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Abstract—In this paper, a two-hop network in which the infor-
mation is transmitted from a source via a relay to a destination is
considered. It is assumed that both channels are quasi-static fad-
ing and all nodes are equipped with a single antenna. The knowl-
edge of the channel for each transmission hop is only available
at the corresponding receiver. The relay is assumed to be simple,
i.e., not capable of data buffering over multiple coding blocks or
rescheduling tasks. Considering a continuum of multilevel codes
at both of the source and the relay, in conjunction with decode
and forward strategy, we present a scheme to optimally allocate
the available source and relay powers to different levels of their
multilevel codes. Assuming Rayleigh fading, the performance of
this scheme is also evaluated and compared with the previously
known strategies.

1. INTRODUCTION

The increasing demand for advanced broadcasting strategies and the
emergence of relay nodes motivate researchers to work on a new
class of problems which is very important both from the practical
and theoretical viewpoints [1, 2, 3]. For instance, transmitting over
slow fading channels without channel state information (CSI) at the
transmitter becomes an important problem in several applications
including TV broadcasting and satellite communications. A special
case of this question is to find the optimal transmission strategy for
a one-hop single-user network when no CSI is available at the trans-
mitter and the channel has slow fading characteristic.

To answer, in a pioneering work, Shamai has modeled this prob-
lem with a continuum of virtual receivers, each corresponding to a
specific realization of the channel gain [4]. Relying on the result-
ing degraded broadcast channel, reference [4] shows that a multi-
level coding achieves the capacity of the network. This scheme has
also been investigated for a Multiple Input Multiple Output (MIMO)
channels in [5]. Afterwards, A. Steiner et al, in [6], investigate the
performance of multilevel codes in a two-hop network where the link
between the source and the destination is extremely poor, and there-
fore, all data should be received via the relay node, Fig. 1. They have
studied some different transmission schemes, including Decode and
Forward (DF), Amplify and Forward (AF), and Quantize and For-
ward (QF).

As discussed in [6], due to high complexity of the infinite multi-
level DF codes, they have only considered a finite-level DF strate-
gies. Comparing the results in [6], it turn out that AF strategy out-
performs all other investigated transmission schemes, specifically in
high SNR regime. However, as concluded in [6], although AF has
the best performance among the other strategies, the optimality of
AF scheme is not implied. In fact, since the general infinite level
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DF broadcast strategy remains unsolved, there is always a question
of whether or not there exists any proper power assignment of DF
that can achieve a higher rate compared to AF.

The main motivation of this work is to answer to above question.
To this end, we propose a method to evaluate the optimal source
and relay power distribution functions when DF is applied as the
relaying mechanism. Numerical results are also presented and verify
that the proposed scheme outperforms the AF strategy discussed in
[6].

The organization of this paper is as follows: First, in section 2, we
review some related previous results on single-hop links and then the
multilevel transmission scheme is formulated for two-hop networks.
This formulation is used in section 3 to evaluate the optimal power
assignment for the multilevel decode and forward relaying. Next, in
section 4, the achievable rate of the proposed coding scheme is eval-
uated and compared with that of the other existing schemes. Finally,
section 5 concludes the paper.

2. MULTILEVEL CODE TRANSMISSION SCHEMES

To enhance the lucidity of the future sections, in this part, before
analyzing the two-hop network, we first review some previous re-
sults on single-hop networks. To this end, subsection 2.1 reviews
the original broadcasting strategy [4]. Then, in subsection 2.2, the
equivalent results is discussed for the case that the available data rate
for transmission is limited [6]. At the end, we describe and formulate
the multilevel coding scheme for the two-hop network configuration.

2.1. Single-Hop Broadcast Strategy

The optimum scheme for a single-hop link, in case that the trans-
mitter knows the fading power for each block, say l, is to design a
single-level code with the rate of log(1 + lP ) for that block. P de-
notes the normalized transmission power, i.e., the equivalent trans-
mission power if N0 = 1. Therefore, the average achievable rate for
this setup would be Rerg = El[log(1 + lP )] [7].

