reduced system. This
property is due to the fact that one can easily reach from
the basis of B to the corresponding basis in the unreduced
system (denoted as the unreduced basis of B). We just
explain the operation of switching the basic variables.

First of all, it is easy to show that the variables to be
switched can not belong to two different non-essential in-
dicator constraints. If the variables belong to the same
non-essential indicator constraint, we just change the cor-
responding key variable and do some necessary updating
(no pivoting is required). A more complicated case occurs
when the switching involves an essential constraint. In this
case, if the switching is to be done with the corresponding
non-key basic variable, we just perform the ordinary piv-
oting operation. But, if the switching is to be done with
the key variable, we first change the key variable with the
non-key basic variable, do some necessary updating, and
then perform the pivoting operation.

In the following, we have some definitions which facilitate
formulation and also implementation of the algorithm.

e Define K(¢) € [0, K — 1] to contain the index of the key
variable corresponding to the ith indicator constraint,
1=0,...,n—1.

e Define the vector of variables v as:

v(iK +3)=6i(j) for ¢=0,...,n—
and v(nK) = s..

1, 7=0,...,K -1,

¢ Define B(i) to contain the index (in v) of the basic
variable corresponding to the ith equality constraint,

i=1,...,n+15.

Our problem has two special features with respect to the
general case discussed in [9] which are used to reduce the
computational complexity. These are explained in the fol-
lowing:

o The costs of points for all the constituent subsets are
the same.

o There is only one constraint involving all the variables
(cost constraint). As already mentioned, the immedi-
ate consequence of this feature is that one can relax
the zero-one constraint. In addition, this results in a
matrix B of size 2 x 2 which is upper triangular (with
a unity element at the upper left corner).

The corresponding algorithm is explained in the next
section. The (i, j)th element of B~ is denoted as B~ (4, 7).

3 Algorithm

1. Start from the basic feasible solution where the se-
lected component for all the constituent subsets is the
point of the least cost.

2. Compute ¢(3)=B7(0,1)c(5), ¢(5)=B1(1,1)e(y)
for j=0,...,K —1.

3. Compute the 2-D vector b where b(0) = B~1(0, 1)cmax,
b(1) = B~1(1, emax-

4. Compute p;(j)=d;(j)+¢(3) for i=0,...,n—1,
j=0,..., K —1. This is the inner product of the first
row of B~! with the vector composed of the first two
elements in each column of the system given in (4).

5. For each value of the set-index 2=0,...,n — 1, find the
index w; €[0, K — 1] such that u;(w;) = min; p;(5).

6. Compute A; = pi(wi) — pi[K(2)] for ¢=0,...,n—1.

7. Compute the 2-D vector d with the components
n—1 n—1
d(0)=5(0) = > mlK (D)), d(1) =b(1) - > o[k (3)].
1=0 1=0

8. Find the set-index ¢ such that A, = min; A;,
¢=0,...,n, and assume that the variable resulting in
min; p,(7) in step 5 is indexed (in v) by s.

9. If A, >0, the optimum solution is found. Otherwise,
bring the variable indexed by s into the basis. This is
achieved in the following:

10. Compute T'; = p(we) — ¢[K(0)].
11. Set D(0)=A,, D(1)=T,, and A, =0.

3The basic variable corresponding to the equality constraint in-
dexed by i =0 is always zg which is not considered here.
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12. Expand D =[D(0), D(1)] on the original basis. The
result is denoted as A,.

13. Expand d on the original basis. The result is denoted
as b.

14. Compute the index r of the variable to leave the basis
using,

5(%) )
=B h = . 2
r=B¥) whee U5 =m0 g @
Assume that this variable belongs to the constituent
subset indexed by p.

15. If p=o0c and the corresponding constraint is not es-
sential, change the key variable of the constraint and
perform the necessary updating.

16. If the variable to leave the basis is the key variable of
an essential constraint, make the corresponding non-
key basic variable to be the key and perform the nec-
essary updating.

17. Perform the pivoting operation by replacing B~! by

PB~! where,
; D
P= 0 D 1) , (3)
D(1)

and perform the necessary updating.

The algorithm can be easily modified to provide a trade-
off between the search complexity and performance. One
way to do this is to impose a constraint on the total exe-
cution time.

A more detailed explanation of this algorithm is available

in [11].
Note: In some applications of shaping, the constituent
subsets are not the same. An example of this case is in the
vector quantization (in the transform domain) of a corre-
lated source [10]. The algorithm given here can be easily
modified to apply to that more general problem.

4 Numerical Results

The algorithm given in section 3 is applied to the quantiza-
tion of a Gaussian source. The results are verified against
the results obtained using a general purpose linear pro-
gramming package. The values of n up to 512 are tested.
For n = 512, the measured SNR is only 0.11 db below the
bound determined by the Rate-distortion curve of a Gaus-
sian source. In general, the number of iterations to reach
the nearest point or very close to it is quite small (in the
order of a few tens). The majority of the iterations do not
need pivoting. The overall complexity is substantially lower

than the complexity of the methods based on dynamic pro-
gramming as discussed in [6], [7], [8]. At the same time, the
performance is better because: (i) no quantization of the
state space is involved, and, (ii) one can use much larger
values of n.

As a specific example, for n — 128 using 8 points per
dimension and for a rate of 2.5 bits/dimension, we need
about 52 additions, 87 comparisons, 0.2 divisions, and 0.4
multiplications per dimension to achieve SNR = 13.31 dB
(the bound obtained from the Rate-distortion curve is
13.52 dB). As a matter of comparison, in the dynamic
programming approach, by quantizing the self-information
of the points along each dimension to 256 (or 128) differ-
ent values, we obtain SNR = 13.25 (or 13.21) dB and the
complexity per dimension of the decoder is equivalent to
the Viterbi decoding of a trellis with about 3650 (or 900)
states. This requires about 14600 (or 3600) addition,
10950 (or 2700) comparison per dimension. In addition
to this large computational complexity, the method based
on dynamic programming also needs a large amount of
RAM memory to keep track of the surviving paths through
the trellis. In this specific example, this add up to about
467200 (or 115200) words of RAM memory. Note that in
the proposed method the RAM memory is mainly used to
store the distances and is equal to nK /2 words of memory.
For the example discussed here (n = 128, K = 8), this is
only 256 words of RAM memory.

As another example, for n = 512, using 8 points per
dimension and for a rate of 2.5 bits/dimension, we need
about 166 additions, 342 comparisons 0.2 divisions, and 0.4
multiplications per dimension to achieve SNR = 13.41 dB
(the bound obtained from the Rate-distortion curve is
13.52 dB).

Extensive numerical results concerning the performance
and the complexity of the proposed quantization scheme
are available in [11]. Some examples of such numerical
results are given in Fig. (1) which show the performance
and the complexity of the proposed coding scheme as a
function of dimension.
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Figure 1: SNR (in dB) and complexity (in number of addi-
tion, comparisons per dimension) of the proposed quantiza-
tion scheme in conjunction with a Gaussian source. Num-
ber of multiplication (including divisions) per dimension
is about 0.6 for n = 32,...,512. Number of points per di-
mension is 8 and rate is 2.5 bits/dimensions. The bound on
SNR obtained from the Rate-distortion curve is 13.52 dB.
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