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Abstract—We consider a wireless communication network with
a fixed number of frequency sub-bands to be shared among sev-
eral transmitter-receiver pairs. In traditional frequency division
(FD) systems, the available sub-bands are partitioned into disjoint
clusters (frequency bands) and assigned to different users (each
user transmits only in its own band). If the number of users
sharing the spectrum is random, this technique may lead to
inefficient spectrum utilization (a considerable fraction of the
bands may remain empty most of the time). In addition, this
approach inherently requires either a central network controller
for frequency allocation, or cognitive radios which sense and oc-
cupy the empty bands in a dynamic fashion. These shortcomings
motivate us to look for a decentralized scheme (without using
cognitive radios) which allows the users to coexist, while utilizing
the spectrum efficiently. We consider a frequency hopping (FH)
scheme (with iid Gaussian code-books) where each user transmits
over a selection of sub-bands and hops to another selection (with
the same cardinality) from transmission to transmission. We
derive lower and upper bounds on the achievable rate of each
user and demonstrate that for large signal-to-noise ratio (SNR)
values, the two bounds coincide. This observation enables us to
compute the sum-rate multiplexing gain (SMG) of the system.
Subsequently, we show how each user can regulate its rate to
guarantee fairness while maximizing SMG. We compare the FH
and FD systems in terms of the following performance measures:
average sum-rate multiplexing gain (η1), average multiplexing
gain per user (η2), the minimum multiplexing gain per user
(η3) and service capability. We show that (depending on the
probability mass function of the number of active users), the
FH system can offer a significant improvement in terms of η1

and η2 (implying a more efficient usage of the spectrum). It is
also shown that 1

e
≤ η

(F H)
3

η
(F D)
3

≤ 1, i.e., the loss incurred in η3 is

not more than 1
e

. Finally, computation of the so-called service
capability shows that in FH systems any number of users can
coexist fairly, while the maximum number of users in FD system
is limited by the number of available bands.

I. INTRODUCTION

Optimal resource allocation is an imperative issue in wire-

less networks. When multiple users share the same spectrum,

the destructive effect of multi-user interference can limit the

achievable rates. As such, an effective and low complexity

frequency sharing strategy which maximizes the degrees of

freedom per user, while mitigating the impact of the multi-user

interference is desirable. In frequency division (FD) systems,

different users transmit over disjoint frequency bands. Due to

practical considerations, such FD systems usually rely on a

fixed number of such frequency bands. The main drawback

of FD systems is that most of the time the majority of the

potential users may be inactive, reducing the resulting spectral

efficiency. Reference [1] considers a network of several users

with mutual interference. Treating the interference as noise,

a central controller computes the optimum power allocation

of each link over the spectrum to maximize a global utility

function. This leads to the best spectrum sharing strategy

for a specific number of users. Clearly, if the number of

users changes, the system is not guaranteed to offer the best

possible spectral efficiency. In fact, it is shown in [1] that if the

crossover gains are sufficiently greater than the forward gains,

the frequency division is optimum. However, as mentioned

earlier, if the number of users sharing the spectrum is random,

FD systems can be highly inefficient in terms of the overall

spectral efficiency. To avoid the need for a central controller,

cognitive radios [2] are introduced which can sense the bands

and transmit over an unoccupied portion of the available spec-

trum. Fundamental limits of wireless networks with cognitive

radios is studied in [3]. Although cognitive radios avoid the

use of a central controller, they require methods for frequency

sensing and dynamic frequency assignment which add to the

overall system complexity. Noting the above points, it is

desirable to have a decentralized frequency sharing strategy

(without the need for cognitive radios) which allows the users

to coexist, while utilizing the spectrum efficiently and fairly.

Motivated by the above observations, we consider a de-

centralized network operating on a set of u frequency sub-

bands to be shared among n users. Different transmitters are

linked to different receivers through paths with static and non-

frequency-selective fading. Each user is assumed to have no

prior knowledge about the code-books of the other users. We

propose a frequency hopping (FH) strategy in which the ith

user selects vi frequency sub-bands among the u available sub-

bands and hops to another set of vi sub-bands for the next

transmission. It is assumed that all users transmit independent

Gaussian code-books over their chosen frequency bands.

