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Abstract: We discuss the selection of the boundary of
a signal constellation which has nonequal values of average
energy along different dimensions. This nonequal energy
allocation, in conjunction with a nondiagonal modulating
matrix, is used to shape the corresponding power spectrum.
The objective is to optimize the “rate versus energy trade-
off” subject to some constraints on the corresponding power
spectrum. In a rectangular constellation, the nonequal en-
ergy allocation is achieved by using different number of
points along different dimensions. It is shown that the
optimization procedure reduces to maximizing the deter-
minant of an autocorrelation matrix subject to some linear
constraints on its elements. In a shaped constellation, the
number of points along the one-D (one-dimensional) sub-
spaces are the same and the nonequal energy allocation is
achieved by selecting an appropriate boundary in a higher
dimensional space.

1 Introduction

Consider a regular array of points. A signal constellation
is a finite subset of these points bounded within a shap-
ing region. Conventionally, the shaping region is selected
to minimize the average energy of the constellation for a
fixed number of points [1], [2]. In the present work, we
impose some additional constraints on the corresponding
power spectrum. To satisfy the spectral constraints, the
modulating matrix is selected to be non-diagonal and non-
equal values of average energy are allocated to different di-
mensions of this matrix.

The problem of the line coding is a well established sub-
ject. The major difference between our approach to this
problem and most of the works reported in the literature is
that in our case the memory of the code is limited to the
elements within a block.

The body of the paper is as follows: In Section 1.1, the
block diagram of the system is introduced. In Section 1.2,
we explain our figures of merit in designing an unsymmet-
rical shaping region. In Section 2, we discuss how to maxi-
mize the rate of a rectangular constellation for a fixed total
average energy and subject to some constraints on its power
spectrum. In Section 3, we discuss how to minimize the av-
erage energy of a shaped constellation for a fixed total rate,
fixed number of point per dimension, and subject to some
constraints on its power spectrum. To solve this constrained
optimization problem, the cost of a point is defined as its
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Figure 1: System block diagram.

energy plus some Lagrange multiplier(s) times the spectral
constraint(s). The final constellation is selected as a sub-
set of the points of the least cost. For a wide class of the
spectral constraints, the cost of a high dimensional point is
obtained by adding the costs of its lower dimensional com-
ponents. This is a useful property which allows us to apply
most of the known shaping techniques in this new context.

1.1 System block diagram

Figure 1 shows the block diagram of the system under con-
sideration. Each block is composed of N, successive
time periods. In each signaling interval, a data vector i
is encoded. The shaping block maps the vector i to a
point a in the baseband constellation .A. This is a finite
set of the N-D points, N < N,,, selected from an array of
points which is geometrically uniform and bounded within
the shaping region R,. We assume that the points of A
are used with equal probability. Using continuous approx-
imation and normalizing the volume of the Voronoi region
around each constellation point to unity, the rate of A is
found as:

(1)

where V(R,) is the volume of R,. The average energy
(second moment) along the ¢’th dimension of R, is denoted
as A;. We assume that the A;’s are strictly positive. The
diagonal matrix A, is defined as: A, =diag[Xo,..., An-1].

The columns of the N, x N (modulating) matrix M
are the dimensions (line codes) of the constellation y €Y.
We can have up to N, — N nulls in the power spectrum
of Y. We have M*M =1 where I is the N x N identity
matrix. This results in an isometry between the space
containing A and the space containing Y. This results
in V(Ry) =V (Ra), and consequently H(Y )= H(A), while
the distance property and consequently the performance in
noise of the two constellations are identical.

There exists a tradeoff between the rate H(Y"), and the
total average energy Y, A;. The objective is to optimize this

H(A) = log[V(Ra)];



tradeoff subject to some constraints on the power spectrum
of Y. Our tools are the selection of the region R, and the
matrix M.

1.2 Figures of merit

We assume that the projection of the constellation on its
one-D subspaces (denoted as the one-D subconstellations)
are finite portions of the one-D half integer grid!. A rect-
angular constellation is equal to the cartesian product of
its one-D subconstellations while a shaped constellation is
an appropriate subset of this product. The following defi-
nitions are based on the block diagram given in Section 1.1.