Although designing a single-level code is optimum in the above
scenario, it can not be applied for a transmitter which does not have
access to the channel state information. For this scenario, S. Shamai
have introduce a technique called broadcasting strategy [4]. In this
technique, the transmitter sends the data through infinite levels of a
superposition code. Then, conditioned on the channel state, i.e., the
fading power, the receiver decodes up to a certain level of the code.
Therefore, the total receiving rate for each channel realization, say l,
can be evaluated as

R(l) =

Z l

0
dR(a), (1)

where dR(a) represents the differential rate transmitted over level
‘a’ of the code. Defining ρ(l)dl as the power assigned for the lth

level, dR(l) is given by

dR(l) = log(1 +
lρ(l)dl

1 + lI(l)
) '

lρ(l)dl

1 + lI(l)
, (2)



where I(l) =
R ∞

l
ρ(a)da. The aim is to find a ρ(l) such that the

average received data rate is maximized while the source power con-
straint holds. Thus, we have,

max
ρ(l)

Z ∞

0
dlf(l)R(l) (3)

s.t.

Z ∞

0
ρ(l) = P,

where f(l) shows the probability density function (pdf ) of the chan-
nel fading power and P represents the normalized total available
power at the transmitter.

This maximization problem has been studied and solved using
calculus of variations technique (see [4] for details of the proof).
Here, we only mention the final solution as

I∗(l) =

8<:
P l < l0
1−F (l)−lf(l)

l2f(l)
l0 < l < l1

0 l1 < l

, (4)

where F (l) =
R l

−∞ f(a)da. l0 and l1 are determined such that they
satisfy I∗(l0) = P and I∗(l1) = 0, respectively. Moreover, since
I(l) =

R ∞
l

ρ(a)da, the optimum power assignment, ρ∗(l), can also
be determined by ρ∗(l) = − dI∗(l)

dl
.

With this scheme, the rate that the transmitter feeds to the channel
is equal to

R∗
F =

Z ∞

0
dR∗(l), (5)

where dR∗(l) = lρ∗(l)dl
1+lI∗(l)

. Note that, this value is constant and only
depends on the fading power distribution and the transmitter power.
In other words, it does not depend on a specific channel realization.
The optimal average rate at the receiver can also be evaluated by

R∗
av =

Z ∞

l=0
dlf(l)R∗(l). (6)

2.2. Single-Hop Rate-Limited Broadcast Strategy

An interesting extension to the above original broadcast strategy is
designing a multilevel code for a source with available data rate lim-
ited to Rin. This limitation can be implied by the user traffic model
or packet dropping due to some network congestions.

This problem has been formulated in a similar way as in subsec-
tion 2.1, except it has one more condition on the total transmission
rate. Thus, the modified optimization problem will be

max
ρ(l)

Z ∞

0
dlf(l)R(l) (7)

s.t.

Z ∞

0
ρ(l)dl = P, and

Z ∞

0
dR(l) ≤ Rin,

where the second condition ensures that the total transmission rate
remains less than the available data rate at the source. This problem
can be solved using constrained calculus of variations and has been
previously addressed in [6]. Due to the limitation of space, we will
not bring the solution here and for more details we refer the readers
to the technical report version of this paper [8].

One important observation is that in the case of Rin ≥ R∗
F , the

above rate-limited problem will be simplified to the original problem
in subsection 2.1. Although this statement can be verified from the
equations, its intuitive explanation could be insightful. It is obvious
that if Rin tends to infinity, the rate condition is always satisfied and
therefore, (7) relaxes to (3). Besides, we know that in the original
problem (without rate limitation) to achieve the highest received data
rate, the source requires to feed the channel with a rate equal to R∗

F

Fig. 1. Two-hop Network Model

(5). Hence, it turns out that even though the available rate at the
source is more than R∗

F , the source needs to transmit only R∗
F bits

of information in each block. Thus, if Rin ≥ R∗
F , the solutions of

the two optimization problems of (3) and (7) are equal.

