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Abstract: This paper describes a lookup table for
the addressing of an optimally shaped constellation.
The method is based on partitioning the subcon-
stellations into shaping macro-shells of integer bit
rate and increasing average energy. A lookup ta-
ble is used to select a subset of the partitions in
the cartesian product space. By devising appro-
priate partitioning/merging rules, we obtain subop-
timum schemes of very low addressing complexity
and small performance degradation. The perfor-
mance is computed using weight distribution of an
optimally shaped constellation.

1 Introduction

In shaping, one tries to reduce the average energy of
a signal constellation for a given number of points
from a given packing. The price to be paid for the
reduction in the average energy (measured by the
shaping gain, v, ) involves: (i) an increase in the fac-
tor CER,?, (Constellation-Expansion-Ratio), and
(ii) an increase in the addressing complexity®,*. Ad-
dressing is often the most difficult task associated
with the shaping of a high-dimensional constella-
tion. For example, for 2-D subconstellations com-
posed of 256 points in a 32-D space, a direct ad-
dressing scheme using a lookup table requires a
block of memory with about 2'?® memory locations
(with each location having a word length of 128

ZCER, is ratio of the number of points used per two di-
mensions to the minimum necessary number of points per
two dimensions [1].

* Addressing is the mapping of the data bits to the con-
stellation points.

*A third factor is the increase in PAR (Peak-to-Average-
power-Ratio) which is uniquely determined by v,, CER, and
structure of the 2-D subconstellations [1]. Due to this depen-
dence, we concentrate on the v,, CER, relationship.
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bits). In the present work, we introduce subopti-
mum methods to reduce this memory size to about
0.8 kilo-bytes per 32-D while the degradation in per-
formance is negligible.

Previous work: Conway and Sloane in [2] in-
troduced the idea of Voronoi constellations based
on using the Voronoi region of a lattice A, as the
shaping region. In the work of Wei [3] shaping
is a side effect of the method employed to trans-
mit a nonintegral number of bits per two dimen-
sions. The addressing of this method is achieved
by a lookup table. Forney and Wei generalize this
method in [1]. Voronoi constellations are further
considered by Forney in [4]. In [5], Calderbank and
Ozarow introduce a shaping method which is di-
rectly achieved on the 2-D subconstellations. In
this method, the 2-D subconstellations are parti-
tioned into equal sized subregions of increasing av-
erage energy. A shaping code is then used to specify
the sequence of the subregions. The shaping code
is designed so that the lower energy subregions are
used more frequently. The idea of trellis shaping
is introduced in [6]. This idea is based on using
an infinite-dimensional Voronoi region determined
by a convolutional code to shape the constellation.
Lang and Longstaff in [7] use an addressing scheme
which is based on decomposing the space into lower-
dimensional subspaces via generating function tech-
niques.

In [8], Kschischang and Pasupathy discuss a shap-
ing method which is based on using the 2-D points
with nonequal probability. In [9], Livingston dis-
cusses a shaping method in which the 2-D subspaces
are partitioned into circular shells of increasing size.
In this method, the 2-D shells are used with equal
probability inducing a nonuniform distribution on
the 2-D points. In a continuation to [5] and [9],



Calderbank and Klimesh in [10] use a balanced bi-
nary code to select the sequence of the 2-D circular
shells. This scheme results in a fixed rate per sig-
naling interval.

In our previous work [11], some practical address-
ing schemes to achieve or approximate points on the
optimum tradeoff curves are given. The addressing
scheme of Lang and Longstaff is further discussed
by Kschischang and Pasupathy in [12]. Laroia, Far-
vardin and Tretter in [13] apply ideas from a type
of structured vector quantizer to constellation ad-
dressing.

In comparing different schemes, we need to com-
pute v, accurately. Previous methods [14], [11], [12]
are based on a continuous approximation. To per-
form an exact computation, we need the corre-
sponding weight distribution.

2 Weight distribution of an opti-
mally shaped constellation

The weight distribution of a set of points A with
respect to a given center is defined as:

Oa(g) = > ¢I" = 5" Ca(v)g”, (1)

u€A

where [|u||? is the norm of the vector associated with
point u and C,(v) is the number of points of A with
norm v.

