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Abstract— 1 An analytical method for performance evalu-
ation of binary linear block codes using an Additive White
Gaussian Noise (AWGN) channel model with Binary Phase
Shift Keying (BPSK) modulation is presented. We focus
on the probability distribution function (pdf) of the bit Log-
Likelihood Ratio (LLR) which is expressed in terms of the
Gram-Charlier series expansion. This expansion requires
knowledge of the statistical moments of the bit LL.R. We in-
troduce an analytical method for calculating these moments.
This is based on some straight-forward recursive calculations
involving certain weight enumerating functions of the code.
It is shown that the estimate of the bit error probability
provided by the proposed method will asymptotically con-
verge to the true bit error performance. Numerical results
are provided for the (15,11) Cyclic code which demonstrate
close agreement with the simulation results.

I. INTRODUCTION

In the application of channel codes, one of the most im-
portant problems is to develop an efficient decoding algo-
rithm for a given code. The class of Maximum Likelihood
(ML) decoding algorithms are designed to find a valid code-
word with the maximum likelihood value. The ML algo-
rithms are known to minimize the probability of the Frame
Error Rate (FER) under the mild condition that the code-
words occur with equal probability. Another class of de-
coding algorithms, known as bit decoding, compute the
probability of the individual bits and decide on the corre-
sponding bit values independent of each other. Note that
unlike ML algorithms, in the case of the bit decoding al-
gorithms the collection of decoded bits do not necessarily
form a valid code-word. The straightforward approach to
bit decoding is based on summing up the probabilities of
different code-words according to the value of their compo-
nent in a given position of interest.

Maximum Likelihood decoding algorithms have been the
subject of numerous research activities, while bit decod-
ing algorithms have received much less attention in the
past. The reason being that the bit decoding algorithms
are known to offer a BER performance very close to that
of ML algorithms, while they have a substantially higher
level of decoding complexity. More recently, bit decoding
algorithms have received increasing attention, mainly due
to the fact that they deliver reliability information.

In 1993, a new class of channel codes, called Turbo-codes,
were announced by Berrou et. al. [1], which have an aston-
ishing performance and at the same time allow for a simple
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iterative decoding method using the reliability information
produced by a bit decoding algorithm. Due to the impor-
tance of Turbo-codes, there has been a growing interest
among communication researchers to work on the bit de-
coding algorithms.

Some asymptotic expressions are derived in [2] for bit
error probability under optimum decoding for the AWGN
channels. Reference [3] examines the performance of linear
block codes when used on AWGN channel and computes
approximations of the error probability for low values of
signal to noise ratio. There have been also some works on
bounds and approximation on the bit error probabilities of
decoding convolutional codes [4] and trellis codes [5].

Another class of research works have addressed the prob-
lem of computing tight lower and upper bounds on the er-
ror probability of binary block codes. This includes the
lower bounds given in [6,7], and the upper bounds given
in [8,9]. More recently various lower bounds have been
derived on the performance of Turbo-codes in [10-12]. All
these bounding techniques are based on ML block decod-
ing (versus bit decoding as used in the current article).
Reference [13] presents lower and upper bounds on the
block error probability including the effect of non-uniform
source probability. Recently, we have investigated some
properties of bit decoding algorithms over a general chan-
nel model [14]. Some of these properties are used in special
case of AWGN channel in this article. Reference [15] pro-
vides an interesting discussion on certain properties of the

bit LLR.

This paper is organized as follows.
model used to analyze the problem is presented. All no-
tations and assumptions are in this section. We present
some useful theorems on bit decoding algorithms in sec-
tion III. Computing pdf of bit LLR using Gram-Charlier
expansion is presented in section IV. This is an orthogonal
series expansion of a given pdf which requires knowledge of
the moments of the corresponding random variable. After
introducing Taylor expansion of the bit LLR in section V,
an analytical method for computing the moments of the bit
LLR using Taylor expansion is introduced in section VI.
We also present a closed form expression for computing
the bit error probability in section VII. In section VIII
it is shown that the estimate of the bit error probability
provided by the proposed method will asymptotically con-
verge to the true bit error performance. Numerical results
are provided in section IX which demonstrate a close agree-
ment between our analytical method and simulation.