2.3. Two-hop Broadcasting Strategy

Let us first restate the two-hop network model. As Fig. 1 shows,
the destination can solely receive data via the relay and there is no
direct link between the source and the destination. It is assumed
that the source has no information about neither of the channels, the
relay knows only the channel between itself and the source, and the
destination only knows its channel gain to the relay. Moreover, we
assume that the source always has as much as data that it requires
and there is no constraint on the data rate. One transmission block
consists of two phases:

A. In the first phase, the source allocates its power among different
code levels with the power distribution function ρs(l). ρs(l)
should satisfy the power constraint

R ∞
0

ρs(a)da = Ps. Ps is
the total source power. Then, based on the source to the relay
fading channel power, say x, the relay is able to decode up to
the level x of the transmitted data. Thus, the relay received
data rate is

Rr(x) =

Z x

0
log

„
1 +

aρs(a)da

1 + aIs(a)

«
'

Z x

0

aρs(a)

1 + aIs(a)
da, (8)

where Is(a) =
R ∞

a
Ps(a)da.

B. In the second phase, the relay should transmit the data to the
destination. As noted earlier, in this work, we only focus on
simple relays which can neither buffer any of the previously
received data nor do any scheduling tasks. As a results, these
relays have two features which seem obvious but have impor-
tant effect on the code design. To illustrate, consider the pre-
vious example in which the relay succeeded to decode Rr(x)
bits of the transmitted data. It turns out that, firstly, the relay
can not transmit with the rate greater than Rr(x). Secondly,
if the relay transmits with the rate R2, R2 < Rr(x), the rest
of the data (Rr(x)− R2) can not be stored and should be dis-
carded. Consequently, after receiving the source data, the re-
lay should choose an optimum power distribution that satisfies
both the relay total power constraint (Pr) and at the same time,
does not require to transmit more than its received data rate in
that block (Rr(x)). Defining γ and ρr(l|γ = x) as the fading
power of the source-relay link, and the relay power distribution
of the code level l conditioned on γ = x, respectively, we can
summarize these conditions as

(a) Power constraint at the relay: ∀x ∈ γ :R ∞
0

ρr(a|γ = x)da = Pr .

(b) Available rate constraint at the relay: ∀x ∈ γ :R ∞
0

aρr(a|γ=x)da
1+aIr(a|γ=x)

≤ Rr(x), where Rr(x) is defined by
(8).

Clearly, the relay requires to know ρr(a|γ = x) for all possible
values of ‘γ’ in order that it can optimally assign its power
depending on different realizations of the first hop channel.



Transmitting the multilevel code on the relay to the destination
link, the destination is able to decode up to a certain level ‘y’.
Here, ‘y’ denotes the fading power of the second link. There-
fore, the received data rate at the destination can be written as

Rd(y|γ) =

yZ
0

log

„
1 +

aρr(a|γ)da

1 + aIr(a|γ)

«
'

yZ
0

aρr(a|γ)

1 + aIr(a|γ)
da. (9)

Similar to the single-hop scenario, we want to maximize the average
received data rate at the destination. Assuming fγ(x) and fµ(y) as
the probability density functions of the fading power in the source-
relay and relay-destination links, respectively, the average destina-
tion rate can be written as

E{Rd} = Eγ {Eµ{Rd (µ = y|γ = x)}} (10)

=

∞Z
0

∞Z
0

fγ(x)fµ(y)

yZ
0

aρr(a|γ = x)

1 + aIr(a|γ = x)
dadydx.

Therefore, we come up to the final optimization problem as follows

max
ρs(l), ρr(l|γ)

∞Z
0

∞Z
0

fγ(x)fµ(y)Rd(y|γ = x)dydx (11)

s.t.

Z ∞

0
ρs(a)da = Ps,

∀x ∈ γ :

Z ∞

0
ρr(a|γ = x)da = Pr,

∀x ∈ γ :

Z ∞

0

aρr(a|γ = x)da

1 + aIr(a|γ = x)
≤ Rr(x).

The above optimization problem has the same form of the one de-
rived in [6]. The only difference is in the rate limitation constraint,
i.e., the last constraint, which is written as an equality constraint in
[6]. In fact, we have relaxed the rate limitation constraint by letting
the relay to discard some of its received data if it wants to do so.

