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Abstract—This paper studies the setup of a multiple-relay
network in which K half-duplex multiple-antenna relays assist
in the transmission between a/several multiple-antenna source(s)
and a multiple-antenna destination. Each two nodes are as-
sumed to be either connected through a quasi-static Rayleigh
fading channel, or disconnected. This paper is comprised of
two parts. In this part of the paper, we study multiple-antenna
multiple-relay network. We prove that the Random Sequential
(RS) scheme proposed in [1], [2] achieves the maximum diversity
gain in a general multiple-antenna multiple-relay network.
Moreover, we show that utilizing independent random unitary
matrix multiplication at the relay nodes enables the RS scheme
to achieve better diversity-multiplexing tradeoff (DMT) r esults
comparing with the traditional amplify-and-forward relay ing.
Indeed, using the RS scheme, we derive a new achievable DMT
for the MIMO parallel relay network. Interestingly, it turn s out
that the DMT of the RS scheme is optimum for the MIMO half-
duplex parallel 2-relay (K = 2) setup. Finally, we show that
utilizing random unitary matrix multiplication also impro ves
the DMT of the Non-Orthogonal amplify-and-forward relayin g
scheme of [3] in the MIMO single relay channel.

I. I NTRODUCTION

Recently, cooperative schemes and protocols have been
proposed as candidates to exploit the spatial diversity of-
fered by the relay networks (for example, see [3]–[7]).
Decode-and-Forward(DF), Amplify-and-Forward(AF) and
Compress-and-Forward(CF) relaying are the main relaying
strategies utilized in the proposed relaying schemes. While
DF and CF strategies are utilized in small-scale networks
to obtain capacity results (for example, see [8]–[10]), the
AF relaying turns out to be more suitable to exploit the
cooperative diversity (for example, see [3], [4], [6], [11]).

In AF relaying, the relays are not supposed to decode
the transmitted message. Hence, the relays consume less
computing power and the end-to-end system expends much
smaller amount of delay comparing with the other relay-
ing strategies. Accordingly, AF relaying schemes are more
suitable for the practical situations. Moreover, against the
DF relaying, the AF relaying performance is not limited
by the source-to-relay channel quality while, unlike the
CF relaying, the parallel relays can yet exploit the power
boosting advantage by coherently forwarding their received
signals to the destination. Hence, they can asymptotically
perform optimal in large scale parallel networks (see [7],
[12], [13]).

While AF relaying is investigated well in the cooperative
single-antenna networks, much is unknown about its poten-
tial for the multiple-antenna counterpart. Indeed, unlikethe
single-antenna scenario, in this case the AF multipliers are
matrices rather than scalars. Hence, finding the optimum AF
matrices becomes challenging.

A fundamental measure to evaluate the performance of
the existing cooperative diversity schemes is the diversity-
multiplexing tradeoff (DMT) which was first introduced by
Zheng and Tse in the context of point-to-point MIMO fading
channels [14]. Roughly speaking, the diversity-multiplexing
tradeoff identifies the optimal compromise between the
“transmission reliability” and the“data rate” in the high-SNR
regime.

The non-orthogonal amplify-and-forward (NAF) scheme,
first proposed by Nabaret al. in [15], has been further studied
by Azarianat al. in [3] for the single-antenna multiple-relay
setup. In addition to analyzing the DMT of the NAF scheme,
reference [3] shows that NAF is the best in the class of AF
strategies for single-antenna single-relay systems.

Recently, Yang and Belfiore in [11] study the DMT
performance of the NAF scheme for the multiple-antenna
parallel relay setup. Moreover, based on the non-vanishing
determinant criterion, the authors construct a family of space-
time code for the NAF scheme over MIMO setup. However,
as shown in [11], the NAF scheme falls far from the DMT
upper-bound in the multiple-antenna setup specially for small
values of multiplexing gain. Indeed, even for the case of
MIMO 2-hop single-relay setup, the NAF scheme is unable
to achieve the maximum diversity gain of the system.

