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Abstract— In this paper, the theoretical limits on the asymp-
totic performance of joint source-channel coding over MIMO
fading channels are investigated. Similar to the concept of
Diversity-Multiplexing Tradeoff (DMT) in Digital MIMO sys-
tems, a new measure for the asymptotic high-SNR performance
of MIMO source-channel codes is introduced, which is called
Diversity-Fidelity Tradeoff, and the optimal tradeoff is charac-
terized. Also, the problem of constructing robust MIMO source-
channel codes, which are not sensitive to the knowledge of the
SNR, is investigated and a semi-robust scheme is proposed.

I. INTRODUCTION

In many applications, such as voice and multimedia
transmission in cellular and wireless LAN environments,
transmission of analog sources over wireless channels is
needed. Results of the research in the past decade shows that
using multiple-antenna systems can substantially improve the
rate and the reliability of communication in wireless fading
environments. However, until now, most of the research
has been focused on the transmission of digital data over
multiple-input multiple-output (MIMO) channels, not the
transmission of analog sources.

For the simpler case of Gaussian channel, without consid-
ering the delay limitations, Shannon’s source-channel cod-
ing separation theorem ensures the optimality of separately
designing source and channel codes. However, for the case
of a limited delay, even for the Gaussian channel, several
articles have shown that joint source-channel codes have
a better performance, compared to the separately designed
source and channel codes (which are called tandem codes).
Thus, designing efficient joint source-channel codes is a key
solution for the transmission of analog sources.

Although in recent years there has been a colossal amount
of research in MIMO communications, the research on
MIMO joint source-channel coding is still in its early
stages. In [1] and [2] some digital and hybrid digital-analog
techniques are examined for joint source-channel coding
over MIMO channels, and some bounds on the asymptotic
exponents of the average distortion are presented. However,
the asymptotic exponents of the average distortion is not
a good measure for the performance evaluation of joint
source-channel coding schemes in fading environments. The
reason is that the average distortion is dominated by rare
cases of very bad channels. In these environments, it is

more informative to analyze the probability that distortion is
greater than a certain level, instead of averaging very large
unusual distortions.

Unlike [1] and [2] which are focused on analyzing the
asymptotic exponents of the average distortion, here, we
analyze the asymptotic exponents of the probability of having
a large distortion. This measure, which we call diversity-
fidelity tradeoff, can be seen as an analog version of the
well-known diversity-multiplexing tradeoff which is proved
to be very useful in evaluating various digital space-time
coding schemes.

Another concern of this paper is to design robust or semi-
robust source-channel codes for MIMO fading channels. It
is known that digital joint source-channel coding is very
sensitive to the mismatch in the estimation of the channel
signal-to-noise ratio (SNR). In many cases the exact signal-
to-noise ratio is not known at the transmitter, and may
vary over a large range of values. Two examples of this
scenario are transmitting an analog source over a quasi-
static fading channel and/or multicasting it to different users
(with different channel gains). Therefore, for these kinds
of applications, it is very important to have a joint source-
channel scheme which is robust for a wide range of SNR.

To avoid the saturation effect of digital coding, hybrid
digital-analog codes are proposed in the past. Although these
codes can provide asymptotic gains (for high SNR) over the
simple repetition code, they suffer from a threshold effect.
Indeed, when the SNR becomes less than a certain thresh-
old, the performance of these systems degrades severely.
Therefore, the parameters of these methods should be chosen
according to the operating SNR, hence, these methods are
still very sensitive to the errors in the estimation of SNR.
Also, although the performance of the system is not saturated
for the high SNR (unlike digital codes), the scaling of the
end-to-end distortion is far from the theoretical bounds.

In [3], for the case of Gaussian channel, a joint source-
channel coding scheme is introduced which has a robust
performance over the entire range of SNR. Unlike the previ-
ous methods, the method asymptotically achieves the optimal
scaling of the signal-to-distortion-ratio (SDR) without being
affected by the threshold effect. In this paper we generalize
the idea of this scheme for the case of MIMO channels to
construct semi-robust joint source-channel codes for point-



to-point MIMO systems.

