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Abstract—The capacity region of the two-user Gaussian In- Symumetric
terference Channel (IC) is studied. Two classes of channels are P=n
considered: weak and mixed Gaussian IC. For the weak Gaussian b
IC, a new outer bound on the capacity region is obtained that
outperforms previously known outer bounds. The sum capacity
for a certain range of channel parameters is derived. For this
range, it is proved that using Gaussian codebooks and treating
interference as noise is optimal. It is shown that when Gaussian
codebooks are used, the full Han-Kobayashi (HK) achievable rate
region can be obtained by using the naive HK achievable scheme
over three frequency bands. For the mixed Gaussian IC, a new
outer bound is obtained that outperforms previously known outer N
bounds. For this case, the sum capacity for the entire range of
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channel parameters is derived. It is proved that the full HK \ Mixed a

achievable rate region using Gaussian codebooks is equivalent
to that of the one-sided Gaussian IC for a particular range of
channel parameters.

s One-sided

Fig. 1. Classes of the two-user ICs.
I. INTRODUCTION

In this paper, we focus on the two-user Gaussian IC whi

can be represented in standard form as [1] %\early, if the setD is compact, then the sup is attained and

can be replaced by max. In this case, the solutions of (2)

Y1 =1+ axs + 21, @ correspond to the boundary points 6f [3]. The following
Y2 = Vbxy + 2 + 29, relation is the dual of (2) and holds whdn is closed and
wherez; andy; denote the input and output alphabets of Us&PNVeX .
i € {1,2}, respectively, and; ~ N(0,1), zo ~ N(0,1) are D ={R|c'R < op(c),V c}. 3)

standard Gaussian random variables. Constantd) andb > For any two closed convex sef3 and D/, D C D', if and
0 represent the gains of the interference links. Furthermog—:my it op -
Transmitteri, ¢« € {1,2}, is subject to the power constraint
P;. The capacity region of the Gaussian IC defined in [2] 8. Methods for Enlarging an Achievable Region
denoted by?'. Assume an achievable scheme for &hRuser channel with

Depending on the values efandb, the two-user Gaussianthe power constrainP = [Py, P,, ..., Py/] is given and can
IC is classified into weak, strong, mixed, one-sided, and dge represented as
graded Gaussian IC. In Figure 1, regionsztnplane together
with their associated names are shown. We i) as an Do(P,0) = {R[AR < ¥(P,0)}, (4)
abbreviation for the function.5log,(1 + x).

<opr.

where A is a K x M matrix and® € [0,1]™. The support
Il. PRELIMINARIES function of Dy is a function ofP, ©, andc. Hence, we have

A. Support Functions op,(c,P,0) = max{c'R|AR < ¥(P,0)}. (5)

Throughout this paper, we use the following facts fror]a_,or fixed P and ©, (5) is a linear program. Using strong

convex analysis. There is a one to one correspondence betw&?g'lity of linear programming, we obtain
any closed convex set and its support function [3]. The support '

function of any setD € ®™ is a functionop : ™ — R op,(c,P,0) = min{y'¥(P,0)|A'y =c,y > 0}. (6)
defined as T . .
_ ¢ In general,y, the minimizer of (6), is a function oP, O,
op(c) =sup{c'R|R € D}. 2) \ o .
andc. We sayD, possessethe unique minimizer property
1An earlier version of this work containing all the results is reported y merely depends on, for all c. In this case, we have
in Library and Archives Canada Technical Report UW-ECE 2007;28ug.
2007 (see http://www.cst.uwaterloo.ca/puttech.rep.html for details). op,(c,P,0) =3 (c)¥(P,0), 7



where A’y = c. This condition means that for anythe ex- Having .%, we can obtain an upper bound on the support
treme point ofD, maximizing the objective’R is an extreme function of € by solving the following optimization problems
point obtained by intersecting a set of specific hyperplanes.fér all 1 < u:

necessary condition foD, to possess the unique minimizer

property is that each inequality in describifg, is either o (1, 1) < ST (Ri RocE pR1 + Ra, 12)
redundant or active for alP and©.

SinceDy is a convex region, the convex hull operation does o (1, 1) < }nel’%} (RII%?E%, R+ pRo. (13)
not lead to a new enlarged region. However, if the extreme ’
points of the region are not a concave functionBf it is I1l. M AIN RESULTS AND RELATED WORKS

possible to enlargd), by using two different methods which In this section, we provide the summary of the results
are explained next. The first method is based on using the tiglstained for the weak and mixed Gaussian IC. The results
sharing parameter. Let us denote the corresponding regionags categorized in three subsections: new outer bounds, sum

D which can be written as capacities, and the HK inner bound. In the following section,
q q we provide proofs for the sum capacity results. To see the rest
D={RJAR <) \¥(P;,0,),Y \P; <P, of the proofs, interested readers are referred to [4].
=1 =1