Yukselet al. in [5] apply compress-and-forward (CF) strat-
egy and show that CF achieves the DMT upper-bound for the
multiple-antenna half-duplex single-relay system. However,
in their proposed scheme, the relay node needs to know the
CSI of all the channels in the network which may not be
practical.

In this paper, we investigate the potential benefits
of amplify-and-forward relaying in the multiple-antenna
multiple-relay networks. For this purpose, we study the
random sequential scheme proposed in [1], [2]. The key
elements of the proposed scheme are: 1) signal transmission
through sequential paths in the network, 2) path timing such
that no non-causal interference is caused from the source



of the future paths on the receiver of the current path, 3)
multiplication by a random unitary matrix at each relay node,
and 4) no signal boosting in amplify-and-forward relaying
at the relay nodes, i.e. the received signal is amplified by a
coefficient with the absolute value of at most 1. We prove that
this scheme achieves the maximum diversity gain in a general
multiple-antenna multiple-relay network. Furthermore, we
derive the DMT of the RS scheme for multiple-antenna
multiple-relay network. To accomplish this problem, we first
study the full-duplex multiple-antenna 2-hop network witha
single relay. We show that against the traditional AF relaying,
the RS scheme can achieve the optimum DMT. Indeed,
using the traditional AF relaying, there exists a chance that
the eigenvectors corresponding to the large eignenvalues of
the incoming channel matrix of the relay projects to the
eigenvectors corresponding to the small eignenvalues of the
relay’s outgoing channel matrix. This event degrades the
performance of traditional AF relaying in the MIMO setup.
However, in the RS scheme, utilizing the random unitary
matrix multiplication at the relay nodes for different time-
slots, such an event is much more unlikely to happen. This
fact will be elaborated more throughout the paper. Next, we
study the MIMO parallel half-duplex relay network and by
deriving the DMT, we show that the RS scheme improves the
DMT of the traditional AF relaying schemes. Interestingly,it
turns out that the DMT of the RS scheme is optimum for the
MIMO half-duplex parallel 2-relay (K = 2) setup. Finally,
we show that utilizing random unitary matrix multiplication
also improves the DMT of the Non-Orthogonal amplify-and-
forward relaying scheme of [3] in the MIMO single half-
duplex relay channel.

For description of the system model and the RS scheme,
the reader is recommended to see [2] or [1]. The rest of
the paper is organized as follows. In section II, the proof
of maximum diversity achievability of the RS scheme is
explained and section III is dedicated to DMT analysis of
the RS scheme in the multiple-antenna setup.

II. M AXIMUM DIVERSITY ACHIEVABILITY PROOF IN

GENERAL MULTI -HOP MULTIPLE-ANTENNA SCENARIO

In this section, we consider our proposed RS scheme and
prove that it achieves the maximum diversity gain between
two end-points in a general multiple-antenna multi-hop net-
work (no additional constraints imposed).

Theorem 1 Consider a relay network with the connectivity
graphG = (V,E) andK relays, in which each two adjacent
nodes are connected through a Rayleigh-fading channel.
Assume that all the network nodes are equipped with multiple
antenna. Then, by properly choosing the path sequence, the
proposed RS scheme achieves the maximum diversity gain of
the network which is equal to

dG = min
S
wG(S), (1)

whereS is a cut-set onG1.

Proof: First, we have to show thatdG is indeed an upper-
bound on the diversity-gain of the network. This is shown in
[2]. Now, we prove that this bound is indeed achievable by
the RS scheme. First, we provide the path sequence needed to
achieve the maximum diversity gain. Consider the graphĜ =
(V,E,w) with the same set of vertices and edges as the graph
G and the weight functionw on the edges asw{a,b} = NaNb.
Consider the maximum-flow algorithm [16] on̂G from the
source node0 to the sink nodeK + 1. Since the weight
function is integer over the edges, according to the Ford-
Fulkerson Theorem [16], one can achieve the maximum flow
which is equal to the minimum cut of̂G or dG by the union of
elements of a sequence(p1, p2, . . . ,pdG) of paths (L = dG).
We show that this family of paths are sufficient to achieve
the maximum diversity.