II. SYSTEM MODEL

We consider a communication system where an analog
source of Gaussian independent samples with variance σ2

s

is to be transmitted over a (Nt, Nr) block fading MIMO
channel where Nt and Nr are the number of transmit and
receive antennas respectively. Every m samples of the source
stacked in a vector xs are transmitted over n channel uses.
The channel matrix H is assumed fixed during this period
and changes independently for the next n channel uses. We
call the ratio η = n

m the expansion/contraction factor of the
system. In a general setting, the communication strategy con-
sists of source/channel coding and source/channel decoding.
As a result of source channel coding, xs is mapped into a
Nt×n space-time matrix X which in turn is received at the
receiver side as an Nr × n matrix Y where

Y =
√

SNR
Nt

HX + W

in which SNR is the average signal to noise ratio at each
receive antenna, and W is the additive noise matrix at the
receiver whose entries are taken to be CN (0, 1). At the
receiver side, the source/channel decoder yields an estimation
of xs out of Y as x̂s. For a specific channel realization H,
the distortion measure is

D(H) = Exs{‖xs − x̂s‖2|H}. (1)

For any specific strategy, we define the f−fidelity event as
A(f) = {H : D(H) > SNR−f} and we call f the fidelity
exponent. For specific values of η, Nt and Nr, we define:

d(f) = lim
SNR→∞

− log Pr{A(f)}
log SNR

(2)

We call d(f) the diversity, and denote its maximum (over
all possible source-channel coding schemes) as d∗(f).

III. DIVERSITY-FIDELITY TRADEOFF

In this section, we characterize the tradeoff between the
fidelity exponent f and the optimum diversity d∗(f).

A. Upper bound on d(f)
We recall from [4] that if we denote the eigenvalues of

HHH by λi, setting αi = − log λi

log SNR , we have1:

p(−→α ) .= SNR−
∑

(2i−1+|Nt−Nr|)αi . (3)

On the other hand, in a system of tandem coder, i.e.,
separate source coder and channel coder, we have:

Pr{error|H} ≤ SNR−n[
∑

(1−αi)
+−r] (4)

where R = r log SNR is the transmission rate over the
channel, i.e., R = log M

n , and M is the number of quantized
points in the output of the source coder.

1In this paper, we use a
.
= b to denote that a and b are asymptotically

equivalent.

To get an upper bound on d(f), we consider the case of
delay unlimited where m,n →∞ and n

m = η is a constant.
Also, we assume that the transmitter has perfect knowledge
of the channel matrix H , and therefore, one may talk about
the capacity of this MIMO channel which is given by [4]:

R = sup
Σ:tr(Σ)≤m

log det(I +
SNR
m

HΣHH) (5)

≤ log det(I + SNRHHH). (6)

We know that the source rate is Rs = ηR. On the
other hand, the Distortion-Rate function of the source is
D(Rs;H) = e−2Rs . Therefore:

D(Rs;H) ≥ 1
det(I + SNRHHH)2η

. (7)

Let us denote the f -fidelity event as A∞(f) here. Thus,
we obtain:

Pr{A∞(f)} = Pr{D(Rs; H) > f} ≥ (8)

Pr{ 1
det(I + SNRHHH)2η

> SNR−f} (9)

which can be written as:

Pr{A∞(f)} ≥ Pr{
i=n∏

i=1

(1 + SNRλi) < SNR
f
2η }

.= Pr{
∑

i

(1− αi)+ <
f

2η
}. (10)

As a result, based on (3) and (10), we get:

Pr{A∞(f)} ≥
∫
−→α∈∆

SNR−
∑

(2i−1+|Nt−Nr|)αid−→α (11)

where ∆ = {−→α :
∑

i(1 − αi)+ < f
2η}. Based on [4], we

have:

