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Abstract—This paper studies the setup of a multiple-relay ~ While AF relaying is investigated well in the cooperative
network in which K half-duplex multiple-antenna relays assist = sjngle-antenna networks, much is unknown about its poten-
in the transmission between a/several multiple-antenna soce(s) g for the multiple-antenna counterpart. Indeed, unlike
and a multiple-antenna destination. Each two nodes are as- _. L : L
sumed to be either connected through a quasi-static Rayleig smgl_e-antenna scenario, in this case.the_ AF multlphees ar
fading ChanneL or disconnected. This paper is Comprised of matrices I‘ather than ScalarS. Hence, f|nd|ng the Optlmum AF
two parts. In this part of the paper, we study multiple-antenna matrices becomes challenging.
multiple-relay network. We prove that the Random Sequential A fundamental measure to evaluate the performance of
(RS) scheme proposed in [1], [2] achieves the maximum divét¥ e existing cooperative diversity schemes is the diversit
gain in a general multiple-antenna multiple-relay network. . . . .

Moreover, we show that utilizing independent random unitary multiplexing tra(_jeoff (DMT) which yvas f'rSt, introduced I_oy
matrix multiplication at the relay nodes enables the RS schme Zheng and Tse in the context of point-to-point MIMO fading
to achieve better diversity-multiplexing tradeoff (DMT) results channels [14]. Roughly speaking, the diversity-multijihex
comparing with the traditional amplify-and-forward relay ing. tradeoff identifies the optimal compromise between the

Indeed, using the RS scheme, we derive a new a(_:hievable DMT“transmission reliability” and the“data rate” in the hi@NR
for the MIMO parallel relay network. Interestingly, it turn s out

that the DMT of the RS scheme is optimum for the MIMO half-  f€9/Me. .

duplex parallel 2-relay (KX = 2) setup. Finally, we show that  The non-orthogonal amplify-and-forward (NAF) scheme,
utilizing random unitary matrix multiplication also impro ves first proposed by Nabaat al.in [15], has been further studied
the DMT of the Non-Orthogonal amplify-and-forward relaying by Azarianat al. in [3] for the single-antenna multiple-relay
scheme of [3] in the MIMO single relay channel. setup. In addition to analyzing the DMT of the NAF scheme,
reference [3] shows that NAF is the best in the class of AF
strategies for single-antenna single-relay systems.

Recently, cooperative schemes and protocols have beeRRecently, Yang and Belfiore in [11] study the DMT
proposed as candidates to exploit the spatial diversity qferformance of the NAF scheme for the multiple-antenna
fered by the relay networks (for example, see [3]-[7]parallel relay setup. Moreover, based on the non-vanishing
Decode-and-ForwardDF), Amplify-and-Forward(AF) and determinant criterion, the authors construct a family afcgp
Compress-and-ForwarCF) relaying are the main relayingtime code for the NAF scheme over MIMO setup. However,
strategies utilized in the proposed relaying schemes. &héls shown in [11], the NAF scheme falls far from the DMT
DF and CF strategies are utilized in small-scale networkpper-bound in the multiple-antenna setup specially falkm
to obtain capacity results (for example, see [8]-[10]), thealues of multiplexing gain. Indeed, even for the case of
AF relaying turns out to be more suitable to exploit th&1IMO 2-hop single-relay setup, the NAF scheme is unable
cooperative diversity (for example, see [3], [4], [6], [L1] to achieve the maximum diversity gain of the system.

In AF relaying, the relays are not supposed to decodeYukselet al.in [5] apply compress-and-forward (CF) strat-
the transmitted message. Hence, the relays consume keggand show that CF achieves the DMT upper-bound for the
computing power and the end-to-end system expends mumbltiple-antenna half-duplex single-relay system. Hogrgv
smaller amount of delay comparing with the other relayn their proposed scheme, the relay node needs to know the
ing strategies. Accordingly, AF relaying schemes are mo@SI of all the channels in the network which may not be
suitable for the practical situations. Moreover, agaire t practical.

DF relaying, the AF relaying performance is not limited In this paper, we investigate the potential benefits
by the source-to-relay channel quality while, unlike thef amplify-and-forward relaying in the multiple-antenna
CF relaying, the parallel relays can yet exploit the powenultiple-relay networks. For this purpose, we study the
boosting advantage by coherently forwarding their reckiveandom sequential scheme proposed in [1], [2]. The key
signals to the destination. Hence, they can asymptoticalements of the proposed scheme are: 1) signal transmission
perform optimal in large scale parallel networks (see [7fhrough sequential paths in the network, 2) path timing such
[12], [13]). that no non-causal interference is caused from the source
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of the future paths on the receiver of the current path, @hereS is a cut-set onG™.
multiplication by a random unitary matrix at each relay node
and 4) no signal boosting in amplify-and-forward relayin%Ou

at the relay nodes, i.e. the received signal is amplified by : s .
coefficient with the absolute value of at most 1. We prove th 2] Now, we prove that this bound is indeed achievable by

