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Abstract— The capacity region of the two-user Gaussian In-
terference Channel (IC) is studied. Two classes of channels are
considered: weak and mixed Gaussian IC. For the weak Gaussian
IC, a new outer bound on the capacity region is obtained that
outperforms previously known outer bounds. The sum capacity
for a certain range of channel parameters is derived. For this
range, it is proved that using Gaussian codebooks and treating
interference as noise is optimal. It is shown that when Gaussian
codebooks are used, the full Han-Kobayashi (HK) achievable rate
region can be obtained by using the naive HK achievable scheme
over three frequency bands. For the mixed Gaussian IC, a new
outer bound is obtained that outperforms previously known outer
bounds. For this case, the sum capacity for the entire range of
channel parameters is derived. It is proved that the full HK
achievable rate region using Gaussian codebooks is equivalent
to that of the one-sided Gaussian IC for a particular range of
channel parameters.

I. I NTRODUCTION

In this paper, we focus on the two-user Gaussian IC which
can be represented in standard form as [1]

y1 = x1 +
√

ax2 + z1,

y2 =
√

bx1 + x2 + z2,
(1)

wherexi andyi denote the input and output alphabets of User
i ∈ {1, 2}, respectively, andz1 ∼ N (0, 1), z2 ∼ N (0, 1) are
standard Gaussian random variables. Constantsa ≥ 0 andb ≥
0 represent the gains of the interference links. Furthermore,
Transmitteri, i ∈ {1, 2}, is subject to the power constraint
Pi. The capacity region of the Gaussian IC defined in [2] is
denoted byC .

Depending on the values ofa andb, the two-user Gaussian
IC is classified into weak, strong, mixed, one-sided, and de-
graded Gaussian IC. In Figure 1, regions inab-plane together
with their associated names are shown. We useγ(x) as an
abbreviation for the function0.5 log2(1 + x).

II. PRELIMINARIES

A. Support Functions

Throughout this paper, we use the following facts from
convex analysis. There is a one to one correspondence between
any closed convex set and its support function [3]. The support
function of any setD ∈ <m is a functionσD : <m → <
defined as

σD(c) = sup{ctR|R ∈ D}. (2)

1An earlier version of this work containing all the results is reported
in Library and Archives Canada Technical Report UW-ECE 2007-26, Aug.
2007 (see http://www.cst.uwaterloo.ca/pubtech rep.html for details).
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Fig. 1. Classes of the two-user ICs.

Clearly, if the setD is compact, then the sup is attained and
can be replaced by max. In this case, the solutions of (2)
correspond to the boundary points ofD [3]. The following
relation is the dual of (2) and holds whenD is closed and
convex

D = {R|ctR ≤ σD(c), ∀ c}. (3)

For any two closed convex setsD and D′, D ⊆ D′, if and
only if σD ≤ σD′ .

B. Methods for Enlarging an Achievable Region

Assume an achievable scheme for anM -user channel with
the power constraintP = [P1, P2, . . . , PM ] is given and can
be represented as

D0(P,Θ) = {R|AR ≤ Ψ(P, Θ)} , (4)

whereA is a K × M matrix andΘ ∈ [0, 1]M . The support
function of D0 is a function ofP, Θ, andc. Hence, we have

σD0(c,P,Θ) = max{ctR|AR ≤ Ψ(P, Θ)}. (5)

For fixed P and Θ, (5) is a linear program. Using strong
duality of linear programming, we obtain

σD0(c,P,Θ) = min{ytΨ(P, Θ)|Aty = c,y ≥ 0}. (6)

In general,ŷ, the minimizer of (6), is a function ofP, Θ,
andc. We sayD0 possessesthe unique minimizer propertyif
ŷ merely depends onc, for all c. In this case, we have

σD0(c,P,Θ) = ŷt(c)Ψ(P, Θ), (7)



whereAtŷ = c. This condition means that for anyc the ex-
treme point ofD0 maximizing the objectivectR is an extreme
point obtained by intersecting a set of specific hyperplanes. A
necessary condition forD0 to possess the unique minimizer
property is that each inequality in describingD0 is either
redundant or active for allP andΘ.