∫
−→α∈∆

SNR−
∑

(2i−1+|Nt−Nr|)αid−→α = SNR−dub(f) (12)

where dub(f) = min−→α∈∆

∑
(2i−1+ |Nt−Nr|)αi. Accord-

ing to the results in [4], for integer values of f
2η , this can be

calculated as:

dub(f) = (Nt − f

2η
)(Nr − f

2η
). (13)

Clearly, if we let Pr{A∞(f)} .= SNR−d∞(f), we have
d∞(f) ≤ dub(f). Consequently, dub(f) is an upper bound
on d(f).



B. Achievability of the optimal tradeoff

We show that for any given bandwidth expansion η = n
m ,

the upper bound for d∗(f) is tight and it can be achieved
by a family of delay-limited digital space-time codes {Ck}.
We map mN2

t samples of the source to an nN2
t -dimensional

vector s = [s1...snN2
t
]T, and construct the MIMO codeword

by using n consecutive Nt ×Nt space-time matrices {Ck},
chosen from a DMT-achieving family of digital codes (for
example, space-time code with the non-vanishing determi-
nant property, e.g. Perfect Codes [5] [6] [7]).

For the modulating signal xs = (x1, ..., xmN2
t
), consider

xi + 1
2 =

(
0.bi,1bi,2bi,3...

)
2
. Let b′

i+(j−1)mN2
t

= bi,j . For the
code Ck, we construct s1, s2, ..., sN (where N = nN2

t ) as

s1 =
(
0.b′1b

′
N+1b

′
2N+1...b

′
(k−1)N+1

)
2
, (14)

s2 =
(
0.b′2b

′
N+2b

′
2N+2...b

′
(k−1)N+2

)
2
, (15)

...

sN =
(
0.b′Nb′2Nb′3N ...b′kN

)
2
, (16)

Theorem 1 For the proposed family of codes, if we use Ck

for 2−(k−1)Nt > SNR−
f
2η ≥ 2−kNt ,

d(f) = (Nt − f

2η
)(Nr − f

2η
)

for integer values of f
2η .

Proof: Because the family of codes Ck are obtained from
a lattice with non-vanishing determinant property, using ML
decoding, they achieve the optimal diversity-multiplexing
tradeoff. Thus, for this family of codes,

Perror(r)
.= SNR−(Nt−r)(Nr−r) (17)

for integer values of r, the normalized rate (r = R
log SNR ).

In this scheme, code Ck has rate Rk = kNt and is used for
2−(k−1)Nt > SNR−

f
2η ≥ 2−kNt . Therefore, r

.= f
2η , hence,

Perror(r)
.= SNR−(Nt− f

2η )(Nr− f
2η ). (18)

When there is no error in decoding Ck, the kN =
knN2

t bits b′1, ..., b
′
kN are decoded correctly, hence the first

bk n
mN2

t c = bkNηc bits of xi can be reconstructed without
error (for 1 ≤ i ≤ m), hence D

.= 2−2kNη .= SNR−f .
Therefore,

Pr
{

D > SNR−f
}
≤ Perror(r)

.= SNR−(Nt− f
2η )(Nr− f

2η ) (19)

=⇒ d(f) ≥ (Nt − f

2η
)(Nr − f

2η
). (20)
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Fig. 1. Diversity-Fidelity Tradeoff for different numbers of antennas and
different bandwidth expansion factors

IV. ROBUST SPACE-TIME SOURCE-CHANNEL CODING

In the scheme presented in the previous section, for the
achievability of the optimal tradeoff, different codes should
be used for different values of distortion D and the channel
SNR.

In this section, we consider the problem of designing
robust or semi-robust codes which can work for the entire
range of SNR.

The simplest non-trivial case is the case two transmit
antennas and one receive antenna. In this special case, using
Alamouti scheme at the transmitter and simple Alamouti
decoding (which is equivalent to zero forcing) can easily
separate the encoded symbols. Indeed, for the case of η = 1
and a Gaussian source, the Alamouti scheme is optimum,
not only in SDR scaling, but in achieving the exact optimal
performance.