A. New Outer Bounds

Z Ai=1,X >0,0; € [0,1]% vi}, (8) For the weak Gaussian IC, there are two outer bounds that

=1 are tighter than the other known bounds. The first one, due to
whereg € N. In the second method, we make use of TD/FD tiramer [5], is obtained by relying on the fact that the capacity
enlarge the achievable rate region. This results in an achievalggion of the Gaussian IC is inside the capacity regions of
region D, represented as the two underlying one-sided Gaussian ICs. Even though the

J ¢ capacity region of the one-sided Gaussian IC is unknown, there

Dy ={R :Z AR;|AR; < U(P;,0,), Z \P; <P, exists an outer bound for this channel t_hat can pe useql instead.

= The second outer bound, due to Etkinal. [6], is obtained
7 by using Genie aided technique to upper bound different linear
Z Ao=1,0 20,0, €0, 1M vi}, 9) E:7o]mb|nat|ons of rates that appear in the HK achievable region
=1 .

To obtain a new outer bound, we derive an upper bound on
linear combinations of the rates. To this end, we introduce
'three classes of admissible channels, namely Class Al, Class
rsiﬁ, and Class B (see [4]). Using these classes, we obtain two

functionsW (1;) and W (i) that upper bound (1, 1) and

C. Admissible Channels ox (1, uz), respectively.

Definition 1 (Admissible Channelan IC " with input Ehe‘”belmfl (t';']e";’ Outer BOU”gFgr any ratﬁ:pi‘r']@hR?) "
letter z; and output lettery; for Useri € {1,2} is an achievable for the two-user weak >aussian It the inequaiities

i=1

whereq’ € N. We refer to this method as concavification. |5”
can be readily shown thdd and D, are closed and convex
andD, C D. We are interested in situations where the inve
inclusion holds.

admissible channel for the two-user Gaussian IC if there exist p1R1 4+ Ry < W(p1), (14)
two deterministic functiong)? = fi(g7) and gy = fa(45) <T
such that R+ po Ry < W(po), (15)
n n n. n hold for all 1 < puq, po.
I(zsy1) <I(z591), (10) ke

S 2 For the mixed Gaussian IC, the best outer bound to date,
I(23;y3) <I(23;93) (11) due to Etkinet al. [6], is obtained by using the Genie

aided technique. The capacity region of the mixed Gaussian
collection of all admissible channels. IC is inside the intersection of the capacity regions of the

It is easy to show that’ C ¢’ for all admissible channels two underlying one-sided Gaussian ICs. Removing the link

%'. Hence, to obtain an outer bound, we need to find ﬂpgtween Transmitter 1 and Receiver 2 results in a weak one-

intersection of the capacity regions of all admissible channefided Gaussian IC whose outer boufid is the collection of

Nonetheless, it may happen that finding the capacity regiBH rate pairs(

hold for all p(z7)p(z%) and for alln € N. & denotes the

R1, R,) satisfying

of an admissible channel is as hard as that of the original (1—-p)P
one (in fact, based on the definition, the channel itself is one Ri<~ <ﬁP’+1/a> ) (16)
of its admissible channels). Hence, we need to find classes Ro< 7(BP"), 17

of admissible channels, sa¥, which possess two important

properties. First, their capacity regions are clos&t@Gecond, for all 5 € [0, Bmax, Where P’ = Py/a + P, and Bmax =
either their exact capacity regions are computable or there ex}isgfj—Pl. On the other hand, removing the link between
good outer bounds for them. Transmitter 2 and Receiver 1 results in a strong one-sided



Gaussian IC whose capacity regi@n is fully characterized a single letter formula@’y x is not fully characterized yet.
as the collection of all rate pairfgR;, Rs) satisfying In fact, finding the optimum distributions achieving boundary
points of €y i is still an open problem. We defiri, as the

Fi<~(bP1), (18) naive HK achievable region (we use a shorter description of
Ro< 7y (P2), (19) ¢, obtained in [10])%, can be represented in a matrix form
Ry + Ro< y(bPy + P). (20) as% = {R|AR < U(Py, P,,a,3)} (see [4]. Now,%, can

) ) o be enlarged by using time-sharing and concavification. Let us
Moreover, by introducing a new class of admissible chafufine these two regions & and %. Clearly, the chain of

nels, which is called Class C [4], we can obtain a f“““"??\clusions% C % C 94 C €yx C ¢ always holds. Now,
Whnixed() that upper bounds« (i, 1). Hence, we have the \ye can state the main theorem of this subsection which comes
foIIQW|ng theore'm that prov[des an outer bound on the capaciy m the fact that?, possesses the unique minimizer property.
region of the .mlxed Gaussian IC. _ Theorem 8:For the two-user weak Gaussian IC, time-

Theorem 2:For any rate pail(R,, i) achievable for the gharing and concavification result in the same region. In other
two-user mixed Gaussian IRy, Rz) € B (] Ez. MOreover, qrqs'w can be fully characterized by using TD/FD and
the inequality allocating power over three different dimensions.