3. DESIGN OF THE TWO-HOP OPTIMAL MULTILEVEL
CODE

Unlike the two previous scenarios, the two-hop optimization prob-
lem (optimization problem in (11)) can not be directly solved by
variations methods. It is due to the fact that the constraint on the
second hop rate does not have a fixed value on the right side, i.e., it
does not have a form of isoperimetric problem. For complete discus-
sion on isoperimetric problem, refer to the reference [9].

Here, we choose an alternative approach. In fact, to find the solu-
tion, we first rearrange the problem as a two-step optimization prob-
lem. It should be noted that with this alternation, each of the sub-
problems can be solved by Euler-Lagrange method. For convenience
in presentation, let us denote ρr(a|γ = x) by ρr(a|Rr(x) = i),
where i =

R x

0

aρs(a)da
1+aIs(a)

. In other words, we represent the first
hop fading condition by the associated received data rate of the re-
lay for that channel state. Using this presentation and noting that
fγ(x) ≥ 0, ∀x, we can rewrite E{Rd} in (11) as the following

max E{Rd} = (12)

max
ρs(l)

∞Z
0

dxfγ(x)×

max
ρr(l|Rr(x))

∞Z
0

dyfµ(y)

yZ
0

aρr(a|Rr(x))

1 + aIr(a|Rr(x))
da,

where the outer maximization is subject toZ ∞

0
ρs(a)da = Ps, (13)

and the constraints of the inner problem are as follows

∀x ∈ γ :
∞R
0

ρr(a|Rr(x) = i)da = Pr, (14)

∀x ∈ γ :
∞R
0

aρr(a|Rr(x)=i)
1+aIr(a|Rr(x)=i)

da ≤ i. (15)

Given (12), we can now explain the procedure of finding the op-
timum ρs(l) and ρr(l).

3.1. Relay-Destination Link Optimization Problem

Receiving Rr(x) bits from the first hop, the aim of the relay is to
maximize the average received data rate received by the destination.
Note that, if the input rate changes, the relay should modify its power
distribution ρr(l), accordingly. However, the knowledge of the in-
put rate (Rr(x)), the relay total power, and the pdf of the second
hop fading power is sufficient for determining the optimum distri-
bution function, ρ∗r(l|Rr(x) = i). It is evident that the optimum
power distribution function, ρ∗r(l), can be completely determined
by evaluating the ρ∗r(l|Rr(x) = i) for all values of Rr(x). The
ρ∗r(l|Rr(x) = i), itself, is the solution of the following problem

h(i) = max
ρr(l|Rr(x)=i)

∞Z
0

dy fµ(y)

yZ
0

aρr(a|Rr(x) = i)da

1 + aIr(a|Rr(x) = i)
(16)

s.t.

Z ∞

0
ρr(a|Rr(x) = i)da = Pr,Z ∞

0

aρr(a|Rr(x) = i)

1 + aIr(a|Rr(x) = i)
da ≤ i.

This problem can be solved in a similar fashion as in the rate-limited
broadcast strategy problem, subsection 2.2. Therefore, the optimum
solution is

I∗r (l|Rr(x) = i) =

8><>:
Pr l < l0
1−Fµ(l)+λ−lfµ(l)

fµ(l)l2
l0 < l < l1

0 l1 < l

, (17)

where Fµ(l) =
lR

−∞
fµ(a)da. l0 and l1 are determined as a function

of λ to satisfy I∗r (l0) = Pr and I∗r (l1) = 0, respectively. The
optimum multilevel power distribution at the relay can be found by
ρ∗r(l|Rr(x) = i) = − dI∗r (l|Rr(x)=i)

dl
. Finally, λ is computed to

satisfy

∞Z
0

aρr(a|Rr(x) = i)

1 + aIr(a|Rr(x) = i)
da = min(i, R∗

F ), (18)

where R∗
F is defined by (5). This condition comes from the fact that

achieving the maximum average rate at the destination requires the
relay not to transmit more than R∗

F bits (refer to the discussion in
the end of subsection 2.2).

As an example, we have solved (16) for a network in which
the second hop can be modeled as a Rayleigh fading channel, i.e.,
Fµ(x) = 1− e−x. Fig. 2 shows the maximum average received rate
at the destination, h∗(i), for different relay input rates (i = Rr(x))
and different relay powers (Pr).