SinceD0 is a convex region, the convex hull operation does
not lead to a new enlarged region. However, if the extreme
points of the region are not a concave function ofP, it is
possible to enlargeD0 by using two different methods which
are explained next. The first method is based on using the time
sharing parameter. Let us denote the corresponding region as
D which can be written as

D = {R|AR ≤
q∑

i=1

λiΨ(Pi,Θi),
q∑

i=1

λiPi ≤ P,

q∑

i=1

λi = 1, λi ≥ 0, Θi ∈ [0, 1]M ∀i}, (8)

whereq ∈ N. In the second method, we make use of TD/FD to
enlarge the achievable rate region. This results in an achievable
regionD2 represented as

D2 = {R =
q′∑

i=1

λiRi|ARi ≤ Ψ(Pi,Θi),
q′∑

i=1

λiPi ≤ P,

q′∑

i=1

λi = 1, λi ≥ 0, Θi ∈ [0, 1]M ∀i}, (9)

whereq′ ∈ N. We refer to this method as concavification. It
can be readily shown thatD and D2 are closed and convex,
andD2 ⊆ D. We are interested in situations where the inverse
inclusion holds.

C. Admissible Channels

Definition 1 (Admissible Channel):An IC C ′ with input
letter xi and output letterỹi for User i ∈ {1, 2} is an
admissible channel for the two-user Gaussian IC if there exist
two deterministic functionŝyn

1 = f1(ỹn
1 ) and ŷn

2 = f2(ỹn
2 )

such that

I(xn
1 ; yn

1 ) ≤I(xn
1 ; ŷn

1 ), (10)

I(xn
2 ; yn

2 ) ≤I(xn
2 ; ŷn

2 ) (11)

hold for all p(xn
1 )p(xn

2 ) and for all n ∈ N. E denotes the
collection of all admissible channels.

It is easy to show thatC ⊆ C ′ for all admissible channels
C ′. Hence, to obtain an outer bound, we need to find the
intersection of the capacity regions of all admissible channels.
Nonetheless, it may happen that finding the capacity region
of an admissible channel is as hard as that of the original
one (in fact, based on the definition, the channel itself is one
of its admissible channels). Hence, we need to find classes
of admissible channels, sayF , which possess two important
properties. First, their capacity regions are close toC . Second,
either their exact capacity regions are computable or there exist
good outer bounds for them.

Having F , we can obtain an upper bound on the support
function ofC by solving the following optimization problems
for all 1 ≤ µ:

σC (µ, 1) ≤ min
C ′∈F

max
(R1,R2)∈C ′

µR1 + R2, (12)

σC (1, µ) ≤ min
C ′∈F

max
(R1,R2)∈C ′

R1 + µR2. (13)

III. M AIN RESULTS AND RELATED WORKS

In this section, we provide the summary of the results
obtained for the weak and mixed Gaussian IC. The results
are categorized in three subsections: new outer bounds, sum
capacities, and the HK inner bound. In the following section,
we provide proofs for the sum capacity results. To see the rest
of the proofs, interested readers are referred to [4].

A. New Outer Bounds

For the weak Gaussian IC, there are two outer bounds that
are tighter than the other known bounds. The first one, due to
Kramer [5], is obtained by relying on the fact that the capacity
region of the Gaussian IC is inside the capacity regions of
the two underlying one-sided Gaussian ICs. Even though the
capacity region of the one-sided Gaussian IC is unknown, there
exists an outer bound for this channel that can be used instead.

The second outer bound, due to Etkinet al. [6], is obtained
by using Genie aided technique to upper bound different linear
combinations of rates that appear in the HK achievable region
[7].

To obtain a new outer bound, we derive an upper bound on
all linear combinations of the rates. To this end, we introduce
three classes of admissible channels, namely Class A1, Class
A2, and Class B (see [4]). Using these classes, we obtain two
functionsW (µ1) andW̃ (µ2) that upper boundσC (µ1, 1) and
σC (1, µ2), respectively.