Ry A+ Ro < Whnixed(pt) (21) Theorem 9:For the mixed Gaussian IC satisfying< ab,
holds for all1 < s. regiqn% is equivalen_t to that of the one sid_ed (_Baussian IC
obtained from removing the stronger interfering link.

B. Sum Capacities

Theorem 3:The sum capacity of the two-user Gaussian IC IV. PROOFS FOR THESUM CAPACITY RESULTS

is A. Sum Capacity Result for the Weak Gaussian IC
A 7( ! ) +7( P ) , (22) To obtain the sum capacity result in Theorem 3, a class
1+aP 1465 of admissible channel, say Class B, is defined as the set of
for the range of parameters satisfying channels modeled by
1—ya— b yu = 1+ 211,
bP < ——— 23 ~
VOP + VP, < a (23) J12 = a1+ Va'zy + 212, (25)
Remark 1:The above sum capacity result for the weak Go1 = a9+ VU1 + 201,

Gaussian IC (see also [4]) has been established independently
in [8] and [9]. . . . ' Lo
Theorem 4:The sum capacity of the mixed Gaussian I¢Vheré g and i, are the signals at the first receivep,

P22 = T2 + 222,

With @ < 1 andb > 1 can be stated as and_gzz are thg signals at. the gecond receiver, apdis
additive Gaussian noise with varianég; for i,j € {1,2}.
Coum = 7 (Ps)+min { v Ll > o bl . (24) Transmitter 1 and 2 are subject to the power constralfits
_ 1+ab, 1+ P _and P,, respectively.
Remark 2:In an independent work [8], the sum capacity

. : ) _ . Let us consider two linear deterministic functiofisand
of the mixed Gaussian IC is obtained for a certain range \%th parameters) < g, and0 < go, resp., as foIIovJ\a/ls fe

parameters, whereas in the above theorem, we characterize

the sum capacity of this channel for the entire range of its fi 912)= (1 — /91)011 + V91512, (26)
parameters (see also [4]). P, 55)= (1= Vo) i3 + Vol (27)
C. Han Kobayashi Inner Bound To satisfy (10) and (11), it suffices to have

The following theorems concern abalitand D, and their ,
properties. Z,gl -

Theorem 5:If Dy possesses the unique minimizer property, 2 =0 28
thenD = D,. ’ (1—/91)*N11 + g1 N12 =1, (28)

Theorem 6:The cardinality of the time sharing parameter (1= vg2)*Noz + 92N = 1.
g in (8) is less thanM + K + 1, where M and K are the We further add the following two constraints to the equality
dimensions ofP and ¥(P), respectively. Moreover, iff(P) conditions in (28):
is a continuous function aP, thenqg < M + K.

Theorem 7:To characterize boundary points 6%, it suf-
fices to sety/ < M + 1.
Surprising fact about Theorem 7 is that the upper bound’for Although adding more constraints reduces the number of the
is independent of the number of inequalities in the descripti@amissible channels, it helps us to prove the following theorem
of the achievable rate region. which is first observed by Etkiet al. in [6].

The best inner bound for the two-user Gaussian IC is the full Theorem 10:The sum capacities of channels in Class B
HK achievable region denoted by [7]. Despite having are attained when transmitters use Gaussian codebooks and

b’ N1 < Noj,

a’Nay < Nio. (29)



receivers treat the interference as noise. In this case, the sum 33
capacity is P=h =T

3 .
Py Py Py Py 7
Cg/ = _ _— —_— —_— . -7
sum =7 gNu * a' Py +N12> T (sz * b P+ N21) 25\ Py
Proof: See [4] for the proof. O ' St \

By using Theorem 10, we introduce the following optimiza- <
tion problem that upper bound the sum capacity of the weak «~
Gaussian IC.

2 Upper Bound

. (1-q)*P g1P1
W =min-y ( 1— Sl + CLPQ + Sl (30) L Treating interference as noise
+r ((1 —/92)*Ps + g2 I S S
1—-5, bP, + S, 0o 01 02 03 04 05 06 07 08 09 1
Ja
. b(1—-S
subject to: 1( 1))2 <S8, <1
( — VI Fig. 2. The upper bound obtained by solving (30). The lower bound
a(l — 52) is obtained by using the simple scheme of considering the interference as
5 <51 <1 Gaussian noise.
(1- \/92)
0 < [g1,92]-