: : ) . ; o RS scheme. First, we provide the path sequence needed to

this scheme achieves the maximum diversity gain in a generar . : . . . : -
: : achieve the maximum diversity gain. Consider the gréph

multiple-antenna multiple-relay network. Furthermoreg w

derive the DMT of the RS scheme for multiple-antenn V. I, w) with the same set of vertices and edges as the graph

multiple-relay network. To accomplish this problem, wetfirs a”‘?' the vr\]/elght fgnctlow;; on tf:e ques AB{a,b} T Na]\;’]"
study the full-duplex multiple-antenna 2-hop network with COnsider the maximum-flow algorithm [16] o from the

single relay. We show that against the traditional AF reigyi SCUrce node) to the sink nodek” + 1. Since the weight
falnctlon is integer over the edges, according to the Ford-

the RS scheme can achieve the optimum DMT. IndeeF Ik h 16 hi h . fq
using the traditional AF relaying, there exists a chance thad/Kerson Theorem [16], one can achieve the maximum flow
ich is equal to the minimum cut @f or d¢ by the union of

the eigenvectors corresponding to the large eignenvaIUes\"ﬁy ¢ ¢ oath
the incoming channel matrix of the relay projects to th&€ments of a sequen¢e,.ps, ... . pu.) of paths = dc).

eigenvectors corresponding to the small eignenvalueseof e show that th|s fa_1m||y of paths are sufficient to achieve
I%e maximum diversity.

relay’s outgoing channel matrix. This event degrades t Noting that th ved sianal h node i ltinlied
performance of traditional AF relaying in the MIMO setup oting that the received signal at each node is multiplie

However, in the RS scheme, utilizing the random unita&y a rar_1dom_ isotropically distributed unitary matrix, ae th
matrix multiplication at the relay nodes for different time estination side we have
slots, such an event is much more unlikely to happen. Thigs 11, = Hr1,5,0,—1)%i,1,—1 Ui, —1Hp, 1,-1) p, (1,-2) ¥
fact will be elaborated more throughout the paper. Next, we
study the MIMO parallel haIf-dupI(gex relay ngtvf/)ork and byoﬁ’li_QIL"“_2 @i Ui Hyp, 0%, + in’jxo’j+
deriving the DMT, we show that the RS scheme improves the =
DMT of the traditional AF relaying schemes. Interestingy, Z Qi.jmMjm- )
turns out that the DMT of the RS scheme is optimum for the=<#m=l;
MIMO half-duplex parallel 2-relay K = 2) setup. Finally, Here,x ; is the vector transmitted at the source side during
we show that utilizing random unitary matrix multiplicatio the s; ;’th slot as the input for the'th path, y ki, is the
also improves the DMT of the Non-Orthogonal amplify-andvector received at the destination side during ¢hg’th slot
forward relaying scheme of [3] in the MIMO single half-as the output fof'th path,U; ; denotes the multiplied unitary
duplex relay channel. matrix at thep; (j)'th node of theith path,X; ; is the inter-

For description of the system model and the RS schenietence matrix which relates the input of tjien path (j < 1)
the reader is recommended to see [2] or [1]. The rest tf the output of the'th path,n; ,,, is the noise vector during
the paper is organized as follows. In section II, the prodfie s;.,'th slot at thep;(m)th node of the network, and
of maximum diversity achievability of the RS scheme i§nally, Qi m is the matrix which relatesi;, ,, t0 yr 1.
explained and section Il is dedicated to DMT analysis dfotice that as the timing sequence satisfies the noncausal

Proof: First, we have to show thdt; is indeed an upper-
nd on the diversity-gain of the network. This is shown in

the RS scheme in the multiple-antenna setup. interference assumption, the summation terms in (2) do not
exceedi. Defining x(s) = [x§, (s) X (s) - x{ 1 (s)]T,
T
Il. MAXIMUM DIVERSITY ACHIEVABILITY PROOFIN  y(s) = [¥iy11(8)¥ii12(8) Yk (s)] ., and
GENERAL MULTI-HOP MULTIPLE-ANTENNA SCENARIO T

T
n(s) = [nfl (s)nfy (s)---nT, (s)] , we have the fol-
In this section, we consider our proposed RS scheme dawing equivalent block lower-triangular matrix betweéret
prove that it achieves the maximum diversity gain betwegnd nodes

two end-points in a general multiple-antenna multi-hop net v(s) = Hrx(s) + Qn(s). (3)
work (no additional constraints imposed). Here
Xi1 0 0
Theorem 1 Consider a relay network with the connectivity X271 X229 O
graphG = (V, E) and K relays, in which each two adjacent Hr = . . )

nodes are connected through a Rayleigh-fading channel.
Assume that all the network nodes are equipped with multiple
antenna. Then, by properly choosing the path sequence, Wieere
proposed RS scheme achieves the maximum diversity gain g&”
the network which is equal to "

XLJ XL72 XL,L

=Hy1p,0-1)0-1Ui,1Hp, 1,21y p, (1,-2) X
air,—2Uq -2 ;1 U 1Hp, (1) 05

k3

dg = Hgin wa(S), ) Lcut-set and the weight of a cut-sebd (S)) are defined in [1], [2]



and By recursively applying the above inequality, it followsath

Q171_’1 R Qlyl-,ll 0 0 AN )\max(Xi,i) > )\max (HK+1,pi(li71)) Yi,li—1 X
Q- Q21,1 e Qa1 oo Qoo e Amax (Hp, (1,-1),pi (1i—2) ) Visli—2 X
: "yi,l)\max (le(l)O)
Qri1 Qrip2 e e o QL li Li—1
. . . = H Amax (Hpi(j)-,pi(jfl)) H Vi (7)
Having (3), the outage probability can be written as j=1 j=1
P{e} — ]P’{\IL n PHTH%’P;l] < QSR} @ Noting the definitions ofuy; ;1 andv; ;, (d) easily follows.