Theorem 2 Consider a 2× 1 MIMO system and the band-
width expansion η = 1 a Gaussian i.i.d source xi. If we send
the Alamouti scheme to send consecutive source samples
x1, x2 over two consecutive channel uses, and use the
Alamouti detection (zero forcing) at the transmitter, for any
noise variance σz , the resulting distortion is the minimum
possible distortion.

Proof: Let H = [h1 h2] be the channel matrix. When
we do not have the channel state information (CSI) at
the transmitter, the best power allocation scheme at the
transmitter is to assign equal power to the transmit antennas.
In this case, for any realization of the channel, the capacity
of the 2× 1 channel is equal to [8]

C(H) =
1
2

log det
(
I2 +

SNR

2
HI2HH

)

= log
(

1 +
SNR

2
(|h1|2 + |h2|2

))
. (21)



If the source has i.i.d. Gaussian distribution, according to
the rate-distortion function of the Gaussian source,

Dmin =
2

SNR (|h1|2 + |h2|2) . (22)

On the other hand, if we send the analog source samples
directly by using the Alamouti scheme,

Y =

√
SNR

2
HX + W = [h1 h2]

[
x1 x2

−x∗2 x∗1

]
+ [w1 w2]

(23)

=⇒ [y1 y∗2 ] =

√
SNR

2
[x1 x2]

[
h1 h2

h∗2 −h∗1

]
+ [w1 w∗2 ]

(24)
By using the Alamouti decoding (which is equivalent to

zero forcing), the received signal is equal to:

[x̃1x̃2] = [x1 x2] +

√
2

SNR
[w1 w∗2 ]

[
h1 h2

h∗2 −h∗1

]−1

(25)

=⇒ DAlamouti =
2

SNR (|h1|2 + |h2|2) = Dmin. (26)

¥
For other cases of η 6= 1 using the bandwidth expansion

mappings in [3] can achieve the optimal tradeoff. However,
for other configurations of MIMO system, no optimum
symbol-separating scheme such as the Alamouti scheme
(which can work with analog symbols) is known.

Here we propose a semi-robust coding scheme that
achieves a diversity order, larger than 1 (better than the trivial
linear SISO code or MMSE-decoded V-BLAST). We map
mkNt samples of the source to an nkNt-dimensional vector
s = [s1...snkNt ]

T (for an inter k, 1 ≤ k ≤ Nt), using a robust
point-to-point joint source-channel code, and construct the
MIMO codeword by setting C =

(
LN2

t ×kNt
⊗ In

)
s (where

LN2
t ×kNt

is the generator of a lattice space-time code with
non-vanishing determinant property) and mapping it to the
entries of n consecutive Nt × Nt space-time matrices. To
construct the point-to-point joint source-channel code for the
bandwidth expansion of η = nN2

t

mkNt
, we generalize the codes

presented in the [9] and [3]:
For the modulating signal xs = (x1, ..., xmkNt), consider

xi + 1
2 =

(
0.bi,1bi,2bi,3...

)
2
. Let b′i+(j−1)mkNt

= bi,j (for
1 ≤ i < mkNt). We construct s1, s2, ..., sN (where N =
nkNt) as

s1 =
(
0.b10bN(N+1)

2 +1
bN(N+1)

2 +2
...

)
2

s2 =
(
0.b2b30b (N+1)(N+2)

2 +1
b (N+1)(N+2)

2 +2
...

)
2

...
...

sN =
(
0.bN(N−1)

2 +1
bN(N−1)

2 +2
...bN(N+1)

2
0...

)
2

(27)

The resulting code C can be seen as successively refining
space-time code with infinite layers of refinement.