In section II the



II. MODELING

Assume that a binary linear code C with code-words of
length N is given. We use notation ¢* = (c},c},...,cYy)
to refer to a code-word and its elements. We partition the
code into a sub-code CY and its coset C} according to the
value of k*” bit position of its code-words c’.

Vel eC:ife, =0=c' € C}
ifei =1—=¢c e C}
cluci=¢, CInCi=o
We use the following operators on our code book.

¢! @ ¢/ = Bit wise binary addition of two code-words (1)

Note that the sub-code CY is closed under binary addi-
tion. The modulation scheme used here is BPSK which is
defined as mapping M,

M:c— m(c) (2)

0—m0)=-1, 1—ml)=1 (3)

The dot product of two vectors a = (a, ag,...,ay) and

b = (b1, bq,...,bN) is defined as,

N
i=1

We use the notation w(c) to refer to the Hamming weight
of a code-word which is equal to number of ones in code-
word c¢. We have the following property,

—1.m(c) = N — 2w(c) (5)

If we modulate a code-word & = (é1,¢é3,...,¢n) using
BPSK modulation and send it through an AWGN channel
we will receive x = m(€) + n, where n = (n1, ng, ..., ny) is
an independent, identically distributed Gaussian noise vec-
tor which has zero mean elements of variance o2. A com-
mon tool to express the bit probabilities in bit decoding
algorithms is based on using the so-called Log-Likelihood-
Ratio (LLR). The LLR of the k' bit position is defined
by the following equation,

LLR(k) = log %:7:):’;) (6)

~—

where & is the value of k" bit in the transmitted code-
word. In the case of transmitting equally likely code-words
over AWGN channel the bit LLR can be calculated as fol-
lows,

Given the value of the bit LLR, decision on the value of
bit k£ is made by comparing the LLR(k) with a threshold
of zero. We are interested in studying the probabilistic be-
havior of the LLR(k) as a function of the Gaussian random
vector n.

I11. SoME USEFUL THEOREMS

Using the above definitions and notations, we have the
following theorems which are proved in [16].

Theorem 1: The probability distribution of LLR(k) is
not affected by the choice of transmitted code-word, € as
long as the value of the k? bit remains unchanged.

Theorem 2: The probability distribution of LLR(k) for
value of bit £k = 0 or 1 are the reflections of one another
through the origin (threshold point).

We will now concentrate on the conditions for two bit
positions to have the same pdf for their bit LLR by ex-
amining the values of the LL Rs in these positions. These
conditions are presented in the following theorems. First
we visit the definition of automorphism group which is used
in the following theorems.

Let C be a binary linear code of length N. We define a
permutation IT which simply permutes the elements of each
code-word. The set of permutations which maps the code-
book C onto itself, form a group and called Automorphism
group of code C.

Theorem 3: Consider two bit positions of a code-word,
i,7 such that 1 < ¢,7 < N, ¢ # j. If there exists a per-
mutation IT within Automorphism group of code C which
transfers bit position ¢ to j, the LLR(i) and LLR(j) pos-
sess the same probability distribution.

Note that set of permutations form a group, It is clear
that inverse of Il exists and transfers bit position j to 1.
The existence of the permutation to yield two bit positions
with the same probability distribution for their LLR is our
next concern.

Theorem 4: The permutation mentioned in theorem (3)
exists for the class of cyclic codes.

Using the above theorems, without loss of generality, we
assume for convenience that the all-zero code-word, de-
noted as € = (0,0, ..., 0), is transmitted in all our following
discussions. This means m(¢) = -1 = (=1,—1,...,—1) is
the transmitted modulated code-word. In this case equa-
tion (7) reduces to,

i i

T exp |:n.m(c )0—21.m(c )}

cteC}
LLR(k) - IOg n.m(c’)—1.m(c?) (9)
> exp {—02 }
cteCp

Using () we obtain,
n.m(c")—2w(c’
> exp{ 2 }

cieC} o
LLR(k) = log ——* . (10)
n.m(c*)—2w(c’
> exp [ 3 }
cteCp

In the following, for convenience of notation, the index &
indicating bit position is dropped. This means the sets C!



and C? are indeed C} and C?. We use the notation H(n)
to refer to the LLR expression given in (10).