The baseline constellation of cardinality M, de-
noted as By(M), is defined as the set of M points
of the least energy from the 2-D half integer grid,
Z? + (1/2)*. An optimally shaped, N-D constella-
tion is a subset of points of {B3(M)}", n= N/2, of
the least energy. We have,

Otz (n)3(9) = [Omyany(9)]™ (2)

It can be shown that the energy shells of
ZN +(1/2)N are of values 2i+ N/4, i=0,1,...,
where ¢ is used as the index of the correspond-
ing shell. If B, is composed of K energy
shells, we obtain n(K —1)+1 shells of values
2i4+N/4, i=0,...,n(K—1) for {B,(M)}". In
{B2(M)}", unlike Z¥ + (1/2)", shells of indices
K <i<n(K —1) are partially included and shells
with indices ¢ > n(K — 1) are completely discarded.

Define Cp,(ar)(¢) as the cardinality of the i’th
shell of B,(M). Using Eq. 2, we obtain:

Ciz.()y»(7) = DFT{DFT,, [Cp,an)(D)]}", (3)
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where L =n(K —1) +1 and DFT;, DFT;" are the
L-point discrete Fourier transform and its inverse.
Note that Cp,(ar)(?) is padded out with zeros.

3 Recursive merging of energy
shells

Consider a B,(M) set composed of K energy shells.
In an N = 2n-D space, cartesian product of the 2-D
shells results in K™ shaping clusters which aggre-
gate into L=n(K —1)+1 < K™ shells. A known
method to decrease the addressing complexity is
based on merging the adjacent 2-D shells into a
small number of energy layers (macro-shells) [5].
Motivated by the sequential nature of shell aggrega-
tion, the merging of shells in [11] is achieved grad-
ually in a hierarchy of stages achieved on the 2-
fold cartesian product of the lower dimensional sub-
spaces. In [11], to simplify the addressing, the car-
dinalities of the macro-shells are restricted to be
an integral power of two. In this case, using macro-
shells of equal cardinality results in a especially sim-
ple scheme. We first explain this approach and then
show how one can improve upon it.

Consider an N = 2%-D constellation. We recur-
sively merge energy shells. There are 2% macro-
shells of equal cardinality in the N; =2!*! dimen-
sional subspaces, i=0,...,u—2. In the two-fold
cartesian product of the N;-D subspaces, we ob-
tain 2% clusters of equal cardinality. These clus-
ters are arranged in the order of increasing aver-
age energy. Then, 2%kt §=0,...,u4—3, sub-
sequent clusters are merged into a higher stage
(2Ni=N,;;-D) macro-shell. The final constella-
tion is obtained by discarding the N-D clusters with
the highest average energy. To achieve the address-
ing, we need a set of lookup tables to store the
components of each macro-shell. The ¢’th address-
ing stage, 1=0,...,u — 3, requires a lookup table
with 2%%¢ memory locations each with 2k; bits. The
last stage requires 2%%+-2 ~ 7+ memory locations each
with 2k,_, bits where r, = (N/2)log,(CER,) and
CER, is restricted to have values such that », is an
integer.

In our experience, for a fixed set of k; values,
1=0,...,u—3, the order in which they are used
has almost no effect on the overall performance.
Considering that the memory size is a symmetrical
function of these values, it is appropriate to select
them equal to each other. If they are selected to



be nonequal (to provide a specific tradeoff between
complexity and performance), there is a small ben-
efit of using the larger values in the later stages of
the hierarchy.

In general, we are looking for efficient, recursive
merging rules which result in macro-shells of integer
bit rate. Using macro-shells of equal cardinality
(uniform merging) is not the best merging rule as
is explained in the next section.

4 Uniform versus nonuniform

merging of clusters

Consider the 2-fold cartesian product of a
{By(M)}/* set. Each of the two {B,}"/* is parti-
tioned into K macro-shells. Consider two merging
rules. In Case I, macro-shells contain a fixed num-
ber of points in the order of increasing energy. In
Case II, macro-shells contain a fixed number of en-
ergy shells. In both cases, in the 2-fold cartesian
product space, we obtain K2 clusters. A subset of
these clusters of the lowest average energy is se-
lected. Computation of the performance is based
on Eq. 3. The final result is shown in Fig. 1 which
shows the tradeoff between CER, and v,. It is seen
that using macro-shells with a fixed number of en-
ergy shells (Case II) results in a better performance.
This phenomenon can be justified by considering
the hardening effect. It should be mentioned that
neither of these two merging rules are optimum (in
the sense of providing the best tradeoff for a given
value of K'). The performance of a given merging
rule also depends on the specific tradeoff point.