Noting that the received signal at each node is multiplied
by a random isotropically distributed unitary matrix, at the
destination side we have

yK+1,i = HK+1,pi(li−1)αi,li−1Ui,li−1Hpi(li−1),pi(li−2)×
αi,li−2Ui,li−2 · · ·αi,1Ui,1Hpi(1),0x0,i +

∑

j<i

Xi,jx0,j+

∑

j≤i,m≤lj

Qi,j,mnj,m. (2)

Here,x0,i is the vector transmitted at the source side during
the si,1’th slot as the input for thei’th path, yK+1,i is the
vector received at the destination side during thesi,li ’th slot
as the output fori’th path,Ui,j denotes the multiplied unitary
matrix at thepi(j)’th node of theith path,Xi,j is the inter-
ference matrix which relates the input of thej’th path (j < i)
to the output of thei’th path,nj,m is the noise vector during
the sj,m’th slot at thepj(m)’th node of the network, and
finally, Qi,k,m is the matrix which relatesnk,m to yK+1,i.
Notice that as the timing sequence satisfies the noncausal
interference assumption, the summation terms in (2) do not
exceedi. Defining x(s) =

[

xT0,1 (s)xT0,2 (s) · · ·xT0,L (s)
]T

,

y(s) =
[

yTK+1,1 (s)yTK+1,2 (s) · · ·yTK+1,L (s)
]T

, and

n(s) =
[

nT1,1 (s)nT1,2 (s) · · ·nTL,lL (s)
]T

, we have the fol-
lowing equivalent block lower-triangular matrix between the
end nodes

y(s) = HTx(s) + Qn(s). (3)

Here,

HT =











X1,1 0 0 . . .
X2,1 X2,2 0 . . .

...
...

...
. . .

XL,1 XL,2 . . . XL,L











,

where

Xi,i = HK+1,pi(li−1)αi,li−1Ui,li−1Hpi(li−1),pi(li−2)×
αi,li−2Ui,li−2 · · ·αi,1Ui,1Hpi(1),0,

1cut-set and the weight of a cut-set (wG(S)) are defined in [1], [2]



and

Q =











Q1,1,1 . . . Q1,1,l1 0 0 . . .
Q2,1,1 . . . Q2,1,l1 . . . Q2,2,l2 . . .

...
...

...
...

...
. . .

QL,1,1 QL,1,2 . . . . . . . . . QL,L,lL











.

Having (3), the outage probability can be written as

P {E} = P
{∣

∣IL + PHTHH
T P−1

n

∣

∣ < 2SR
}

, (4)

wherePn = QQH . First, similar to the proof of theorem 3 in
[2], we can easily show thatαi,j

.
= 1 with probability 12, and

also show that there exists a constantc which depends just
on the topology of graphG and the path sequence such that
Pn 4 cIL. Assume that for each{a, b} ∈ E, λmax (Ha,b) =
P−µ{a,b} , whereλmax (A) denotes the greatest eigenvalue of
AAH . Also, assume that

γi,j ,
∣

∣vHr,max

(

H{pi(j+1),pi(j)}

)

Ui,j×
vl,max

(

H{pi(j),pi(j−1)}Ui,j−1 . . .H{pi(1),0}

)∣

∣

2

= P−νi,j , (5)

where vl,max (A) and vr,max (A) denote the left and the
right eigenvectors ofA corresponding toλmax (A), respec-
tively. The outage probability can be upper-bounded as

P {E}
(a)

≤ P

{

λmax

(

(

HTHH
T P−1

n

)
1
2

)

≤
(

2SR − 1
)

P−1
}

(b)

≤ P
{

λmax (HT ) ≤ c
(

2SR − 1
)

P−1
}

(c)

≤ P

{

L
⋂

i=1

(

λmax (Xi,i) ≤ c
(

2SR − 1
)

P−1
)

}

(d)

≤ P







L
⋂

i=1





li
∑

j=1

µ{pi(j),pi(j−1)} +

li−1
∑

j=1

νi,j ≥

1 − log
c
(

2SR − 1
)

P

)}

(e).
= P







L
⋂

i=1





li
∑

j=1

µ{pi(j),pi(j−1)} +

li−1
∑

j=1

νi,j ≥ 1











.