Finally, (e) results from the fact that aB — oo, the term
(25R

whereP,, = QQ". First, similar to the proof of theorem 3 |n10g7) can be ignored.
[2], we can easily show that; ; = 1 with probability 2, and Since the left and the right unitary matrices resulting
also show that there exists a constanthich depends just from the SVD of an i.i.d. complex Gaussian matrix are
on the topology of grapli? and the path sequence such thdfdependent of its singular value matrix [17] ard; ;
P, < cI,. Assume that for eachu, b} € E, Amax (Hq,) = IS @n independent isotropically distributed unitary matri
P~ias), whereAmax (A) denotes the greatest eigenvalue of¢ conclude that all the random variables in the set
AAH  Also, assume that d{{ue}ee}; , {ui7j}1§iSL71§j<li are mutually independent.
rom the probability distribution analysis of the singular
Vi nax (Hipi11).0:03) Uiy X values of circularly symmetric Gaussian matrices in [14],
' (Hp, 501 Usy H )‘2 we can easily prové { . > p0} = p~NeNowi = pwen,
Vljd" {pi(7):pi(G=1)} Fig=1 -+ HH{pi(1),0} Similarly, asU; ; is isotropically distributed, it can be shown
= P, ®)  thatP{v(i,) > w(i,j)} = P~(43). Hence, definings =
eliep v = Vigliicra<jcr, ANAW = [we]ee p, we have

Yi,j

where v; max (A) and v, max (A) denote the left and the
right eigenvectors ofA corresponding to\ax (A), respec- P{p > py,v > vy} = P~ Aviwn), (8)

tively. The outage probability can be upper-bounded as Let us defineR as the region RIFHSE, -l of the

(a) Hea ik . _,\ Vvectors 175 ]T such that for allt < ¢ < L, we have
P{&} < P{Amax ((HTHTPn ) )S (2°fF-1)pP } OIS e + Sy > 1. Using the same

(b) . . argument as in the proof of Theorem 3 mL [2], it can
< P{Amax (Hr) <c(2°%-1) P71} easily be shown thaP {R} = P{RﬂRfHEi:llﬁL}.
R L
(g) P{ﬂ (Amax (Xi0) < c(25F —1) P71) Hence, definingRy = RﬂR‘fHEfﬂ“_L and dy =
i=1 e rg]i%l w - u + 1. v, which can easily be verified to
pTvT|TeR
(d) L Ll be bounded, and applying the argument of Lemma 4 which
< ﬂ Zﬂ{pl(y) pi(G-1} T Z Vij 2 is explained in the sequel, we have
- P{£} <P = pdo,
c (2SR _ 1) {5} = {R+} (9)
1 —log 2 To complete the proof, we have to show thit= d, or
- equivalently,dy = L (note thatL = dg). The value ofdy is
(e) — obtained from the following linear programming optimizati
= ﬂ Z“{pl(y) pi(G-1)} T Z vij 21 “problem
=1 \j=1
(6) min w-p+1-v (10)

li Li—1

In the above equatior(a) follows from the fact thatl +  5:&. #>0,0>0,¥i Y i) piGioiny + D Vi = 1.

Amax(AZ) < |I+ AJ, for a positive semi-definite matrix i=1 7=1

A. (b) results fromP,, < cl. (c) follows from the fact According to the argument of linear programming [18], the

that Aax (Hr) > max; Amax(Xi:). To obtain(d), we first solution of the above linear programming problem is equal

notice that according to Lemma 2 which is described in the the solution of the dual problem which is

sequel, we have I
max i 11

Ao (AUB) > Ao (A) Ao (A) |7, (A) UV (B)| 2! )

T,max

st. 0<f<1VeeE, Y fi <uw..

2More precisely, with probability greater than— P—¢ for any § > 0. e€p;



Let us consider the solutiofy = 1 for (11). As the path A direct conclusion of Lemma 1 is that the DMT of the
sequencéps, pe, - - -, pr) consists of the paths that form thetwo-hop network can be expressed as the DMT of the product
maximum flow inG, we conclude that for every € E, we channelGH. In other words, imposing the constraimt< 1
have Z 1 < we. Hence,f; is a feasible solution for (11). does not change the DMT of the system. The DMT of the
e€p; product channel is computed in [11]. Due to their result
On the other hand, as for all feasible solutidhsve have given in Proposition 1, the DMT of the product channel

f <1, we conclude thaf, maximizes (11). Hence, we haves — GH is a piecewise-linear function connecting the points