As each user hops over different subsets of the sub-bands

without informing other users about its hopping pattern,

sensing the spectrum to track the instantaneous interference

is a difficult task. This assumption makes the interference

probability density function (PDF) on each frequency sub-
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band at the receiver side of each user be mixed Gaussian.

Since the channel gains have a continuous PDF, the number

of Gaussian components in the interference PDF is 2n−1 with

probability one. Each user is able to derive the interference

PDF after a sufficiently long training period. Being a random

variable, the number of active users in the system is taken to

be a global knowledge as it can be inferred from the number

of interference levels.

We derive upper and lower bounds on the achievable rate

of each user which coincide in the high SNR regime. This

enables us to obtain the sum-rate multiplexing gain of the

network. We show how each user can regulate its rate close

to the achievable rate within a gap which saturates as SNR

increases. In fact, the only information each transmitter needs

is the highest interference level at its affiliated receiver and its

forward channel gain.

We compare the FD system with the FH system based

on four measures namely, average sum-rate multiplexing gain

(η1), average multiplexing gain per user (η2), minimum mul-

tiplexing gain per use (η3) and service capability where the

latter is the average of the fraction of users who are getting

service out of the total number of active users.

We show cases (depending on the probability mass function

of the number of active users) where the FH system offers

larger values of η1 and η2 implying more efficient frequency

usage. In fact, the FD system is already designed to service

up to K ≤ u users where K|u. The sub-bands are divided

into K clusters each containing u
K sub-bands. Each cluster is

assigned to a user. For example, if there is only one active user

in the system, K−1
K u frequency bands are unused. However,

the FH scheme allows this active user to spread its power on

the whole band achieving a higher spectral efficiency.

On the other hand, since the FD system is designed to

handle the case where the number of active users is K, the

minimum multiplexing gain per user is η
(FD)
3 = u

K . As we

will see, η
(FH)
3 = u

K (1 − 1
K )K−1 which is less than η

(FD)
3 .

However, one can easily observe that
η
(F H)
3

η
(F D)
3

≥ 1
e for all K,

i.e., the loss incurred in the FH system in terms of η3 is not

more than 1
e .

It might happen that there are more than u users in the

system. Clearly, the FD system is not capable to provide

service for all of these users. On the other hand, the FH

system allows all of these users to share the spectrum. This is

interpreted as a higher service capability.

The paper outline is as follows. System model is given

in section II. In section III, upper bounds on the achievable

rates of users are computed. Section IV offers lower bounds

on the achievable rates of users. In section V, based on the

results in sections III and IV, we discuss how the users in

the FH system fairly share the band while maximizing the

multiplexing gain per user. Comparison between the FH and

FD systems is given in this section. We use the notation

f(γ) ∼ g(γ) implying limγ→∞
f(γ)
g(γ) = 1 throughout the

paper. Because of space limitations, we refer the reader to

[4] for the proof of proposition 1 and details on the diversity-

multiplexing tradeoff.

II. SYSTEM MODEL

We consider a communication system with n users where

the ith user exploits vi(≤ u) out of the u sub-bands and

spreads its available power, P , equally over these selected

bands by transmitting independent Gaussian signals of vari-

ance P
vi

over each of the chosen sub-bands. This user hops to

another set of vi frequency sub-bands after each transmission.

We denote the achievable rate of the ith user by Ri. The

static and non frequency-selective fading coefficient of the

link connecting the ith transmitter to the jth receiver is shown

by hi,j . Each receiver knows already the hopping pattern of

its affiliated transmitter. On the other hand, as all users hop

over different portions of the spectrum from transmission to

transmission, no user is assumed to be capable of tracking

the instantaneous interference. This assumption makes the

interference plus noise PDF at the receiver side of each user be

a mixed Gaussian distribution. In fact, depending on different

choices the other users make to select the frequency sub-

bands and values of the crossover gains, this mixed Gaussian

distribution has up to 2n−1 power levels. For each i, the

channel model for the ith link is as follows:

�Yi = hi,i
�Xi + �Zi (1)

where �Xi is the u × 1 input vector of the ith user and �Zi is

the noise plus interference vector on the receiver side of the

ith user. One may write p �Xi
(�x) =

∑
C∈C

1

( u
vi

)g(�x, C) where

g(�x, C) denotes a zero-mean jointly Gaussian distribution of

covariance matrix C and the set C includes all u×u diagonal

matrices where vi out of the u diagonal elements are P
vi

while

the rest are zeros. Denoting the noise plus interference on the

jth band at the receiver side of the ith user by Zi,j (the jth

component of �Zi), it is clear that pZi,j
(z) is not dependent

on j. This is by the fact that crossover gains are not sensitive

to frequency and there is no particular interest to a specific

frequency sub-band by any user. We assume there are Li + 1
(Li ≤ 2n−1 − 1) possible non-zero power levels for Zi,j , say

{σ2
i,l}Li

l=0. The occurrence probability of σ2
i,l is denoted by ai,l.

Then, pZi,j
(z) is a mixed Gaussian distribution as follows:

pZi,j (z) =
Li∑
l=0

ai,l√
2πσi,l

exp− z2

2σ2
i,l

(2)

where σ2 = σ2
i,0 < σ2

i,1 < σ2
i,2 < ... < σ2

i,Li
(σ2 is

the ambient noise power). In fact, one may write Zi,j =∑n
k=1,k �=i εk,jhk,iXk,j + νi,j where Xk,j is the signal of

the kth user sent on the jth sub-band, εk,j is a Bernoulli

random variable showing if the kth user has utilized the

jth sub-band and νi,j is the ambient noise which is a zero-

mean Gaussian random variable with variance σ2. Obviously,

Pr{εk,j = 1} = vk

u . Also, a quantity of interest would be the

following:

ai,0 = Pr{Zi,j contains no interference}
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=
∏
k �=i

Pr{εk,j = 0} =
∏
k �=i

(1− vi

u
). (3)

We notice that for each l ≥ 1, there exists a ci,l > 0 such that

σ2
i,l = σ2 + ci,lP where ci,1 < ci,2 < ... < ci,Li . To compute

Ri, one may see that for each i, the communication channel

of the ith user is a channel with state Si, the hopping pattern,

which is independently changing over different transmissions

and is known to both the transmitter and receiver ends of the

ith user. The achievable rate of such a channel is given by

Ri = I( �Xi; �Yi|Si) =
∑

si∈Si

Pr(Si = si)I( �Xi; �Yi|Si = si)

(4)

where I( �Xi; �Yi|Si = si) is the mutual information between �Xi

and �Yi for the specific sub-band selection dictated by Si = si.

The set Si denotes all possible selections of vi out of the u sub-

bands. As p �Zi
(�z) is a symmetric density function, meaning all

its components have the same PDF given in (2), we deduce

that I( �Xi; �Yi|Si = si) is independent of si. Therefore, we

may assume any specific sub-band selection for the ith user

in Si, say the first vi out of the u sub-bands. Denoting this

specific state by s∗i , we get:

Ri = I( �Xi; �Yi|Si = s∗i ). (5)

In this case, we denote �Yi and �Xi by �Yi(s∗i ) and �Xi(s∗i )
respectively. Obviously, we have:

Ri = I( �Xi(s∗i ); �Yi(s∗i )) = h(�Yi(s∗i ))− h(�Zi). (6)

Throughout the paper, the number of users is assumed to be

a random variable. To decode the data, the receiver of the

ith user is expected to know the noise plus interference PDF,

p�Zi
(�z). As we will see, each transmitter can regulate its rate

close to its achievable rate within a gap which is bounded in

terms of SNR. To do this, each transmitter only needs to know

the greatest interference level on each frequency sub-band at

the receiver side and its forward channel gain. Clearly, if the

gains {hi,j} have a continuous distribution, the number of

interference levels is equal to 2n−1 with probability one. As

such, n is also assumed to be a global knowledge among users.