(6)

In the above equation,(a) follows from the fact that1 +
λmax(A

1
2 ) ≤ |I + A| , for a positive semi-definite matrix

A. (b) results fromPn 4 cIL. (c) follows from the fact
that λmax(HT ) ≥ maxi λmax(Xi,i). To obtain(d), we first
notice that according to Lemma 2 which is described in the
sequel, we have

λmax(AUB) ≥ λmax(A)λmax(A)
∣

∣vHr,max(A)Uvl,max(B)
∣

∣

2

2More precisely, with probability greater than1 − P−δ for any δ > 0.

By recursively applying the above inequality, it follows that

λmax(Xi,i) ≥ λmax

(

HK+1,pi(li−1)

)

γi,li−1 ×
λmax

(

Hpi(li−1),pi(li−2)

)

γi,li−2 ×
· · ·γi,1λmax

(

Hpi(1),0

)

=

li
∏

j=1

λmax

(

Hpi(j),pi(j−1)

)

li−1
∏

j=1

γi,j . (7)

Noting the definitions ofµ{i,j} andνi,j , (d) easily follows.
Finally, (e) results from the fact that asP → ∞, the term

log
c(2SR−1)

P
can be ignored.

Since the left and the right unitary matrices resulting
from the SVD of an i.i.d. complex Gaussian matrix are
independent of its singular value matrix [17] andUi,j

is an independent isotropically distributed unitary matrix,
we conclude that all the random variables in the set
{

{µe}e∈E , {νi,j}1≤i≤L,1≤j<li

}

are mutually independent.
From the probability distribution analysis of the singular
values of circularly symmetric Gaussian matrices in [14],
we can easily proveP

{

µe ≥ µ0
e

} .
= P−NaNbµ

0
e = P−weµ

0
e .

Similarly, asUi,j is isotropically distributed, it can be shown
that P {ν(i, j) ≥ ν0(i, j)} .

= P−ν0(i,j). Hence, definingµ =
[µe]

T
e∈E , ν = [νi,j ]

T
1≤i≤L,1≤j<li

, andw = [we]e∈E , we have

P {µ ≥ µ0,ν ≥ ν0} .
= P−(1·ν+w·µ). (8)

Let us defineR as the region inR|E|+
PL
i=1 li−L of the

vectors
[

µTνT
]T

such that for all1 ≤ i ≤ L, we have
∑li
j=1 µ{pi(j),pi(j−1)} +

∑li−1
j=1 νi,j ≥ 1. Using the same

argument as in the proof of Theorem 3 in [2], it can

easily be shown thatP {R} = P

{

R⋂R
|E|+

PL
i=1 li−L

+

}

.

Hence, definingR+ = R⋂R
|E|+

P

L
i=1 li−L

+ and d0 =
min

[µT νT ]T∈R+

w · µ + 1 · ν, which can easily be verified to

be bounded, and applying the argument of Lemma 4 which
is explained in the sequel, we have

P {E} ≤̇P {R+} .
= P−d0 . (9)

To complete the proof, we have to show thatd0 = dG, or
equivalently,d0 = L (note thatL = dG). The value ofd0 is
obtained from the following linear programming optimization
problem

min w · µ+ 1 · ν (10)

s.t. µ ≥ 0,ν ≥ 0, ∀i
li
∑

j=1

µ{pi(j),pi(j−1))} +

li−1
∑

j=1

νi,j ≥ 1.

According to the argument of linear programming [18], the
solution of the above linear programming problem is equal
to the solution of the dual problem which is

max

L
∑

i=1

fi (11)

s.t. 0 ≤ f ≤ 1, ∀e ∈ E,
∑

e∈pi

fi ≤ we.