" L (ryda(r)),r=0,...,1, where
dy=min w-p+1-v=max » fi=L=dg (12) | [(p— A — )P
= aa() = (p—r)g—r) -5 == )
Here, (a) results from duality of the primal and dual linear _
programming problems. This completes the proof. m ¢ = min(m,n) and A = |[m — n|. On the other hand,

Remark 14t is worth noting that according to the proof ofthe piecewise-linear function connecting the integer fsoin
Theorem 1, any RS scheme achieves the maximum diverdity (P — #)(¢ — k)) can be easily derived as the upper-
of the wireless multiple-antenna multiple-relays netwask 20und by considering each of the source-relay or the relay-

long as its corresponding path sequence includes the paistination cuts. Comparing (15) with the upper-bound, it

P1. D2, .- ., Pa Used in the proof of Theorem 1. foll(_)ws that the traditional amplify-and-for\_/vard a_chisvlhe
optimum DMT only whenr > p — A. This motivates us
I1l. DIVERSITY-MULTIPLEXING TRADEOFF to use a variant of amplify-and-forward which achieves the

optimum DMT in all cases. In fact, using the traditional
AF, there are three sources of outage: (i) the outage in

Here, we first consider a simple configuration of the WQp e sqrce-relay link, (ii) the outage in the relay-degtora
hop relay network consisiting of a source, single full-dupl link, and (jii) the projection of the eigenmodes BF over
relay and a destination with no direct link between the Seurg,q eigenmodes of3 is very small. More precisely, the

and the destination. The source, relay, and destination AGitrix VH(G)U(H), in which V¥ (G) denotes the right

supposed to be equipped with, p, andn antenna, respec- gjganyector matrix from the SVD of and U(H) denotes
tively. It can_easny be sht_)wn that the deche-foryvard _(Dl%p]e left eigenvector matrix from the SVD dfl, has very
scheme achieves the optimum DMT for this configuration . (p—A—r)T |

srBaII eigenvalues. The extra terén L——=——-1in (15)

However, here, we show that the RS scheme which is base : ,
on AF relaying can achieve the optimum DMT as well. 'S due to the third source of outage. The first two outage

The channel between the source and the relay is deno®¥§NS dePe”d on_the distribution of the e|genv_alue_H0f
by H and the channel between the relay and the destinatio?&d G- Wh'le the third event depends s_olely on_tﬂleectlon
denoted byG, which are assumed to be circularly symmetri[?]c th.e elgenvecto.rs. of these two matrices. Th'i 5‘4995‘5‘3 us
zero-mean unit-variance Gaussian and remain fixed duriiftt in order to eliminate the extra terms et L
the whole transmission period (quasi-static fading). It i8ne can multiply the received signal at the relay &6,
assumed that the source and the relay have power constrdi@tssomep x p unitary matrix® (for preserving the power
E{x"x,} < P andE{x”x,} < P, respectively. constraint at the relay). However, it should be noted that
In the traditional AF strategy, the received signal at th@ each transmission sldt an independent random unitary
relay is multiplied by a constant such that the power matrix ©; should be applied; otherwise, the performance of
constraint at the relay is satisfied and transmitted to the systems does not change. It should be noted that the
destination. In this way, the received signal at the desitina Proposed RS scheme performs in this way. Indeed, as in

A. Two-Hop Single Relay Network

can be written as this setup the source and the destination are connected only
through one path, the RS scheme reduces to the following
y = aGHx; + aGn, + ng, (13) scheme: The source’s message is sent thrduglots by the

wheren, ~ CA(0,1,) and ng ~ CA(0,1,) denote the same path; at the relay side, the received signal is matpli
T y P )N

noise vectors at the relay and the destination, respegtivel by a random md_ependen'F (th““?gh different slots) unitary
matrix and following that, is multiplied by a scalar such

Lo 1 The OMT o the systems n (12 squl to wff 27 131 e pover onstnt s st and e pesul
DMT of the following system: . ’ 9

the signal of the slotg,3,..., L + 1, the source’s message
y = aGHx; + ng, (14) is decoded. In the following theorem, we show that as long
as L is above a certain threshold, the probability of the third
Proof: See [19]. B outage event is negligible compared to the first two outage
s , _ o _ events and hence, the optimum DMT is achievable by the RS
In fact, this configuration is a special case of the degrae&y rchannel scheme.

studied by [9]. In [9], the authors show that the DF schemeeael the
capacity of the degraded relay channel.



Theorem 2 Consider the two-hop network consisiting of an

source withm antenna and a destination with antenna L min(p,q)

which are connected through a full-duplex relay node with P{O} = P Z Z (1—7;(A)) t<Lry. (20
p antenna. Let us defing = rmn(m n). Providing L is

large enough such that > min®(p, ¢) max(p, ¢), the RS

scheme achieves the optimum DMT which is the piecewidéreover, itis shown in [19] that we can assumgA,) >

linear function connecting the point&, (p—k)(q¢—k)), k = 0, ¥j = 1,---,min(p,q), i.e. imposing the constraint
0,1,...,min(p, q). v;(A;) > 0 does not change the DMT.