III. UPPER BOUNDS ON THE ACHIEVABLE RATES

Let �Wi be the u × 1 interference vector at the receiver

side of the ith user where its jth component, Wi,j , is

a random variable showing the interference term on the

jth frequency sub-band. In terms of our previous nota-

tion, Wi,j =
∑n

k=1,k �=i εk,jhk,iXk,j . We have p �Wi
(�w) =

1
Mi

∑Mi

m=1 g(�w, Di,m) where Mi =
∏

j �=i

(
u
vj

)
and as each

user transmits independent Gaussian signals through its cho-

sen sub-bands, the matrices {Di,m}Mi
m=1 are diagonal, i.e.,

Di,m = diag(d(1)
i,m, · · · , d

(u)
i,m). If the PDF of the interference

vector consisted only of g(�w, Di,m), the forward link of the

ith channel would be converted to an additive Gaussian noise

channel. The achievable rate of such a virtual channel is simply

given by:

Ri,m =
1
2

log
det(Cov( �Xi(s∗i )) + Di,m + σ2Iu)

det(Di,m + σ2Iu)

=
1
2

vi∑
j=1

log
(

1 +
|hi,i|2P

vi(d
(j)
i,m + σ2)

)
. (7)

Let Ti,m = {j|1 ≤ j ≤ vi, d
(j)
i,m = 0}. Defining γ = P

σ2 , we

get:

Ri,m =
|Ti,m|

2
log

(
1 +

|hi,i|2γ
vi

)
+ R̃i,m (8)

where R̃i,m = 1
2

∑
1≤j≤vi:d

(j)
i,m �=0

log
(

1 + |hi,i|2P

vi(d
(j)
i,m+σ2)

)
. As

each non-zero d
(j)
i,m is proportional to P , it is clear that

limγ→∞ R̃i,m < ∞. On the other hand, Ri is convex in

terms of p�Yi(s∗
i )| �Xi(s∗

i )(�y|�x) = p�Zi
(�y − �x). But, p�Zi

(�z) =
1

Mi

∑Mi

m=1 g(�z,Di,m + σ2Iu). Therefore, we have:

Ri ≤ 1
Mi

Mi∑
m=1

Ri,m

=
1
2

(
1

Mi

Mi∑
m=1

|Ti,m|
)

log
(

1 +
|hi,i|2γ

vi

)
+ R̃i (9)

where R̃i = 1
Mi

∑Mi

m=1 R̃i,m. As each R̃i,m saturates by

increasing γ, one has limγ→∞ R̃i <∞. The following lemma

offers an explicit expression for 1
Mi

∑Mi

m=1 |Ti,m|.
Lemma 1

1
Mi

Mi∑
m=1

|Ti,m| = vi

n∏
k=1,k �=i

(
1− vk

u

)
.

Proof: Defining Aj = {m : |Ti,m| = j}, one may express

the left side as 1
Mi

∑Mi

m=1 |Ti,m| = 1
Mi

∑vi

j=1 j|Aj |. Let F
be a random variable showing the number of interference-

free sub-bands among the vi sub-bands selected by the

ith user. Noting that Pr{F = j} = |Aj |
Mi

, we have
1

Mi

∑Mi

m=1 |Ti,m| =
∑vi

j=1 j Pr{F = j} = E{F}. Let us

define Fj =
{

1 Wi,j = 0
0 Wi,j �= 0 . Obviously, F =

∑vi

j=1 Fj . As

such, we get E{F} =
∑vi

j=1 E{Fj} =
∑vi

j=1 Pr{Wi,j = 0}.
But, ∀j : Pr{Wi,j = 0} = ai,0 =

∏n
k=1,k �=i

(
1− vk

u

)
which

yields E{F} = vi

∏n
k=1,k �=i

(
1− vk

u

)
.

Based on (9) and lemma 1, we propose the following theorem:

Theorem 1 There exists an upper bound Rub
i on the achiev-

able rate of the ith user which satisfies

Rub
i ∼ 1

2
vi

n∏
k=1,k �=i

(
1− vk

u

)
log γ.