We consider two reference rectangular regions Ci, Cs,
both with the same volume as R4. Region C; is of dimen-
sionality N and has the average energy v,A; along its ¢th
dimension. The factor +,, called the shaping gain of R, re-
flects the reduction in the average of the shaping region R,
with respect to the reference region C;. The proportional-
ity of the energies guarantees that the corresponding power
spectrum are identical within the scale factor v,. Using
continuous approximation, we obtain,

1/N
N-1 *
Hi:O ’\1]

Region C; is of dimensionality N,, and has equal average
energy along all its dimensions (cubic region). The equal
allocation of energy results in a white spectrum. The in-
crease in the total average energy of the reference region
Cy1 with respect to the reference region C; is measured by
the factor P; (performance loss). This factor reflects the
price in energy that we pay for the shaping of the power
spectrum. Using continuous approximation, we obtain,

_1
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The overall changing in the average energy of the region R,
with respect to the reference region C is obtained by mul-
tiplying the shaping gain given in (2) with the performance
loss given in (3).

A price to be paid for shaping is an increase in the factor
Constellation-Expansion-Ratio [1]. We define the unsym-
metrical Constellation-Expansion-Ratio, CER,,, as the ra-
tio of the maximum number of points per dimension Ciax
to the minimum necessary number of points per dimension,
ie.,

Cmax
V(RN
This is a reasonable definition because the complexity of

the modulator and demodulator is essentially determined
by the maximum number of points per dimension.

CER, = (4)

1The one-D half integer grid
[~o0,...,—38/2,-1/2,1/2,3/2,...,+c0].

is the set of points
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For the reference region C, using (4), we obtain,

1/2
max
OB, = e ®)
(Hi:o A’i )
where Apax is the maximum value of A; fori=0,..., N — 1.

The CER, reflects the effect of the spectral shaping.
To specify the effect of the boundary shaping, we de-
fine the multiplicative factor RCE (Ratio-of-Constellation-
Expansions) as:

CERy  Comax
CER, h ‘v127s/\max'

In general, considering the saving in the energy due to the
boundary shaping, the factor RCE can be less than unity.

RCE =

(6)

2 Spectral shaping using a rectan-
gular constellation

In all our discussions concerning a rectangular shaping re-
gion, we assume that the average energy per time interval is
normalized to unity. This results in a total average energy
of N,, units per block for the system given in Section 1.1.
In this case, the optimization of the “rate versus energy
tradeoff” is interpreted in terms of maximizing the rate for
a fixed average energy.

Using continuous approximation over a rectangular re-
gion, we obtain,

H(Y)= S log(12)+5 3. log (R,

Ai(Ry)#0

(7)

where A;(Ry) is the ith eigenvalue of R,. The objective in
selecting the matrices M and A, is to maximize the sec-
ond term in (7) subject to some constraints on the power
spectrum of y. If all the eigenvalues are nonzero, we have
> log [Mi(Ry)] = log (JRy|) where | . | denotes the determi-
nant. In the following, we study some spectral constraints.

2.1 Spectral constraints

Due to the linear relationship between the spectrum and the
elements of the autocorrelation matrix matrix Ry, most of
the spectral constraints can be formulated as linear con-
straints on the elements of Ry. In the following, we study
the Fp-constraint and the spectral null.

For a given cutoff frequency w,, define the power-ratio of
a spectrum as the fraction of the total average energy in the
frequency band [0,w.]. The Fp-constraint is the constraint
of having a power-ratio less than or equal to F,.

A spectral null at zero frequency or at Nyquist frequency
results in at least one zero eigenvalue for R,. In this case,
we consider y as the output of a linear system A with the
same spectral null and reformulate the problem at the sys-
tem input, x.



The final optimization problem is as follows:

Maximize  log (|R|),
N-1N-~-1
Subject to: > Y Bi(4,5)Rs(i,5) < e, 1€[0,L- 1],

i=0 ;=0
R, is positive—definite,

(8)
where L denotes the total number of spectral constraints.
The eigenvalues of R, determine the allocation of the en-
ergy and the eigenvectors of R,, concatenated with the
system corresponding to the spectral nulls, determine the
basis.

It can be shown that the optimization problem in (8) is
convex. As a result, the maximum point is unique and can
be computed by using the Lagrange method. The Lagrange
multipliers are denoted by &, I € A, where A, is the set of
the active constraints. Calculating the derivatives and con-
sidering that the derivative of the determinant with respect
to the (%, 7)’th element is equal to the determinant of the
corresponding adjoint matrix, we obtain,

adj[R.] = Y 4By, (9)

I€EA.

where adj[R.] is the adjoint matrix of R, and B is the
matrix of the elements B;(z,7) in (8). To calculate the
Lagrange multipliers, we first calculate R, using,

R, = |adj R, ™7 x (adj[Rz]) ™", (10)
and then apply the active constraints to the result. By iter-
atively satisfying the constraints, the multipliers are com-
puted.