It simplifies the following derivations if we rewrite (10)

as H(n) = F(n) — G(n), where,

Fm)=log 3 exp [22EL2

cteC?

zw(ci)]

G(n) 1ogzexp[“m< ) — 2u(e )]

ag
cteCPO

IV. GRAM-CHARLIER EXPANSION OF pdf

The best way for estimating a function using a series
expansion is to choose an orthogonal basis which is suitable
for that function. As the pdf of bit LLR is approximately
Gaussian [1,17, 18], the appropriate basis can be normal
Gaussian pdf and its derivatives. These functions form an
orthogonal basis and we will show that they are suitable
basis in the sense that we can expand bit error probability
as closely as desired to the real one.

Consider a random variable ¥ which is normalized to
have zero mean and unit variance. One can expand the
pdf of Y, fy (y) using the following formula which is called
the Gram-Charlier series expansion [19],

1 2
fy(y) = Ee_T ;CiTi(?/) (13)

where, T;(y) which is called Tchebychev-Hermite polyno-
mial, defined as,

Li/2] '
7 ! i—
Ti(y) = Y (—1)"H; 25— o 2 (14)
7j=0
L7z i
Z+J 1
Z—:o 27(i — 25) 1Y (15)
where,
+oo
pj = Yiv(ydy, pm=0 p2=1  (16)
It is interesting to note that \/——e = Ti(y), is the i*? order

derivative of the normalized Gaussian pdf. These functions
have the following property,

) = [ Taw] iz )

The only unknown components in (15) are the moments,
t;. We propose an analytical method using Taylor series
expansion to compute the statistical moments of the bit

LLR.

V. TavyLor EXpANsIiON oF LLR

The Taylor series expansion of H(n) around vector zero,
0 = (0,0,...,0), is formulated using the expression below
in terms of n,

H(n) = H(0) + n.VH(0) + %(n V)2H(0) + .. (18)
N 9H(0 1 02H
= H(0) —|—p:1 BT(p)np + 5;; Wa(nznpnq + ...

We continue with calculation of different terms in the above
equation. Noting to the similarity of (11) and (12) we
only compute the derivatives of F(n) hereafter. The same
approach can be used for G(n) and using, H(n) = F(n) —
G (n) the derivatives of H(n) can be calculated. To simplify
the expressions, the following functions are defined,

A= 3 enp [RRELZZEN g
A, m) =0~ 3 W exp [RIUELZBEN] s
cieCl 20)

where Q; = (¢1,9¢2,...,¢;) is a vector of j bit positions

different from £ and,
J

Méj = H m(cfll)

=1

(21)

where m(cql) = #1 is the modulated value for the g}"
@ € Qj, bit of code-word ¢’. Tt is clear that M(Sj ==1 as
well. Mixing (19) and (20) we define,

(n)AQ i (n),
The above functions reduce to special weight distribution
functions when n = 0,

A0) = A(Z) =) A, 2Y

where Z = exp(—2) and A,, is the number of code-words

with Hamming weight w in C.

_J2JZA (Q;)2",

Ay (Qj) = AF(Q;) — A(Q;) (25)

where AE(Q;), is the number of code-words ¢! with Ham-

Rq,(n) = A™! j=1 (22)

(23)

Aq,;(0) = Aq,(Z i>1 (24)

ming weight w and M}, = 1 in C1.
Rq,(0) =Rq, (%) = A_I(Z)AQj(Z)v j>1 (26
Using (23), we can simplify F(0) as follows,
F(0) = log A(Z) (27)



Using (19) it is easy to show that,

07 A(n)
—— = Ao. 2
Ong, 0ng,...0ng; Q;(®) (28)
where Q; = (1,925 .. ¢;)-
In the special case of first order derivative (j = 1) we
have,
JF (n _ .
) A ) A, (0) = Fg ) (29
q1
JdF(0)
=Rq,(Z 30
o = Ra,(7) (30)

where Q7 is a one dimensional vector of bit position g¢;.