IV. LOWER BOUNDS ON THE RATES

We define �X ′
i to be the vi × 1 signal vector corresponding

to the first vi elements of �Xi(s∗i ). Let �Y ′i = hi,i
�X ′

i + �Z ′i where
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�Z ′i is the noise plus interference vector at the receiver side on

the first vi sub-bands. By entropy power inequality, we have:

2
2

vi
h(�Y ′

i ) ≥ 2
2

vi
h(hi,i

�X′
i) + 2

2
vi

h(�Z′
i). (10)

Dividing both sides by 2h(�Z′
i), we get:

h(�Y ′i )− h(�Z ′i) ≥
vi

2
log

(
2

2
vi

(h(hi,i
�X′

i)−h(�Z′
i)) + 1

)
. (11)

On the other hand, since �Y ′i is a subvector of �Yi(s∗i ), we have:

Ri = I( �Xi(s∗i ); �Yi(s∗i )) ≥ I( �X ′
i; �Y ′i ) = h(�Y ′i )− h(�Z ′i). (12)

Comparing (11) and (12) yields:

Ri ≥ vi

2
log

(
2

2
vi

(h(hi,i
�X′

i)−h(�Z′
i)) + 1

)
. (13)

Clearly, h(hi,i
�X ′

i) = vi

2 log(2πe
|hi,i|2P

vi
). As �Z ′i is a mixed

Gaussian vector, there is no closed-form formula for h(�Z ′i).
Hence, we have to find an appropriate upper bound on h(�Z ′i).
Using the chain rule for the differential entropy yields:

h(�Z ′i) ≤
vi∑

j=1

h(Zi,j). (14)

The following proposition whose proof is offered in [4] yields

an upper bound on h(Zi,j).

Proposition 1 For every 1 ≤ j ≤ vi and for all values of γ,
there exists an upper bound on h(Zi,j) given by

h(Zi,j) ≤ 1
2
(1− ai,0) log(ci,Li

γ + 1) + log(
√

2πeσ) + κi

where κi = H(ai,0, · · · , ai,Li
) is the discrete entropy of

{ai,j}Li
j=0.

Based on proposition 1, and by (13) and (14), we get:

Ri ≥ Rlb
i :=

vi

2
log

(
2−2κi |hi,i|2γ

vi(ci,Li
γ + 1)1−ai,0

+ 1
)

. (15)

But, vi

2 log
(

2−2κi |hi,i|2γ

vi(ci,Li
γ+1)1−ai,0

+1
)
∼ 1

2viai,0 log γ. Thus, we

come up with the following result of this section:

Theorem 2 There exists a lower bound Rlb
i on the achievable

rate of the ith user which satisfies

Rlb
i ∼

1
2
vi

n∏
k=1,k �=i

(
1− vk

u

)
log γ.

From now on, we assume that the ith transmitter regulates its

rate at Rlb
i . It can be seen that the only parameters needed

to compute Rlb
i are |hi,i|, ci,Li

and κi. ci,Li
represents the

greatest interference level on each sub-band at the receiver of

the ith user. This together with |hi,i| must be passed over to

the transmitter side via a feedback link.

V. SYSTEM DESIGN

In this section, we consider the complex case where sig-

nals, ambient noise and channel gains are circular complex

Gaussian random variables. This affects the previous results

via multiplication by a factor of two. In general, there are two

fixed parameters in the system, the number of frequency bands,

u, and the maximum number of active users that the system

is designed to handle, K. We compare the FH system with

the FD system according to four key measures to be defined

later. Based on the results in the previous sections, there exist

upper and lower bounds on the achievable rate of each user

which coincide in the high SNR regime. Thus, the achievable

rate itself must be asymptotically equivalent to each of these

bounds, i.e.,

Ri ∼ vi

n∏
k=1,k �=i

(
1− vk

u

)
log γ. (16)

Let SR =
∑n

i=1 Ri be the sum-rate. Then,

SR ∼ rSR log γ (17)

where

rSR =
n∑

i=1

vi

∏
1≤k≤n,k �=i

(
1− vk

u

)
. (18)

We call rSR the sum-rate multiplexing gain of the system.

rSR is a symmetric function of vi’s. In a “fair” FH system, it

is required that vi = v for all i. Thus,

rSR = nv
(
1− v

u

)n−1

. (19)

Maximizing this in terms of v yields:

vopt =
{

1 if u
n < 1

	u
n
 if u

n ≥ 1 . (20)