At the receiver, we use simple linear decoding to sep-
arate s1, s2, ..., sN and decode them separately. To ana-
lyze the Diversity-fidelity tradeoff of this single mapping,
we first lower bound the probability that the received ef-
fective noise (after zero forcing) becomes large. The re-
ceived signal (over nNt channel uses and Nr receive an-
tennas) can be represented as a nNrNt × 1 vector y =
(H⊗ InNt

)
(
LN2

t ×kNt
⊗ In

)
s+ wnNtNr

where wnNtNr
is

the vector representation for the Gaussian noise in nNt

channel uses. At the receiver, we can multiply the pseudoin-
verse of the matrix (H⊗ InNt)

(
LN2

t×kNt
⊗ In

)
to find an

estimate of s1, s2, ..., sN .

Lemma 1 Consider LN2
t×kNt

as generator of an Nt ×Nt

lattice code (with dimension kNt) with non-vanishing de-
terminant property. The probability that the amplitude of
effective received noise is larger ε is upper bounded by

Pr
{
|w′|2 ≥ 1

ε

}
< cε(Nt−k+1)(Nr−k+1) (28)

for some constant c.

Sketch of the proof: After multiplying by the pseudoinverse
of the equivalent channel matrix,

w′ =
(
(H⊗ InNt)

(
LN2

t ×kNt
⊗ In

))+

w.

The probability that |w′|2 ≥ 1
ε can be bounded by

the summation of the probability the Frobenius norm of
(H⊗ INt)LN2

t×kNt
is greater than c1

ε2 for a constant c1 and
the probability that |w|2 is larger than 1

c1
. we can choose c1

such that the first term of the summation becomes dominant.
Now, by using the non-vanishing-determinant property of
L and the fact that the entries of H have independent
Gaussian distributions, we can bound the second term by
c2ε

(Nt−k+1)(Nr−k+1), for some constant c2. ¥

Theorem 3 If we use the proposed scheme, consisting of the
SISO source-channel code (27) and a Nt × Nt space-time
code of rate k (constructed by a lattice generator LN2

t ×kNt

for an integer k, 1 ≤ k ≤ min {Nt, Nr} ) with non-vanishing
determinant property, and use zero forcing at the receiver, the
diversity-fidelity tradeoff of the scheme is lower bounded by

d(f) ≥ (Nt − k + 1)(Nr − k + 1)−
(Nt − k + 1)(Nr − k + 1)

k

f

2η
. (29)

Sketch of the proof: Because the bits of the source symbols
are almost uniformly distributed among s1, s2, ..., sN , to
have D > SNR−f , at the decoder, at least one of the
modulated symbols si must see a noise larger than SNR−

f
2η



and for that, we should have |w′|2 ≥ SNR × SNR−
f
2η =

SNR1− f
2η . Now, using the result of lemma 1 and the

definition of d(f),

d(f) ≥ (Nt − k + 1)(Nr − k + 1)−
(Nt − k + 1)(Nr − k + 1)

k

f

2η
.

¥

V. CONCLUSIONS

Similar to the diversity-multiplexing tradeoff which is
well known for the high-SNR asymptotic performance of
space-time codes, diversity-fidelity tradeoff can be used as
a benchmark for evaluating various MIMO source-channel
codes. This tradeoff can be achieved by a simple modifi-
cation of the well-known DMT-achieving codes. However,
though the optimum tradeoff can be achieved for different
numbers of antennas and arbitrary bandwidth expansion
factors, this well-known approach is not robust (design of
the codes depend on the SNR of the channel). In this paper,
a semi-robust MIMO source-channel scheme is proposed
that achieves nontrivial diversity and fidelity exponents for
different numbers of antennas. However, the semi-robust
scheme that is presented in this paper only achieves the
optimum tradeoff for Nr = 1 or Nt = 1 and in the
general case of Nr > 1 and Nt > 1, its tradeoff curve
is suboptimum. Therefore, the problem of achieving the
optimum diversity-fidelity tradeoff by practical and robust
codes remains open.
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