Another consideration is the result of the follow-
ing fact: Discarding the clusters of higher energy in-
duces a nonuniform probability distribution on the
lower dimensional subspaces such that the clusters
of lower energy are used more frequently. This faet
is in favor of using a higher resolution in the areas
of lower energy. This observation, in conjunction
with the hardening effect, suggest decreasing the
resolution rather quickly up to regions around the
concentration layer and then change it in a slower
pace.

In the following, we discuss a practical method
for the nonuniform merging of clusters into macro-
shells of integer bit rate.
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5 Merging of clusters using a bi-
nary tree

Assume that there are 2¥ macro-shells of equal car-
dinality at a given stage of our hierarchy. In the 2-
fold cartesian product space, we obtain 2%* clusters
which are merged into 2! macro-shells of integer bit
rate. Define 27% to be the fraction of the number
of clusters in the ith macro-shell, =0,...,2' — 1.
The ¢;’s satisfying 3°,27% =1. A simple argument
shows that the £;’s can be selected as the lengths of
different paths in any binary tree with 2' — 1 inter-
mediate nodes (resulting in 2' final nodes). As the
number of such trees is usually quite small, one can
use an exhaustive search to find the best tree for a
specific tradeoff between CER, and v,. This con-
figuration allows to use a set of prefix codes for the
addressing of the macro-shells. The idea of using a
prefix coding scheme for the addressing is also dis-
cussed in a different context in [11]. The approach
presented here is much more efficient.

This nonuniform merging rule is applied in the
(u—2)th stage (stage indexed by u—3) of the hi-
erarchy. The corresponding merging rule for the
(v — 1)th stage is as follows: If there are an integral
power of two of successive macro-shells with equal
cardinality, these are merged into a single, larger
macro-shell. One can also apply this rule succes-
sively several times. The number of successive times
is denoted by S. The performance and complexity
of this approach is shown in Table 1. We have also
examined: (i) the case of §=0, and (ii) applying
the nonuniform merging in the (u — 1)’th stage. In
both cases the results were inferior to those pre-
sented here.

6 Numerical comparisons

A four state trellis diagram of [6] achieves v, = 0.95
dB, CER, =1.5. In [13], an example for N =64 is
given which needs 480 multiply-adds and a memory
of 1.5 kilo-bytes to achieve a tradeoff point with
CER, = 1.5 near to the optimum curve (the opti-
mum v, for N =64, CER, = 1.5 is equal to 1.21 dB).

For a given CER;, by appropriately choosing the
merging parameters, we achieve nearly all of the
shaping gain possible using a small amount of mem-
ory (refer to Table 1). Computation of the optimum
v, is based on Eq. 3.



CER, 7, (dB)/Memory (Byte)
11 0.73(0.73)dB/0.7Tk
1.2 0.88(0.91) dB/0.88 k
1.3 0.95(1.00) dB/0.72 k
1.4 0.99 (1.05) dB/0‘84 k
Table 1: Performance and

complexity of the nonuniform merging rule, N = 32,
(koy kyy kayy 1) = (4,4,7,3). The optimum values of v,
are written in parenthesis.

7 Summary and conclusions

We have presented efficient addressing schemes
based on partitioning the subconstellations into
nonuniform shaping macro-shells of integer bit rate.
The corresponding shaping performance is com-
puted using the weight distribution of an optimally
shaped constellation. As an example of perfor-
mance in a 32-D space, we use about 0.8 kilo-bytes
of memory to achieve tradeoff points very close to
the optimum performance. It seems that this is the
simplest known method to achieve shaping gains in
the order of 1.0 dB. Note that this method needs
only a small number of table lookups and no arith-
metic operation is needed.
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Figure 1: Tradeoff between CER, and 7, using

K macro-shells in the N/2-D subspaces, N = 32.
Case I corresponds to macro-shells with a fixed
number of points and Case IT corresponds to macro-
shells with a fixed number of energy shells.
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