It is easy to show that for the spectral nulls and/or the
F,-constraint, the energy constraint is always active. For
Fy € [Frin, Fmax) (given Finyi, and Frayx), the Fp-constraint
is active. For F, < Fyjy, the optimization problem has no
answer. For Fj, > Fax, the Fp-constraint is not active and
the power-ratio is equal to Fyax. The Fpax can be calcu-
lated by relaxing the Fj-constraint and finding the power-
ratio of the result. Without spectral null constraint, this
results in a white spectrum and Fiax =w./7.

3 Spectral shaping using a non-
rectangular constellation

In this section, we discuss the optimum boundary shaping
using a fixed set of basis. The one-D subconstellations are
identical and are bounded within the range [—A, A]. The
optimization of the “rate versus energy tradeoff” is inter-
preted in terms of minimizing the energy for a fixed rate.
The optimum constellation has the minimum average en-
ergy for a given number of points per dimension, given total
rate and given set of spectral constraints. First, the asymp-
totic behavior in an infinite dimensional space is studied,
and then we consider the finite dimensional case.
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3.1 Optimum unsymmetrical shaping in
infinite dimensionality

Assume that the space dimensionality is extended to in-
finity while the modulation is achieved on sub-blocks of
an effective dimensionality N. Using the calculus of vari-
ations, the probability distribution which is zero outside
region [—A, A] and maximizes the rate for a given average
energy is a truncated Gaussian distribution. For the ith
dimension, :=0,..., N — 1, we have,

—a; X?

A2

) for X € [-A4,A],

otherwise,

(11)
where,
-1

Clay) = [2,4 /O 1 exp(—aimz)dz} (12)

The average energy and the rate along the ith dimension
are computed as:

1
E,-:A2/°

z? exp(—a;z?)dz

i . (13)
/exp(—a,-a:z)dx
0
ai/\,'
H; = YD — log C(a). (14)

We use A as a parameter to adjust the tradeoff point.
The a;’s, 1=0,..., N —1, are selected such that E; =};
where E; is given in (13) and the A;’s are computed using
the method explained earlier. For a given A, the maxi-
mum average energy is obtained for a =0 corresponding to
a uniform distribution. This maximum value is equal to
A?/3. To be able to adjust the energies, we should have

A> VB hmar.

The shaping performances can be computed by replacing,

N-1

V(Ra) =exp () Hi),

i=0

and Chax = 24, (15)

in the relationships given in Section 1.2. The result of these
computations are shown in Fig. 2.

3.2 Optimum unsymmetrical shaping in fi-
nite dimensionality

Consider a conventional shaping problem in a space of di-
mensionality N. We have a set of N, one-D subconstella-
tions. The energy of each one-D point is considered as a
cost associated with that point. In the cartesian product
space, the cost associated with an N-D point is obtained
by adding the costs of its components. The final constella-
tion is selected as a subset of the N-D points of the least
cost and a total cardinality T". Addressing is a one-to-one
mapping between the set of the integer numbers [0, 7 — 1]
and the set of the constellation points.
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Figure 2: Examples of the optimum tradeoff curves in
an infinite dimensional space, sine basis, Fp-constraint
with f.=0.2, CER, > CER,. The constellation expan-
sion due to the boundary shaping can be computed using

RCE = CER,, /CER,.

In shaping, we are usually concerned with a set of a huge
cardinality. This fact complicates the addressing and also
the performance analysis of a shaped constellation. A major
attribute of shaping is due to the additivity property of the
cost in a cartesian product space. This property allows us
to reduce the complexity of the problem by using the notion
of shell.

A shell is defined as the collection of points of the same
cost. In the process of shaping, we either keep a complete
shell or discard all of its points. This means that the overall
complexity is essentially determined by the number of shells
(and not by the number of points). Due to the additivity
property of cost, the number of shells is usually much lower
than the number of points. This serves as the basis for a
set of computational and addressing techniques described
in (3], [4]-

In an unsymmetrical shaping problem, the objective is to
minimize the average energy of the constellation subject to:
(i) fixed total rate, (ii) fixed number of points for the one-D
subconstellations (fixed CER.), and (iii) some constraints
on the resulting power spectrum. To take the effect of the
spectral constraints into account, the cost is considered as:
“energy plus some Lagrange multipliers times the spectral
constraints”.

Assume that the spectral constraints are of the general
form: L[S(w)] < e where L is a linear operator, i.e.,

L I:z_: /\,-S;(w)] = 2—: AL [S,-(w)] . (16)

The key point is that a spectral constraint of the form given
in (16) can be decomposed as the sum of some components
associated with the one-D subspaces. This property is the
basis for some of the most powerful techniques known in

shaping.