In order to compute the outage probability in (20), we

Proof: Using Lemma 1, the DMT of the system usingieed to find the statistical behavior §f(A;). Since we are

the proposed RS scheme is equal to the DMT of the followirigterested in upper-bounding the outage probability, figdi

system: an upper-bound fory;(A;), or equivalently, a lower-bound
for A\;(A;) would be sufficient. This is performed in the

Y = a0 X, + Ndv (16) following lemma:

whereX, £ [x,(1),---,x,(L)", Y = [y(1),---,y(L)]",
A Lemma 2 Consider matrice§&x andH with the size ofnxp
andNg = [nq(1), - ;na(L)] , in which x; (i) denotes the and p x n, respectively, and @ x p matrix ©. AssumeG

transmitted signal vector in thleh slot, andy(l) andn,(1) 1
: : : - H are SVD decomposed & = U(G)A: (G vi(G
denote the received signal and the noise at the destmat?(ﬂﬁH U(H)A? (H)\?H(H) respecguvgly \EVe)havé )

corresponding to the signal sent in this slot, and

Ay 0 cee 0 Ai (GGH) > )‘i(G))\i(H))‘min (V(1 z)(G)G)U(l,i) (H)) )
QL 0 Az - 0 (17) Where \i(A) and Aumin(A) denote thei'th largest eigen-
: : : ’ value and the minimum eigenvalue Af? A, respectively,
0 o --- Ap and A, ; denotes the submatrix oA consisting of the
a,a-+1,...,b'th columns ofA.
in which A; £ GO®;H. Hence, the matrix of the end-to-
end channel is a block diagonal matrix consistingAofs. Proof: See [19]. ]

Assuming that the transmitted signals in each block areThe good thing about the above lemma is thatA;) is

independent of each other, the mutual information betwegglated to\;(G) and\; (H), which fascilitates the subsequent
the input and the output of (16) can be written as derivations. A direct consequence of the above lemmasfs tha

Yi(A1) < 7i(G) 4+ vi(H) + Ymin (Pi1), (21)

where ¥;; £ V([ (G)©,Uq ;) (H). As the statistical

behaviors ofv;(G) and~;(H) are known from [14], it is

in which, it is assumed that;(l) ~ CN'(0, 17L.), VI = sufficient to derive the asymptotic behaviorgf;, (¥, ;) or
, k. Using the above equation, the probability of outagequivalently i, (¥, ;), which is performed in the following

L

I(Xy;Y) =) log

=1

P
I+ OPMAIAZH : (18)

can be written as lemma:
o P
P{O} =P {Zlog I+ —AAf| < Lrlog(P)} Lemma 3 Assuming small enough we have
m
=1

¢ minp.g) P {Amin(Pi) < e} < nv/e, (22)
= Z Z log <1 +a —>\ (Al)> < Lrlog(P)y, for some constanj.

Proof: See [19]. ]
where \;(A) denotes theth ordered eigenvalue oA’ A A direct consequence of the above lemma is that

(A > Az > - > Amin). Definingy; (B) 2 — 26 B) ang P {v,,,(¥;,) > 0} <P~ %. Defining thel x L vectory as

log(P) n
52 _loge® o have P(1) = max ymin(¥i,;), We have
log(P) g
L min(p,q) (a)
> = ) >

P{O} =P Z Z (1—3—( Al))+ < Lry. (19) P{y > 1.} H]P){1/1 Yo(1)}

= min(p,q)
It is shown in [19] thata = 1, with probability oné. = HP U (Ymin(¥i0) = Yo(l))
Accordingly, one can replaceby zero in (19), which results =1 =1

1-7g

IN=

“More precisely, with probability greater than— P—¢ for any§ > 0 P~ min(e.) (23)



As @©,’s are independent isotropic unitary matrices, theiwhere f : R™"®9 . R is defined asf(y) =
products with any possibly correlated set of unitary masic -9 (2; — 1+ |p — g|)¢; and the regiorR is defined as
constructs a set of independent isotropic unitary matrices

[17]. Accordingly,¥; ;'s are independent for different values, 2 { (x(G), x(H), )
of I which results in(a). Also, (b) follows from Lemma 3 ’ ’
and the union bound inequality. _ _

Let us define thel x min(p,q) vectors x(H) £ Xamingpa) (G) 2 01 (H) 2 -+ 2 Xominp g (H) 2.0
[’Ymin(p,m) (H)7 ’Ymin(p,m)fl(HL -+ -y Y14min(p,m)—min(p,q)
and X(G) £ [’Ymin(p,n) (G)a -+« Y14min(p,n)—min(p,q) (G
Notice that these vectors include the log-values of the
correspondingnin(p, ¢) smallest eigenvalues #H” and Let us assume L is large enough such that
GG, respectively. Now, applying the result of Lemma 2, > min(p, q) (me(’” Do — 14 |p— q|) =

L min(p,g

)
H)] S (- (@) - a(H) - b)) < L

=1 =1

~—
—

i=1

to (20), we can upper-bound the outage probability of thfﬁm (p,q) max(p,q). We define thel x min(p,q) vector
end-to-end channel as ¢ as o 2 (G) + (H) + %ZZL:NW)- For each
P{O}< (x(G),x(H),¥) € R, we have

L min(p,q)