In the sequel, we compare the performance of the FD system

with that of the decentralized network adopting the FH strat-

egy. We assume the number of users in the system is a random

variable N with probability mass function qn = Pr{N = n}
for n ≥ 1. For the moment, we assume Pr{N > K} = 0. In

what follows all expectations are with respect to the number

of active users. Our comparison is based on four performance

measures namely, average sum-rate multiplexing gain, average

multiplexing gain per user, the minimum multiplexing gain

per user and the so-called service capability. Service capability

shows the fraction of users getting service among all the active

users in the system. For brevity, we take K = 2 in all the

examples provided. For more general examples, we refer the

reader to [4].

• Average sum-rate multiplexing gain

Average sum-rate multiplexing gain is defined as η1 =
E{rSR}. The FD system is already designed to handle K ≤ u
users where K|u. The frequency sub-bands are divided into K
clusters each containing u

K sub-bands. Each user that enters

the system looks for an empty cluster. If there is one, the user

occupies the cluster. If there is no empty cluster, no service is
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available. Therefore, the sum-rate multiplexing gain is

r
(FD)
SR =

{
N u

K N ≤ K
u N > K

. (21)

On the other hand, in a decentralized network with FH

strategy, the parameter K is meaningless. In fact, by the nature

of FH, any number of active users can get service. Since N

is a global knowledge, by (19) and (20), r
(FH)
SR is given by:

r
(FH)
SR =

{
N	 u

N 
(1− 1
u	 u

N 
)N−1 N ≤ u
N(1− 1

u )N−1 N > u
(22)

Example 1 Assume there are always at most two active users
in the system and 2|u. As such, the central controller in the FD
system sets K = 2, and according to (21), we have η

(FD)
1 =

E{r(FD)
SR } = q1

u
2 +q2u. On the other hand, based on (22), we

get η
(FH)
1 = E{r(FH)

SR } = q1u+2q2
u
2 (1− 1

u
u
2 ) = q1u+ q2

u
2 .

Therefore, as far as q1u + q2
u
2 > q1

u
2 + q2u or equivalently

q1 > q2, we have η
(FH)
1 > η

(FD)
1 . Thus, if q1 > 1

2 , i.e., the
probability that two users become active simultaneously is less
than 1

2 , the FH system utilizes the band more efficiently.

• Average multiplexing gain per user

Average multiplexing gain per user is defined as η2 =
E{ rSR

N }. This measure shows the multiplexing gain each user

achieves on average.

Example 2 Considering the same setup as in example 1, we
have η

(FD)
2 = u

2 and η
(FH)
2 = q1u + q2

u
2 (1 − 1

u
u
2 ) =

q1u+q2
u
4 . Therefore, as far as q1u+q2

u
4 > u

2 or equivalently
q1 > 1

3 , we have η
(FH)
2 > η

(FD)
2 . This example together

with example 1 show that as far as q1 > 1
2 , the FH system

outperforms the FD system in terms of both η1 and η2.

• Minimum multiplexing gain per user

The minimum multiplexing gain per user is the smallest

possible multiplexing gain that a user attains. We denote this

by η3. Clearly, this happens when there are exactly K active

users in the system. As the FD system is already designed to

handle the case where K users are present in the system, the

minimum multiplexing gain per user is automatically higher.

Setting N = K, we have η
(FD)
3 = r

(F D)
SR

K = u
K and η

(FH)
3 =

r
(F H)
SR

K = u
K (1− 1

K )K−1 by (21) and (22) respectively. Clearly,

1
e ≤

η
(F H)
3

η
(F D)
3

≤ 1 as (1− 1
K )K−1 approaches 1

e from above by

increasing K. Therefore, the loss incurred in the FH system

is at most 1
e .

• Service capability

Service capability demonstrates the fraction of users getting

service out of the whole present users in the system. Let us de-

note the number of users getting service by Ns. Therefore, the

service capability is computed as E{Ns

N }. In the FH system,

the service capability is always one. But, in the FD system,

if N > u then certainly a fraction of users can not share the

band. This actually occurs whenever Pr{N > u} > 0. In case

Pr{N ≤ u} = 1, both systems have service capability equal

to one.
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