Let us consider the solutionf0 = 1 for (11). As the path
sequence(p1, p2, . . . ,pL) consists of the paths that form the
maximum flow inĜ, we conclude that for everye ∈ E, we
have

∑

e∈pi

1 ≤ we. Hence,f0 is a feasible solution for (11).

On the other hand, as for all feasible solutionsf we have
f ≤ 1, we conclude thatf0 maximizes (11). Hence, we have

d0 = min w · µ+ 1 · ν (a)
= max

L
∑

i=1

fi = L = dG. (12)

Here,(a) results from duality of the primal and dual linear
programming problems. This completes the proof.

Remark 1-It is worth noting that according to the proof of
Theorem 1, any RS scheme achieves the maximum diversity
of the wireless multiple-antenna multiple-relays networkas
long as its corresponding path sequence includes the paths
p1, p2, . . . ,pdG used in the proof of Theorem 1.

III. D IVERSITY-MULTIPLEXING TRADEOFF

A. Two-Hop Single Relay Network

Here, we first consider a simple configuration of the two-
hop relay network consisiting of a source, single full-duplex
relay and a destination with no direct link between the source
and the destination. The source, relay, and destination are
supposed to be equipped withm, p, andn antenna, respec-
tively. It can easily be shown that the decode-forward (DF)
scheme achieves the optimum DMT for this configuration3.
However, here, we show that the RS scheme which is based
on AF relaying can achieve the optimum DMT as well.

The channel between the source and the relay is denoted
by H and the channel between the relay and the destination is
denoted byG, which are assumed to be circularly symmetric
zero-mean unit-variance Gaussian and remain fixed during
the whole transmission period (quasi-static fading). It is
assumed that the source and the relay have power constraints
E{xHt xt} ≤ P andE{xHr xr} ≤ P , respectively.

In the traditional AF strategy, the received signal at the
relay is multiplied by a constantα such that the power
constraint at the relay is satisfied and transmitted to the
destination. In this way, the received signal at the destination
can be written as

y = αGHxt + αGnr + nd, (13)

where nr ∼ CN (0, Ip) and nd ∼ CN (0, In) denote the
noise vectors at the relay and the destination, respectively.

Lemma 1 The DMT of the systems in (13) is equal to the
DMT of the following system:

y = αGHxt + nd, (14)

Proof: See [19].

3In fact, this configuration is a special case of the degraded relay channel
studied by [9]. In [9], the authors show that the DF scheme achieves the
capacity of the degraded relay channel.

A direct conclusion of Lemma 1 is that the DMT of the
two-hop network can be expressed as the DMT of the product
channelGH. In other words, imposing the constraintα ≤ 1
does not change the DMT of the system. The DMT of the
product channel is computed in [11]. Due to their result
given in Proposition 1, the DMT of the product channel
A = GH is a piecewise-linear function connecting the points
(r, dA(r)), r = 0, . . . , l, where

dA(r) = (p− r)(q − r) − 1

2

⌊

[(p− ∆ − r)+]2

2

⌋

, (15)

q = min(m,n) and ∆ = |m − n|. On the other hand,
the piecewise-linear function connecting the integer points
(k, (p − k)(q − k)) can be easily derived as the upper-
bound by considering each of the source-relay or the relay-
destination cuts. Comparing (15) with the upper-bound, it
follows that the traditional amplify-and-forward achieves the
optimum DMT only whenr ≥ p − ∆. This motivates us
to use a variant of amplify-and-forward which achieves the
optimum DMT in all cases. In fact, using the traditional
AF, there are three sources of outage: (i) the outage in
the source-relay link, (ii) the outage in the relay-destination
link, and (iii) the projection of the eigenmodes ofH over
the eigenmodes ofG is very small. More precisely, the
matrix VH(G)U(H), in which VH(G) denotes the right
eigenvector matrix from the SVD ofG andU(H) denotes
the left eigenvector matrix from the SVD ofH, has very
small eigenvalues. The extra term12