L min(p,q)
{Z Z 1 - ’Yz 'Yz(H) - 'Ymin(‘Ili.,l))-’_ < LT} Lr Z Z Z 1 - Xl XZ(H) - w(l))JF

Y

=1

L min(p,q) mm(p,q) L
<P{Z Z (1 —7(G) —v(H) — (1)t <Lr} > max{O,lei(@xi(H)w(l)}
i= =1
min(p,q)
L min(p,q)
<P {Z Z (1-xi(G) — xi(H) —p()" < Lr}(24) = L Z (1—p)". (28)

On the other hand, according to (27) and the definitiopof
Here, the problem is that according to (23), we havge onclude that

an upper-bound foi® {¢ > 1,} which is not necessarily sinto. 0
sufficient to upper-bound the probability of the region of P{O} <P~ Minex(@) x (), PIER 2im 2i=1tlp=abei - (20)
(v, x(H), x(GQ)) that satisfies (24). Indeed, for this purpos

we need the following Lemma. Ei\lotlce that according to the definition ¢f, we can easily

conclude thatp; > -+ > @ninep,q > 0. Hence, applying

Lemma 4 Consider a fixed regiorR C [0,00)". Assume (28) and (29), we can upper-bound the outage probability as

that a uniformly continuows non-negative functionf(x) P{O}< P~ Minger SR (914 |p—q|)ps (30)
(f(x) > 0) is defined oveff0,c0)™ such that for allx €
0,00)", we haveP {y > x} <P~f® where a(P)<b(P) WhereR is defined as

means lim log(a(P)) < lim M. Then, we have min(p,q)
P=c log(P) ~ P-c log(P) RE2{|p1> 2 Puingr 20, Y. (1—@)" <
P{x € R} <P~ infxer /(). (25) =1 (31
Proof: See [19]. m According to [14], (30) and (31) define the probability of

According to the upper-bound in (23) and the distributioautage from the ratelog(P) in an equivalenp x ¢ MIMO
of x(G), x(H) derived in [14], we have point-to-point channel. Hence, we hadgs(r) > dpxq(7).

. . On the other hand, due to the cut-set bound Theorem [20], we

P {1# > ¥, x(G) > X(G), x(H) > X(H)} < know that the DMT of the system is upper-bounded by the

P S 1&(1)—22?@"”(2i—1+|p—q|)(&(G)+>@(H)(26) minimum of the DMT of the equivalent point-to-poiptx m
andn x p channels. Hencedrs(r) < dopt(r) = dpxq(r).
Now, we can apply the result of Lemma 4 to the regioAccordingly, we havedrs(r) = dopi(r) = dpxq(r) which

defined in (24) and the upper-bound derived in (26). Accor§ompletes the proof. L]
ingly, we have The statement of Theorem 2 can be generalized to multi-
S hop networks as follows.
P {0} <P~ (@) x () )R %-Q-f(X(Gf)-‘:-X(H))7 (27)
‘ _ _ Theorem 3 Consider a multi-antenna multi-hop network
°A uniformly continuouiunction f : M — N whereM C R™ N C  consisiting of a single source and destination and full{exp

R™ is a function that has the following property: for everythere exists . .

relays, with exactly one relay in each hop and assume all

a constantg(e) such that for allx,y € M, ||x — y|| < g(e), we have . . J _
Ifx) — f) <e. the nodes are equipped witW antennas. Providingl is



large enough such that > N?, the RS scheme achievesS (3 scq1o gy ps = 1). As the relay nodes and the
the optimum DMT which is the piecewise-linear functiosource are assumed to have no channel state knowledge, we
connecting the pointék, (N — k)?),k=0,1,..., N. can assume that a fixed state vecppris associated with

the strategy that achieves the optimum DMT. Denoting the

Proof: See [19]. outage event by, for any general half-duplex relay network

B. Parallel Relay Network consisiting of K relays, we have

Theorem 4 Consider a multi-antenna parallel relay net- (a)

work consisiting of a source equipped with antenna, a P{O} > minP U Z
destination equipped witlh antenna andK half-duplex {0}CTC{0,1,...,K} \{0}CSC{0,1,...,K}

relays each equipped witlh antenna. Assume that there

exists no direct link between the source and the destis/ X(SQT);Y(SCQTCHX(SQTC)) < TlOg(P)>}
nation. For any fixedB > min?(p,q) max(p,q), the RS

scheme with, = BK, S = BK + 1, the path sequence®

Q= (a1,---,9K,91,---,4K;---,4d1,---,qK) Whereqy = — m;n{o}gq_r&aoﬁm’K}P Z
(0, k, K+1) and the timing sequeneg ; = i+j—1 achieves
the diversity gain

drs(r) > Kdpxq <(1 + %) > (32)

Here, (a) follows from the cut-set bound Theorem [20] and
whereg £ min(m, n) andd,x,(r) denotes the diversity gain (b) follows from the union bound on the probability Now, in
of the point-to-point MIMOp x ¢ channel corresponding to our 2- relay parallel setup, let us define two sgts= {0, 1}
the rate rlog(P). Moreover, asB — oo, the RS scheme and7; £ {0,2} corresponding to two cut-sets. Moreover, let

pPs X
{oycscfo1,....K}

I(X(SQT);Y(SC mTC)|X(SﬂT°’)) < rlog(P)}.(SS)

achieves the diversity gaif{ d,q(r). us define two event®; and O, as
Proof: See [19]. [ | 01 £ {|I,+ PGG{| < plog(P),
In the following Theorem, we show that'd,.,(r) is the 1., + PH.HY| < (2r — 0)log(P)}, (34)
optimum DMT for the 2 relays half-duplex parallel relay
network in whichm = n. and