. interferen noise. We claim = D'/, whereD' i
where S = g1 Ni2 and Sy = goNoy. By first minimizing terference as noise. We claim thax ' ere s

with respect tog; and go, the optimization problem (30) Candefmed as
1— —
be decomposed as D = {(P17p2)|\/gpl +VaPy < \/\/EL \/E} (36)
W =min Wy + Wy (31) ab
subject to:0 < 57 <1, 0 < Sy < 1. To showD’ C D, we setS; = 1 — S, in (35) to obtain
whereW; is defined as (P, P)|Py < S1_ 17p2 < 1-5 _ 1’0 <8 <1
(L-Va)*P | gP Ve b avh o
. - 1 1
Wi ZH;?W ( -5 + a P; +151> (32) Itis easy to show that the above set is another representation
‘ b(1 — 1) of the regionD’. Hence, we havé)’ C D.
subject to:Tl <(1-ya)? 0<gi. To showD C D/, it suffices to prove that for anyP;, P») €
o o 2 D, VbP,++/aPy < L\/';%‘/E holds. To this end, we introduce
Similarly, W5 is defined as the following maximization problem
. (1- @)2132 92 J = max \/BP
= - 1+ \/&P% (37)
e H;;n,y ( 1-5; + bP; + Ss (33) (P1,P2)eD
subject to:a(lg Sa) < (1= G@)% 0< g which can be written as
J= max \/51(1_52)+\/52(1_Sl)_i_i
It is easy to show that if/b(1+aP,) < 1/S2(1 — S;) and (S1,52)€(0,1)2 Vab va b
Va(l+bP1) < /51— 55) then It is easy to show that the solution to the above optimization
P, P, problem is
W=« ( ) + 7 ( > , (34) 1 L1
1+aP. 1+bP J=—=—-——-—. 38
at 1 \/% \/a \/B ( )

which is achievable by treating interference as noise. In what , .
follows, we prove that it is possible to find appropri&gteand q—aience, we deduce thab C D’. This completes the sum

S, for a certain range of parameters. caKaC|tr)]/ riSl‘r'rl]t Iln 'I;hteorem ns.id r th mmetric G ian IC
Let us fixa andb, and defineD as S an example, 1€t us consicer e symmetric taussia '

In this case, the constraint in (23) becomes
S1(1—Ss)

1
D = {(P, P)|P, < ——,,0< 51,5 <1 1-2ya
) b\/& b bR ) ’ P S . (39)
2a+/a
P < VE(1—5) l}. (35) For afixedP and all0 < a < 1, the upper bound in (30) and
avh a the lower bound when receivers treat the interference as noise

In fact, if D is feasible then there exist b, P;, and P, such are plotted in Figure 2. We observe that up to a certain value
that the sum capacity of the channel is attained by treatiofja, the upper bound coincides with the lower bound.



B. Sum capacity of the Mixed Gaussian IC

In this subsection, we prove Theorem 4. To this end, we
need to prove the achievaility and converse for the theorem.

Achievability part : Transmitter 1 sends a common message
to both receivers, while the first user’s signal is considered as
noise at both receivers. In this case, the rate

. P bP;
Ry = min {W (1—|—an) )Y <1—|—PQ)} (40)

is achievable. At Receiver 2, the signal from Transmitter 1
can be decoded and removed. Therefore, User 2 is left with
a channel without interference and it can communicate at its
maximum rate which is

Ry = v(P).

By adding (40) and (41), we obtain the desired result.

Converse part From Theorem 2, we know that the capaci
region of the Gaussian mixed IC is inside the intersection of
E, and E,. Hence, we can obtain two upper bounds on the
sum rate. By usingv;, we have

(41)

Fig.

Py
sum S P P . 42
G <270+ 7 (15p; (@2
By using E,, we have
Cgsum S Y (bPI + P2) ) (43)
which equivalently can be written as
bPy
< (P . 44
%sum_ry( 2)+7<1+P2) ( )

By taking the minimum of the right hand sides of (42) and

(44), we obtain
bP;
)Y 1+ P,

V. SIMULATION RESULTS

P
]. + an

%su'm S Y (PQ)—FHIIH {'Y (

This completes the proof.
(4]

In Figure 3, different bounds for the symmetric weak
Gaussian IC are plotted. As depicted in figures, the new out%f]
bound is tighter than previously known outer bounds.

Different bounds are compared for the mixed Gaussian 1C8]
for P, =7, P, =7, a = 04, andb = 1.5 in Figure 4.

As it can be seen and proved, the inner bound and the outer
bound coincide on a facet for this case. It is important td7]
note that, surprisingly, this facet is obtainable when the second

Fig. 4.
. (45) whenl+ Py > b+abPs andl —a < abP; (Case ll) forP, =7, P =7,
a = 0.4, andb = 1.5.

Kramer’s Outer Bound

1.5

New Outer Bound
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3.  Comparison between different bounds for the symmetric weak

t)SSaussian IC wherP = 7 anda = 0.2
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Comparison between different bounds for the mixed Gaussian IC
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