⌊

[(p−∆−r)+]2

2

⌋

in (15)
is due to the third source of outage. The first two outage
events depend on the distribution of the eigenvalues ofH

andG, while the third event depends solely on thedirection
of the eigenvectors of these two matrices. This suggests us
that in order to eliminate the extra terms of1

2

⌊

[(p−∆−r)+]2

2

⌋

one can multiply the received signal at the relay byαΘ,
for somep× p unitary matrixΘ (for preserving the power
constraint at the relay). However, it should be noted that
in each transmission slotl, an independent random unitary
matrix Θl should be applied; otherwise, the performance of
the systems does not change. It should be noted that the
proposed RS scheme performs in this way. Indeed, as in
this setup the source and the destination are connected only
through one path, the RS scheme reduces to the following
scheme: The source’s message is sent throughL slots by the
same path; at the relay side, the received signal is multiplied
by a random independent (through different slots) unitary
matrix and following that, is multiplied by a scalarα such
thatα ≤ 1 and the power constant is satisfied and the result
is sent in the next slot. At the destination, following receiving
the signal of the slots2, 3, . . . , L+ 1, the source’s message
is decoded. In the following theorem, we show that as long
asL is above a certain threshold, the probability of the third
outage event is negligible compared to the first two outage
events and hence, the optimum DMT is achievable by the RS
scheme.



Theorem 2 Consider the two-hop network consisiting of a
source withm antenna and a destination withn antenna
which are connected through a full-duplex relay node with
p antenna. Let us defineq = min(m,n). Providing L is
large enough such thatL ≥ min2(p, q)max(p, q), the RS
scheme achieves the optimum DMT which is the piecewise-
linear function connecting the points(k, (p−k)(q−k)), k =
0, 1, . . . ,min(p, q).

Proof: Using Lemma 1, the DMT of the system using
the proposed RS scheme is equal to the DMT of the following
system:

Y = αΩXt + Nd, (16)

whereXt , [xt(1), · · · ,xt(L)]
T , Y = [y(1), · · · ,y(L)]

T ,
andNd , [nd(1), · · · ,nd(L)]

T , in which xt(l) denotes the
transmitted signal vector in thelth slot, andy(l) andnd(l)
denote the received signal and the noise at the destination
corresponding to the signal sent in this slot, and

Ω ,











A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...
0 0 · · · AL











, (17)

in which Al , GΘlH. Hence, the matrix of the end-to-
end channel is a block diagonal matrix consisting ofAl’s.
Assuming that the transmitted signals in each block are
independent of each other, the mutual information between
the input and the output of (16) can be written as

I(Xt;Y) =

L
∑

l=1

log

∣

∣

∣

∣

I + α2 P

M
AlA

H
l

∣

∣

∣

∣

, (18)

in which, it is assumed thatxt(l) ∼ CN (0, P
M

Im), ∀l =
1, · · · , k. Using the above equation, the probability of outage
can be written as

P{O} = P

{

L
∑

l=1

log

∣

∣

∣

∣

I + α2 P

m
AlA

H
l

∣

∣

∣

∣

< Lr log(P )

}

= P







L
∑

l=1

min(p,q)
∑

j=1

log

(

1 + α2 P

m
λj(Al)

)

< Lr log(P )







,

whereλi(A) denotes theith ordered eigenvalue ofAHA

(λ1 > λ2 > · · · > λmin). Definingγj(B) , − log(λj(B))
log(P ) and

δ , − log(α2)
log(P ) , we have

P{O} .
= P







L
∑

l=1

min(p,q)
∑

j=1

(1 − δ − γj(Al))
+ < Lr







. (19)

It is shown in [19] thatα
.
= 1, with probability one4.

Accordingly, one can replaceδ by zero in (19), which results

4More precisely, with probability greater than1 − P−δ for any δ > 0

in

P{O} .
= P







L
∑

l=1

min(p,q)
∑

j=1

(1 − γj(Al))
+
< Lr







. (20)

Moreover, it is shown in [19] that we can assumeγj(Al) ≥
0, ∀j = 1, · · · ,min(p, q), i.e. imposing the constraint
γj(Al) ≥ 0 does not change the DMT.