Assume that the shells in a given subspace are indexed in
the order of increasing cost. Some of the shaping techniques
discussed in [3], [4] are based on the property that the cost
of a given shell is an affine function of its index (cost of the
ith shell is equal to co +4A). This results in a recursive
merging rule in the cartesian product of the shells. In the
following, we provide a link between the present shaping
problem and those techniques.

The cost of the pth point along the ith dimension is con-
sidered as, Ep(1+ >, &L4[S;i]) where E, is the energy of
the point and £;’s are the set of the Lagrange multipliers.
For the half integer grid, we have, E,=(p+0.5)%. The
one-D points along each dimension are aggregated into K
macro-shells with a fixed increment in cost, A. Assume that
the costs of the one-D points are in the range ¢ € [¢min, Cmax]-
We set A = (Cmax — Cmin)/K. The costs of the points in
the ith macro-shell satisfy, c¢min <c¢ <cmin + A for i=0 and
Comin +1A <c<cmin+ (E+ DA for i=1,...,K—1. The
cost of a macro-shell is considered as the average cost of
its points. Obviously, some of the macro-shells may remain
empty.

The higher-dimensional macro-shells are the set of the
high dimensional points with fixed sum of the indices. This
results in a recursive merging rule for the macro-shells.
There are n(K — 1) + 1 macro-shells in the n-D subspaces.
The final constellation is selected as the set of the N-D
macro-shells with the indices 0 < M < My,ax where Myay is
selected such that the total cardinality is equal to 7. The
Lagrange multipliers are selected to satisfy the spectral con-
straints.

Addressing can be achieved using the decomposition
methods discussed in [4]. The key point is that the ad-
dressing of a set which is equal to the cartesian product of
two other sets can be achieved independently along those
sets. Recursive structure of the macro-shells provides the
required framework for such an addressing decomposition.
In the present problem, it is more efficient to use a technique
discussed in [4] which is based on a recursive aggregation of
macro-shells of egual cardinality. This technique does not
rely on any specific property of the shell indices.

3.2.1 Shaping performance

Consider a discrete set of points ¥ € ¥. A cost ¢(?) is as-
signed to each point 9 € ¥. The weight distribution of ¥ is
defined as:

We(g) = Y ¢ =) Ca(v)g", (17)

Yew

where Cg(v) is the number of points of ¥ of a cost .

In most cases (including those discussed here), the cost in
a cartesian product space has an additive property. In this
case, it is easy to show that the weight distribution of the
cartesian product of some sets is obtained by multiplying
their weight distributions. This property is used in the
following to compute the shaping performance.
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Figure 3: Examples of the optimum tradeoff curves in
spaces of a finite dimensionality, sine basis, Fp-constraint
with f. =0.2, K =256, CER, > CER,. The constellation
expansion due to the boundary shaping can be computed

using RCE = CER,, /CER,.

Assume that the cardinality of the jth macro-shell in
the ith one-D subspace is equal to C;(j). By replacing
g by a proper transform operator, one can relate (17)
to the Discrete Fourier Transform (DFT) of the sequence
C; =[Ci(0), ..., Ci(K — 1)]. Using this fact, in conjunction
with the multiplicativity property of the weight distribu-
tions, it is easy to show that the probability induced on a
given macro-shell, say M, along a given dimension, say d,
is equal to:

lenx—M N-1
Py(M) = > DrFr;'| [ DFT(C:)|, (18)
m=0 1=0,i£d

where DFT is the discrete Fourier transform of length
N(K —1)+ 1, multiplication of DFT’s is achieved on an
element-by-element basis, DFT,! is the mth element of
the corresponding inverse DFT and T is the cardinality
of the constellation. The induced probabilities are used
to compute the average energy along different dimensions.
Knowing the average energies, computation of the shaping
performance and the power spectrum is straight-forward.
Figure (3) shows some examples of the corresponding op-
timum tradeoff curves subject to the Fp,-constraint. Fig-
ure (4) shows the corresponding power spectrums.

Note: In the case of the Fp-constraint, the approach based
on the Lagrange multipliers corresponds to using a rectan-
gular window for giving different weights to the energy in
different frequency bands. More generally, we can consider:

™

LSiw)] = | Wo(w)Si(w)dw, (19)

where Wy(w) is an arbitrary weighting window. Spectral
shaping is achieved by adjusting Wy (w).
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Figure 4: Examples of the power spectrums achieved in
spaces of a finite dimensionality, sine basis, Fj,-constraint
with f, =0.2.
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