Theorem 1 (New Outer Bound):For any rate pair(R1, R2)
achievable for the two-user weak Gaussian IC, the inequalities

µ1R1 + R2 ≤ W (µ1), (14)

R1 + µ2R2 ≤ W̃ (µ2), (15)

hold for all 1 ≤ µ1, µ2.
For the mixed Gaussian IC, the best outer bound to date,

due to Etkin et al. [6], is obtained by using the Genie
aided technique. The capacity region of the mixed Gaussian
IC is inside the intersection of the capacity regions of the
two underlying one-sided Gaussian ICs. Removing the link
between Transmitter 1 and Receiver 2 results in a weak one-
sided Gaussian IC whose outer boundE1 is the collection of
all rate pairs(R1, R2) satisfying

R1≤ γ

(
(1− β)P ′

βP ′ + 1/a

)
, (16)

R2≤ γ(βP ′), (17)

for all β ∈ [0, βmax], where P ′ = P1/a + P2 and βmax =
P2

P ′(1+P1)
. On the other hand, removing the link between

Transmitter 2 and Receiver 1 results in a strong one-sided



Gaussian IC whose capacity regionE2 is fully characterized
as the collection of all rate pairs(R1, R2) satisfying

R1≤ γ(bP1), (18)

R2≤ γ (P2) , (19)

R1 + R2≤ γ(bP1 + P2). (20)

Moreover, by introducing a new class of admissible chan-
nels, which is called Class C [4], we can obtain a function
Wmixed(µ) that upper boundsσC (µ, 1). Hence, we have the
following theorem that provides an outer bound on the capacity
region of the mixed Gaussian IC.

Theorem 2:For any rate pair(R1, R2) achievable for the
two-user mixed Gaussian IC,(R1, R2) ∈ E1

⋂
E2. Moreover,

the inequality
µR1 + R2 ≤ Wmixed(µ) (21)

holds for all1 ≤ µ.

B. Sum Capacities

Theorem 3:The sum capacity of the two-user Gaussian IC
is

Csum = γ

(
P1

1 + aP2

)
+ γ

(
P2

1 + bP1

)
, (22)

for the range of parameters satisfying

√
bP1 +

√
aP2 ≤ 1−√a−

√
b√

ab
. (23)

Remark 1:The above sum capacity result for the weak
Gaussian IC (see also [4]) has been established independently
in [8] and [9].

Theorem 4:The sum capacity of the mixed Gaussian IC
with a < 1 andb ≥ 1 can be stated as

Csum = γ (P2)+min
{

γ

(
P1

1 + aP2

)
, γ

(
bP1

1 + P2

)}
. (24)

Remark 2: In an independent work [8], the sum capacity
of the mixed Gaussian IC is obtained for a certain range of
parameters, whereas in the above theorem, we characterize
the sum capacity of this channel for the entire range of its
parameters (see also [4]).

C. Han Kobayashi Inner Bound

The following theorems concern aboutD andD2 and their
properties.

Theorem 5:If D0 possesses the unique minimizer property,
thenD = D2.

Theorem 6:The cardinality of the time sharing parameter
q in (8) is less thanM + K + 1, whereM and K are the
dimensions ofP andΨ(P), respectively. Moreover, ifΨ(P)
is a continuous function ofP, thenq ≤ M + K.

Theorem 7:To characterize boundary points ofD2, it suf-
fices to setq′ ≤ M + 1.
Surprising fact about Theorem 7 is that the upper bound forq′

is independent of the number of inequalities in the description
of the achievable rate region.

The best inner bound for the two-user Gaussian IC is the full
HK achievable region denoted byCHK [7]. Despite having

a single letter formula,CHK is not fully characterized yet.
In fact, finding the optimum distributions achieving boundary
points ofCHK is still an open problem. We defineG0 as the
naive HK achievable region (we use a shorter description of
G0 obtained in [10]).G0 can be represented in a matrix form
as G0 = {R|AR ≤ Ψ(P1, P2, α, β)} (see [4]. Now,G0 can
be enlarged by using time-sharing and concavification. Let us
define these two regions asG and G2. Clearly, the chain of
inclusionsG0 ⊆ G2 ⊆ G ⊆ CHK ⊆ C always holds. Now,
we can state the main theorem of this subsection which comes
from the fact thatG0 possesses the unique minimizer property.