In order to compute the outage probability in (20), we
need to find the statistical behavior ofγj(Al). Since we are
interested in upper-bounding the outage probability, finding
an upper-bound forγj(Al), or equivalently, a lower-bound
for λj(Al) would be sufficient. This is performed in the
following lemma:

Lemma 2 Consider matricesG andH with the size ofm×p
and p × n, respectively, and ap × p matrix Θ. AssumeG
andH are SVD decomposed asG = U(G)Λ

1
2 (G)VH(G)

andH = U(H)Λ
1
2 (H)VH(H), respectively. We have

λi (GΘH) ≥ λi(G)λi(H)λmin

(

VH
(1,i)(G)ΘU(1,i)(H)

)

,

where λi(A) and λmin(A) denote thei’th largest eigen-
value and the minimum eigenvalue ofAHA, respectively,
and A(a,b) denotes the submatrix ofA consisting of the
a, a+ 1, . . . , b’th columns ofA.

Proof: See [19].
The good thing about the above lemma is thatλi(Al) is

related toλi(G) andλi(H), which fascilitates the subsequent
derivations. A direct consequence of the above lemmas is that

γi(Al) ≤ γi(G) + γi(H) + γmin(Ψi,l), (21)

where Ψi,l , VH
(1,i)(G)ΘlU(1,i)(H). As the statistical

behaviors ofγi(G) and γi(H) are known from [14], it is
sufficient to derive the asymptotic behavior ofγmin(Ψi,l) or
equivalently,λmin(Ψi,l), which is performed in the following
lemma:

Lemma 3 Assuming small enoughε, we have

P {λmin(Ψi,l) ≤ ε} ≤ η i
√
ε, (22)

for some constantη.

Proof: See [19].
A direct consequence of the above lemma is that

P {γmin(Ψi,l) > θ} ≤̇P− θ
i . Defining the1 × L vectorψ as

ψ(l) , max
i
γmin(Ψi,l), we have

P {ψ ≥ ψ0}
(a)
=

L
∏

l=1

P {ψ(l) ≥ ψ0(l)}

=

L
∏

l=1

P







min(p,q)
⋃

i=1

(γmin(Ψi,l) ≥ ψ0(l))







(b)

≤̇ P−
1·ψ0

min(p,q) (23)



As Θl’s are independent isotropic unitary matrices, their
products with any possibly correlated set of unitary matrices
constructs a set of independent isotropic unitary matrices
[17]. Accordingly,Ψi,l’s are independent for different values
of l which results in(a). Also, (b) follows from Lemma 3
and the union bound inequality.

Let us define the1 × min(p, q) vectors χ(H) ,
[

γmin(p,m)(H), γmin(p,m)−1(H), . . . , γ1+min(p,m)−min(p,q)(H)
]

and χ(G) ,
[

γmin(p,n)(G), . . . , γ1+min(p,n)−min(p,q)(G)
]

.
Notice that these vectors include the log-values of the
correspondingmin(p, q) smallest eigenvalues ofHHH and
GGH , respectively. Now, applying the result of Lemma 2
to (20), we can upper-bound the outage probability of the
end-to-end channel as

P{O}≤̇

P







L
∑

l=1

min(p,q)
∑

i=1

(1 − γi(G) − γi(H) − γmin(Ψi,l))
+ < Lr







≤̇P







L
∑

l=1

min(p,q)
∑

i=1

(1 − γi(G) − γi(H) − ψ(l))+ < Lr







≤̇P







L
∑

l=1

min(p,q)
∑

i=1

(1 − χi(G) − χi(H) − ψ(l))
+
< Lr







(24)

Here, the problem is that according to (23), we have
an upper-bound forP {ψ ≥ ψ0} which is not necessarily
sufficient to upper-bound the probability of the region of
(ψ,χ(H),χ(G)) that satisfies (24). Indeed, for this purpose,
we need the following Lemma.