Derivatives of higher orders can be calculated using the

following property which uses the fact that mz(c;) =1.
Property 1 : For any bit position ¢ # k£ we have,

dRq, (n) _ {

Onyg,

J_4RQj—1(n) - RQj(n)RQl(n)7 1<i<y
RQj+1(n) - RQj (n)RQI(n)7 J<i
(31)

where,

Qj+1 = (qlaq%"'aqjaqi) (32)

Qj—l = (qla q25 ey Qi—15Gi41y -5 q])
Q1 = (¢:)

This property results in the following theorem.
Theorem 5: The j'" order derivative of F(n) can be
stated in terms of Rq,(n), { = 1,2,...,j.

Proof: From (29) first order derivative of F(n) is a
function of Rq, (n). Using the Property 1 it is easy to see
that higher order derivatives are functions of Rq,(n) for
different I’s. [

The above theorems and results enable us to compute
all the derivatives required in the Taylor series expansion

of H(n).

VI. COMPUTING MOMENTS

The definition of m*” order moment is,

pom = E[H™ (n)] (33)

where FE[.] stands for expectation. To compute (33), we
use the Taylor series expansion of H™(n) and average this
expansion with respect to different components of n. Cal-
culating the coefficients of the Taylor expansion of H™ (n)
involves computing the following terms,

a7 H(0)

————————E[n} |E[n2)...E[n}] (34)

anfgll E)niﬂ ...anfj P P bs

where r, [;’s, i = 1,2, ..., j are even and satisfy
L+b+..+l=r (35)

Note that for a Gaussian random variable n and an integer
! we have,

l even

36
! odd (36)

()to
E[n'] = ;W(l/z‘)! :

Each solution to 35 corresponds to one partial derivative
which can be computed precisely. Now we can compute
moments analytically and use them in the Gram-Charlier
expansion to estimate the pdf of bit LLR. The bit error
performance follows by a simple integration of the resulting
pdf. We present a closed form formula for computing this
integral in the next section.

VII. CoMPUTING PROBABILITY OF ERROR

Computation of the bit error probability involves calcu-
lating an integral of the following form,

= [ =g [ a6

where y is the bit LLR normalized to have zero mean and
unit variance and a = —E[y]/oy. Substituting fy (y) with
its Gram-Charlier expansion results in,

o0

1 * 1 y?
Z_ e T C,Ti(y)d
ol A e LU

1 a 1 ¥2 ¢ 1 v’ -
=-— | ——e Tdy— | ——e" 7Y CTi(y)d
2 /0 V2T Y /0 v2m ZZ:; W)y

a 1 _ﬁ o0
=0~ [ e F Loy

P.(a) = (38)

Changing the order of integral and summation and using
(17) we can write,

1 a2 o0 oo
Pe(a) = Q(ﬂ)‘F\/T—F le_T ;CiTi—l(a) - ;Cﬂ}—l(o)
(39)

To simplify the expression we define a new function,

Az) = \/.1276_%202'7}_1(1‘) (40)
Now we can write,
Pe(a) = Q(a) + A(a) — A(0) (41)

VIII. CONVERGENCE PROPERTIES

Let us define an error function for the Gram-Charlier
series expansion,

W) =) - =TGR (@

The pdf of the bit LLR can be expanded arbitrarily
closely using the given set of orthogonal basis [19]. hence,

+o0
lim et (y)dy — 0
l— o0 f_

(43)

[e]

Using Cauchy-Schwartz inequality,



+oc0 2 + 00 y +o0 y
[ gt < [ istas [ oty
(44)
For the case of f(y) = ¢ (y) and,
1, 0<y<a
= 45
9(y) 0. OW (45)
we have,
a 2 +oo
/ a(y)dy| < a/ ¢t (y)dy (46)
0 —o00
where a is a positive constant.
Applying (43) to (46) results in,
lim e(y)dy — 0 (47)
l——00 fo

This means that the estimate of the bit error probability
will asymptotically converge to the true bit error perfor-
mance.

IX. EXAMPLE FOR (15,11) CycLIC CODE

As an example we used a (15,11) Cyclic code and evalu-
ated its performance using the proposed method. The or-
der of the Gram-Charlier expansion is 14 and the order of
the Taylor-expansion is 10. These values turned out to be
sufficient for a close approximation of the true BER, curve.
The comparison between the analytically calculated BER
and the one obtained from simulation is shown in Figure 1.

xperimental
nalytical

Bit Error Rate

Fig. 1. Comparison between analytical and experimental BER
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