Theorem 8:For the two-user weak Gaussian IC, time-
sharing and concavification result in the same region. In other
words, G can be fully characterized by using TD/FD and
allocating power over three different dimensions.

Theorem 9:For the mixed Gaussian IC satisfying1 ≤ ab,
region G is equivalent to that of the one sided Gaussian IC
obtained from removing the stronger interfering link.

IV. PROOFS FOR THESUM CAPACITY RESULTS

A. Sum Capacity Result for the Weak Gaussian IC

To obtain the sum capacity result in Theorem 3, a class
of admissible channel, say Class B, is defined as the set of
channels modeled by

ỹ11 = x1 + z11,

ỹ12 = x1 +
√

a′x2 + z12,

ỹ21 = x2 +
√

b′x1 + z21,
ỹ22 = x2 + z22,

(25)

where ỹ11 and ỹ12 are the signals at the first receiver,ỹ21

and ỹ22 are the signals at the second receiver, andzij is
additive Gaussian noise with varianceNij for i, j ∈ {1, 2}.
Transmitter 1 and 2 are subject to the power constraintsP1

andP2, respectively.
Let us consider two linear deterministic functionsf1 andf2

with parameters0 ≤ g1 and0 ≤ g2, resp., as follows

f1(ỹn
11, ỹ

n
12)= (1−√g1)ỹn

11 +
√

g1ỹ
n
12, (26)

f2(ỹn
22, ỹ

n
21)= (1−√g2)ỹn

22 +
√

g2ỹ
n
21. (27)

To satisfy (10) and (11), it suffices to have

a′g1 = a,
b′g2 = b,

(1−√g1)2N11 + g1N12 = 1,
(1−√g2)2N22 + g2N21 = 1.

(28)

We further add the following two constraints to the equality
conditions in (28):

b′N11 ≤ N21,
a′N22 ≤ N12.

(29)

Although adding more constraints reduces the number of the
admissible channels, it helps us to prove the following theorem
which is first observed by Etkinet al. in [6].

Theorem 10:The sum capacities of channels in Class B
are attained when transmitters use Gaussian codebooks and



receivers treat the interference as noise. In this case, the sum
capacity is

C ′
sum =γ

(
P1

N11
+

P1

a′P2 + N12

)
+ γ

(
P2

N22
+

P2

b′P1 + N21

)
.

Proof: See [4] for the proof.
By using Theorem 10, we introduce the following optimiza-

tion problem that upper bound the sum capacity of the weak
Gaussian IC.

W =min γ

(
(1−√g1)2P1

1− S1
+

g1P1

aP2 + S1

)
(30)

+ γ

(
(1−√g2)2P2

1− S2
+

g2P2

bP1 + S2

)

subject to:
b(1− S1)

(1−√g1)2
≤ S2 < 1

a(1− S2)
(1−√g2)2

≤ S1 < 1

0 < [g1, g2].

where S1 = g1N12 and S2 = g2N21. By first minimizing
with respect tog1 andg2, the optimization problem (30) can
be decomposed as

W =minW1 + W2 (31)

subject to:0 < S1 < 1, 0 < S2 < 1.

whereW1 is defined as

W1 =min
g1

γ

(
(1−√g1)2P1

1− S1
+

g1P1

aP2 + S1

)
(32)

subject to:
b(1− S1)

S2
≤ (1−√g1)2, 0 < g1.

Similarly, W2 is defined as

W2 =min
g2

γ

(
(1−√g2)2P2

1− S2
+

g2P2

bP1 + S2

)
(33)

subject to:
a(1− S2)

S1
≤ (1−√g2)2, 0 < g2.

It is easy to show that if
√

b(1+aP2) ≤
√

S2(1− S1) and√
a(1 + bP1) ≤

√
S1(1− S2) then

W = γ

(
P1

1 + aP2

)
+ γ

(
P2

1 + bP1

)
, (34)

which is achievable by treating interference as noise. In what
follows, we prove that it is possible to find appropriateS1 and
S2 for a certain range of parameters.