Theorem 5 Consider a multi-antenna parallel relay network O, = {|In1 =+ PH1H{{} < vlog(P),

consisiting of a source and a destination each equipped with L, + PGoGy| < (2r — ) log(P)}, (35)
m antennas, and<’ = 2 half-duplex relays equipped with N _ .

ng,k = 1,2 antennas. Assume that there exists no dlre}é’there’/ - (?LgTzT sy (V) + dixng (21 — v). Hence, in
link between the source and the destination. Consider the B§ setup,(33) can be simplified as

scheme withl = BK, S = BK +1, and the path and timing

. . (a)
sequences defined in Theorem 4.1As> oo, the RS scheme]P, < i p < rloa(P
achieves the optimum DMT of the network. {0} —m,;n tax {O}CSXC;O ) 2}/)5“(8) < rlog(P) o,

Theorem 4, a¥3 — oo, the RS scheme achieves the DMT

dRS,oo(T) £ minogygg,. dm><7h (V) + denz (27“ — l/). Now,

to proof the Theorem, we just have to show thats o () ' -
is indeed an upper-bound for the optimum DMT. According Zm;nmax P (P{O-,l} + /){071-,2}) L + PG1GY'|
to the cut-set Theorem [20], we have an upper-bound for

the capacity of the network for each channel realization.
Hence, we can apply the cut-set Theorem to find an upper-
bound for the optimum DMT. In general, for any general
half-duplex relay network with' number of relays _an_d any ]p{ (P{o.,2} + p{o,l,z}) ‘Im + PGQGf\ +
set{0} € § € {0,1,...,K}, we say the network is in the

Proof: First, notice that according to the argument of {
P

> psta(S) < rlog(P)}>

{0}E5C¢{0,1,2}

+ (poy + Po1y) [In, + PHoHY| < 7“10g(P)},

state S, if the network nodes ir§ are transmitting and the

network nodes inS¢ = {0,1,..., K + 1} /S are receiving. (pioy + pio,2y) |In, + PHIH{T| < rlog(P)})
Notice that as the source is always transmitting and the

destination is always receiving, we havee S, K + 1 € S°. Qe

Accordingly, we define a x 2K state vectorp such that Zm,}nmax (ZP{O1}, %P {02})

for any setS C {1,2,...,K}, ps shows the portion of (c)

time that the half-duplex relay network spends in #tate > pdrs.eo(r) (36)



18 signal is multiplied by a random unitary matrix at the relay

ol i?2iﬁﬂéﬁiiﬁi’ﬁﬁfﬁ?ﬂ”&iﬁm node and finally, multiplied by a scalar < 1 such that
— - — - NAF scheme . - . .

ek the output power constraint is satisfied. Let us assume that
Auft\\ , , the modified NAF scheme is applied fBrconsecutive slots.
gmi \\\\\\ AssumingB > min?(p, ¢) max(p, ¢) whereq £ min(m,n),
2 S the modified NAF scheme achieves the DMT
& ol \\\ \\\ : dMNAF(T) > dmxn(T) + deq(QT)- (37)

i Proof: See [19]. [

2F N

0 : E— : ‘ ‘ REFERENCES

0 0.5 1 15 2 25 3
Multiplexing Gain r

[1] Sh. Oveis Gharan, A. Bayesteh, and A. K. Khandani, “Doitgr
multiplexing tradeoff in multiple-relay network-part |: rgposed

Fig. 1. Parallel relay network with' = 2 relays, each node witl3 scheme and single-antenna networks,46th Allerton Conference on
antennas and no direct link between source and destination. Communication, Control, and Computing008.
[2] ——, “Diversity-multiplexing tradeoff in multiple-rely network,”

IEEE Trans. Inf. Theoryapril 2008, submitted for Publication, avail-

A . able online at http://arxiv.org/pdf/0803.3117.
where ti(s) = I( X (S N 7;) Y (SC N Tzc)| X (S N Tic))’ [3] K. Azarian, H. El Gamal, and Ph. Schniter, “On the achi@ea
S _ Do _ D diversity-multiplexing tradeoff in half-duplex coopeieg channels,”
A 1 [r = (Pron,2y + p{oﬂ}) 7 = (proy + poy) (2r V)] IEEE Trans. Inform. Theoryvol. 51, no. 12, pp. 4152-4172, Dec.
% 2 1[r—(proy + po2y) 7 = (pro2y +ponzy) @r = )], 2008,
and 1[1;] = 1 for x > 0 and is 0 otherwise. Here, [4] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Coopegativ

; S ati diversity in wireless networks: efficient protocols andage behavior,”
(a) results from takmg the  maximization of the IEEE Trans. Inform. Theoryvol. 50, no. 12, pp. 3062-3080, Dec.