Fig. 2. Maximum Average Received Rate at the Destination

3.2. Source-Relay Link Optimization Problem

Knowing the optimum value for the inner integration, h∗(Rr(x)),
(12) can be written as follows

E{Rd} = max
ρs(l)

∞Z
0

dx fγ(x)h∗(Rr(x)) (19)

s.t.

∞Z
0

ρs(a)da = Ps,

where

Rr(x) =

8><>:
0 x < l0R x

l0

aρs(a)
1+aIs(a)

da l0 < x < l1R l1
l0

aρs(a)
1+aIs(a)

da l1 < x

, (20)

and Is(l) =
∞R
l

ρs(a)da. l0 and l1 satisfy Is(l0) = Ps and Is(l1) = 0,

respectively. Moreover, since ρs(l) = −I ′s(l), we can define the in-
tegrand in (19) as G(l, Is, I′s) = fγ(l)h∗(Rr(l, Is, I′s)). With this no-
tation, (19) takes the form of a fixed end-point calculus of variations
problem and can be solved using Euler-Lagrange equation, [10]:

ζ = GIs −
∂GI′s

∂l
= 0, (21)

where GIs = ∂G
∂Rr

∂Rr
∂Is

, GI′s = ∂G
∂Rr

∂Rr
∂I′s

, and
∂GI′s

∂l
is the partial

derivative of GI′s with respect to l. For details of the math please
refer to [8].

As an example, in the scenario where both source-relay and relay-
destination links are modeled with a Rayleigh fading channel, i.e.,
Fγ(l) = Fµ(l) = 1− e−l, (21) can be simplified to

ζ(l, Is, I′s) = h∗
′
(i)

»Z l

0

1− a− a2Is(a)

(1 + aIs(a))2
da

–
(22)

−h∗
′′
(i)

»
−lI′s(l)

1 + lIs(l)

Z l

0

−a

1 + aIs(a)
da

–
= 0,

where i = Rr(l, Is, I
′
s).

As can be observed, the solution depends on the first and second
derivatives of the optimal achievable rate of the second hop, h∗(i).
These functions can be evaluated numerically using the results of
subsection 3.1.

To find the optimal source power distribution (ρ∗s(l)), using nu-
merical methods, we first replace Is by [Is(1), Is(2), ..., Is(N)],
corresponding to the amount of interference in each level. 1 Is(m)’s

1In fact, we have approximated a continuous variable Is(l) with a discrete
N -level function, which becomes precise as N tends to infinity.

Fig. 3. Interference Profile of the Source Multilevel Code

are in descending order, such that Is(1) = Ps and Is(N) = 0. Then,
we have a nonlinear system of N equations, i.e., ζ(m, Is, I

′
s) =

0, m = {1, 2, ..., N} which can be solved numerically. The final
solution for these N variables shows the (approximately) optimal in-
terference function, I∗s (l). As an example, Fig. 3 presents I∗s (l) in
the case of Rayleigh fading model for both hops and Ps = Pr =

20dB. Having I∗s (l), evaluating −dI∗s (l)

dl
is sufficient in order to

find the amount of power that should be assigned to each code level,
ρ∗s(l).

As a summary, assuming that the relay will allocate power opti-
mally, i.e., h(i) = h∗(i), first, the source determines its power dis-
tribution function such that it maximizes (19) (as described in sub-
section 3.2). Using this optimal power distribution function (ρ∗s(l)),
the source transmits the data to the relay. Depending on the source-
relay channel realization, the relay successfully decodes the rate of
Rr(x). Then, conditioned on the available data rate limitation, the
relay chooses the optimum ρ∗r(l) such that it maximizes the average
received data rate at the destination, ( subsection 3.1).

4. NETWORK PERFORMANCE ANALYSIS

In the previous section, we have determined how the source and relay
should distribute their available power through different levels of a
multilevel code. To analyze the results, in this section, we compare
the performance of the proposed scheme with an upper-bound and
two other achievable rates proposed in [6] and briefly explained in
the following.