Let us fix a andb, and defineD as

D = {(P1, P2)|P1 ≤
√

S1(1− S2)
b
√

a
− 1

b
, , 0 < S1, S2 < 1,

P2 ≤
√

S2(1− S1)
a
√

b
− 1

a
}. (35)

In fact, if D is feasible then there exista, b, P1, andP2 such
that the sum capacity of the channel is attained by treating

a

2
1

R
R

7
21

PP

Fig. 2. The upper bound obtained by solving (30). The lower bound
is obtained by using the simple scheme of considering the interference as
Gaussian noise.

interference as noise. We claim thatD = D′, whereD′ is
defined as

D′ =

{
(P1, P2)|

√
bP1 +

√
aP2 ≤ 1−√a−

√
b√

ab

}
. (36)

To showD′ ⊆ D, we setS1 = 1− S2 in (35) to obtain
{

(P1, P2)|P1 ≤ S1

b
√

a
− 1

b
, P2 ≤ 1− S1

a
√

b
− 1

a
, 0 < S1 < 1

}

It is easy to show that the above set is another representation
of the regionD′. Hence, we haveD′ ⊆ D.

To showD ⊆ D′, it suffices to prove that for any(P1, P2) ∈
D,
√

bP1+
√

aP2 ≤ 1−√a−
√

b√
ab

holds. To this end, we introduce
the following maximization problem

J = max
(P1,P2)∈D

√
bP1 +

√
aP2, (37)

which can be written as

J = max
(S1,S2)∈(0,1)2

√
S1(1− S2) +

√
S2(1− S1)√

ab
− 1√

a
− 1√

b
.

It is easy to show that the solution to the above optimization
problem is

J =
1√
ab
− 1√

a
− 1√

b
. (38)

Hence, we deduce thatD ⊆ D′. This completes the sum
capacity result in Theorem 3.

As an example, let us consider the symmetric Gaussian IC.
In this case, the constraint in (23) becomes

P ≤ 1− 2
√

a

2a
√

a
. (39)

For a fixedP and all0 ≤ a ≤ 1, the upper bound in (30) and
the lower bound when receivers treat the interference as noise
are plotted in Figure 2. We observe that up to a certain value
of a, the upper bound coincides with the lower bound.



B. Sum capacity of the Mixed Gaussian IC

In this subsection, we prove Theorem 4. To this end, we
need to prove the achievaility and converse for the theorem.

Achievability part : Transmitter 1 sends a common message
to both receivers, while the first user’s signal is considered as
noise at both receivers. In this case, the rate

R1 = min
{

γ

(
P1

1 + aP2

)
, γ

(
bP1

1 + P2

)}
(40)

is achievable. At Receiver 2, the signal from Transmitter 1
can be decoded and removed. Therefore, User 2 is left with
a channel without interference and it can communicate at its
maximum rate which is

R2 = γ(P2). (41)

By adding (40) and (41), we obtain the desired result.
Converse part: From Theorem 2, we know that the capacity

region of the Gaussian mixed IC is inside the intersection of
E1 and E2. Hence, we can obtain two upper bounds on the
sum rate. By usingE1, we have

Csum ≤ γ(P2) + γ

(
P1

1 + aP2

)
. (42)

By usingE2, we have

Csum ≤ γ (bP1 + P2) , (43)

which equivalently can be written as

Csum ≤ γ(P2) + γ

(
bP1

1 + P2

)
. (44)

By taking the minimum of the right hand sides of (42) and
(44), we obtain

Csum ≤ γ (P2)+min
{

γ

(
P1

1 + aP2

)
, γ

(
bP1

1 + P2

)}
. (45)

This completes the proof.

V. SIMULATION RESULTS

In Figure 3, different bounds for the symmetric weak
Gaussian IC are plotted. As depicted in figures, the new outer
bound is tighter than previously known outer bounds.

Different bounds are compared for the mixed Gaussian ICs
for P1 = 7, P2 = 7, a = 0.4, and b = 1.5 in Figure 4.
As it can be seen and proved, the inner bound and the outer
bound coincide on a facet for this case. It is important to
note that, surprisingly, this facet is obtainable when the second
transmitter uses both the common message and the private
message.
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