right-hand side of (33) overZ;,7;. (b) results from 2004.

the facts that i) conditioned onO; and assuming [5] M. IYull<sel and cIjE I?frkip, “Cooperative wireless fsystemﬁdi‘asersity-
N IS multiplexing tradeoff perspective]JEEE Trans. Inform. TheoryAug.

r Z (p{071a2} + p{O,l}) v+ (p{O,l} + P{o}) (2T - V)’ 2006, under Review.

we have (P{O,l} + P{0,1,2}) ‘Im + PGy G{i| +  [6] Sh.Yang and J.-C. Belfiore, “Towards the optimal amp#fyd-forward
(P{O} + _/_7{0,1}) ‘In% + PH2H§| < rlog(P?; ggo%irf‘tlivglgigerss(ietgtsggg?eLEEE Trans. Inform. Theoryvol. 53,
and ”) condltloneAd on O and assunjlng [7] Sh. Oveis Gha’ran, A. Bayesteh, and A. K. Khandani, “Astotip
> (proy +rg02y) P+ (pro2y + rr0a2y) 2r — D), analysis of amplify and forward relaying in a parallel MIM@lay
we have (P{o 2} T P{o1 2}) ‘Im + PG2G51| + network,” IEEE Trans. Inf. Theory2006, revised, available online at
(p tp ) ‘I + PH HH| < rlog(P). Knowing http://cst.uwaterloo.ca/.

{0} {0,2}) [+tm *H 1—d o (9)—d '(2 5 [8] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative sgiate and
P{O1} = P{O;} = P omxmW)mdmxnGr=)  — capacity theorems for relay networks|EEE Trans. Inf. Theory
P~drs~(r) and the fact thatl[z] + 1[y] > 1[z + y] result - ¥0|-M 5lbpp- 3037(1_3A063|;I SGept- 2|002- A o theasel
: . M. Cover an . amal, “Capacity theorems for theaye
in (C> (36) completes the proof of the Theorem. u channel,”IEEE Trans. Inf. Theoryvol. 25, no. 5, pp. 572-584, Sept.

However, if we do not apply random unitary matrix 1979,
multiplication at the relay nodes, applying the proof-step [10] S. N. D. A. S. Avestimehr and D. N. C. Tse, “Approximatepaaity
Theorem 4, one can easily show that the RS scheme achieves o aussian relay networks,” IfEEE Int. Symp. Information Theary

the DMT Kdgmu(r) Wheredgmu (r) denotes the DMT of the [11] Sh. Yang and J.-C. Belfiore, “Optimal space-time codestie MIMO
product of the channel matrid from the source to the relay amplify-and-forward cooperative channelEEE Trans. Inform. The-

. . . ory, vol. 53, no. 2, pp. 647-663, 2007.
and the channel matri& from the relay to the destlnatlon[lz] M. Gastpar and M. Vetterli, “On the capacity of large Gaian relay

(see (15)). Finally, applying the NAF scheme, one can easily  networks,IEEE Trans. Inf. Theoryol. 51, pp. 765-779, March 2005.

show that the DMTK dgm(2r) is achievable. [13] H. Bolcskei, R. U. Nabar, O. Oyman, and A. J. Paulraj, p@eity
scaling laws in MIMO relay networks,JEEE Trans. on Wireless
Communicationsvol. 5, no. 6, pp. 1433-1444, June 2006.

[14] L. Zheng and D. N. C. Tse, “Diversity and multiplexingfumdamental

; inlan _ ; tradeoff in multiple-antenna channeldEEE Trans. Inform. Theory
[11] shows that in the multiple-antenna half-duplex single vol. 49, pp. 1073— 1096, May 2003,

relay channel consisiting of the source, relay, and thei-desis] r. u. Nabar, H. Bolcskei, and F. W. Kneubuhler, “Fadingjay
nation equipped withn,p, andn antennas, respectively, the  channels: performance limits and space-time signal dgsIGEE J.

; Select. Areas Communol. 22, no. 6, pp. 1099-1109, Aug. 2004.
NAF protocol achieves the DMHNAF(T) = den(r) + [16] R. Diestel,Graph Theory Springer, 2006.

deu(2r). Here, we show that using random independefit;] A. M. Tulino and S. Verdu,Random Matrix Theory and Wireless
unitary marices also improves the DMT of the NAF scheme Communications Now Publishers Inc, 2004.

for the multiple-antenna single relay channel [18] Aégsschrijver, Theory of Linear and Integer Programming Wiley,
' 1 .

[19] Sh. Oveis Gharan, A. Bayesteh, and A. K. Khandani, “Orexiity-
Theorem 6 Consider the multiple-antenna half-duplex sin- ~ multiplexing tradeoff in multiple-antennas multipleag! networks,”
L. P P University of Waterloo, Tech. Rep., July 2008, availabldiran at

gle relay channel consisiting of a source, a relay, and a hp:/cst.uwaterloo.cal.
destination equipped withe,p, andn antennas, respectively.[20] T. M. Cover and J. A. Thomaglements of Information ThearyNew

Let us consider a modified NAF scheme in which the received York: Wiley, 1991.

C. Multiple-Antenna Single Relay Channel