A. Broadcasting Cutset Bound, Ccutset :
This bound simply says that the achievable average data rate
of a two-hop network can not exceed the achievable average
rate of any of the single-hop links, i.e., the source-relay and the
relay-destination links. Therefore, this bound can be written as

Rcutset = min

»Z ∞

0
da fγ(a)R1(a),

Z ∞

0
da fµ(a)R2(a)

–
, (23)

where R1(a) (R2(a)) denotes the rate that the relay (destina-
tion) can successfully decode when the source (relay) transmits
over a channel with the fading power equal to ‘a’.

B. Amplify and Forward, AF:
This is the achievable rate of a two-hop network in which the
relay performs the amplify and forward (AF) on the received
source signal. To design the optimum multilevel power distri-
bution, first, the total equivalent channel should be evaluated.
In other words, the source-relay and relay-destination channels
combined with AF relaying can be modeled as one channel
with a new probability density function. Having this new pdf



Fig. 4. Average Destination Rate Ps=20dB, Pr=20 - 32

the optimum power distribution can be evaluated. Details of
the proof can be found in [6]. The final result can be written as

RAF =

Z x1

x0

dx

"
2(1− Fsb (x))

x
+

(1− Fsb (x))f ′sb
(x)

fsb (x)

#
, (24)

where Iopt(x0) = Ps, Iopt(x1) = 0 and

Fsb (x) = 1−
Z ∞

Ps
Pr

x
dxr e

−xr−
x(1+Prxr)
xrPr−xPs , (25)

and fsb(x) = d
dx

Fsb(x). Iopt(x) is also evaluated in [6].
C. Outage At Source, Broadcasting At Relay, DF1−bs:

This scheme is another suboptimal strategy that has been stud-
ied in [6]. In this case, the source uses a one-level code, known
as the outage approach, and the relay uses the optimal multi-
level code. Clearly, this approach is a special case of the the
proposed scheme. The achievable average rate of this scheme
can be computed by

RDF,1−bs = (26)

max
ss,Ir(y|γ=ss)

(1− Fγ(ss))
∞R
0

da(1− Fµ(a))
aρr(a)

1+aIr(a)

s.t.
∞R
0

uρr(u)du
1+uIr(u)

= log(1 + Psss).

Figures (4) and (5) represent the average received data rate at the
destination versus the relay power Pr for the proposed scheme, as
well as the AF and DF1−bs schemes, when Ps = 20dB and Ps =
30dB, respectively. The upper-bound, Ccutset, is also depicted in
both figures.

As seen in the figures, the proposed DF strategy outperforms the
AF and DF1−bs approaches. Note that, the superiority of the pro-
posed scheme over DF1−bs is obvious since it uses an optimal mul-
tilevel code at the source while DF1−bs uses only one level of code.
In fact, as mentioned before, DF1−bs is a special case of the pro-
posed scheme and hence, its performance is always below the per-
formance of our scheme. The important observation in these figures
is that the infinite multilevel DF strategy is superior to the AF strat-
egy, which was previously the best known scheme for this setup at
high SNR [6]. As a final remark, note that the proposed scheme can
be implemented with low complexity as well. It is due to the possi-
bility of offline computation of the optimum power assignments for
different received relay rates, which can be stored as a look-up table.
Then, during the network operations, corresponding to the relay re-
ceived data rate, the relay can reload the optimum multilevel power
assignment and use it in the second hop code design.

Fig. 5. Average Destination Rate Ps=30dB, Pr=30 - 42

5. CONCLUSION

In this paper, a two-hop network in which the data is transmitted
from the source node via a single relay to a destination node is con-
sidered. It is assumed that the knowledge of the channel for each
transmission hop is only available at the corresponding receiver. For
this network setup and assuming Decode and Forward (DF) strat-
egy at the relay, we have proposed a multilevel coding scheme at
the source and the relay which achieves the maximum average re-
ceived data rate at the destination. This problem had been remained
unsolved before, due to its high complexity. Moreover, it is demon-
strated that the DF multilevel coding scheme outperforms the Am-
plify and Forward (AF) scheme, which was previously the best
known scheme at the high SNR.
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