Lemma 4 Consider a fixed regionR ⊆ [0,∞)n. Assume
that a uniformly continuous5 non-negative functionf(x)
(f(x) ≥ 0) is defined over[0,∞)n such that for allx ∈
[0,∞)n, we haveP {y ≥ x} ≤̇P−f(x) where a(P )≤̇b(P )

means lim
P→∞

log(a(P ))

log(P )
≤ lim
P→∞

log(b(P ))

log(P )
. Then, we have

P {x ∈ R} ≤̇P− infx∈R f(x). (25)

Proof: See [19].
According to the upper-bound in (23) and the distribution

of χ(G),χ(H) derived in [14], we have

P

{

ψ ≥ ψ̂,χ(G) ≥ χ̂(G),χ(H) ≥ χ̂(H)
}

≤̇

P− 1
min(p,q)

P

L
l=1 ψ̂(l)−

Pmin(p,q)
i=1 (2i−1+|p−q|)(χ̂i(G)+χ̂i(H)).(26)

Now, we can apply the result of Lemma 4 to the region
defined in (24) and the upper-bound derived in (26). Accord-
ingly, we have

P {O} ≤̇P−min(χ(G),χ(H),ψ)∈R

PL
l=1 ψ(l)

min(p,q)
+f(χ(G)+χ(H)), (27)

5A uniformly continuousfunction f : M → N whereM ⊆ R
m,N ⊆

R
n is a function that has the following property: for everyǫ, there exists

a constantg(ǫ) such that for allx, y ∈ M, ‖x − y‖ ≤ g(ǫ), we have
‖f(x) − f(y)‖ ≤ ǫ.

where f : R
min(p,q) → R is defined asf(ψ) =

∑min(p,q)
i=1 (2i− 1+ |p− q|)ψi and the regionR is defined as

R ,

{

(χ(G),χ(H),ψ)

∣

∣

∣

∣

∣

ψ ≥ 0, χ1(G) ≥ · · · ≥

χmin(p,q)(G) ≥ 0, χ1(H) ≥ · · · ≥ χmin(p,q)(H) ≥ 0

,

L
∑

l=1

min(p,q)
∑

i=1

(1 − χi(G) − χi(H) − ψ(l))
+ ≤ Lr







Let us assume L is large enough such that
L ≥ min(p, q)

(

∑min(p,q)
i=1 2i− 1 + |p− q|

)

=

min2(p, q)max(p, q). We define the1 × min(p, q) vector
ϕ as ϕi , χi(G) + χi(H) + 1

L

∑L
l=1 ψ(l). For each

(χ(G),χ(H),ψ) ∈ R, we have

Lr ≥
L
∑

l=1

min(p,q)
∑

i=1

(1 − χi(G) − χi(H) − ψ(l))
+

≥
min(p,q)
∑

i=1

max

{

0,

L
∑

l=1

1 − χi(G) − χi(H) − ψ(l)

}

= L

min(p,q)
∑

i=1

(1 − ϕi)
+
. (28)

On the other hand, according to (27) and the definition ofϕ,
we conclude that

P{O}≤̇P−min(χ(G),χ(H),ψ)∈R

Pmin(p,q)
i=1 (2i−1+|p−q|)ϕi . (29)

Notice that according to the definition ofϕ, we can easily
conclude thatϕ1 ≥ · · · ≥ ϕmin(p,q) ≥ 0. Hence, applying
(28) and (29), we can upper-bound the outage probability as

P{O}≤̇P−min
ϕ∈R̂

Pmin(p,q)
i=1 (2i−1+|p−q|)ϕi (30)

whereR̂ is defined as

R̂ ,







ϕ

∣

∣

∣

∣

∣

∣

ϕ1 ≥ · · · ≥ ϕmin(p,q) ≥ 0,

min(p,q)
∑

i=1

(1 − ϕi)
+ ≤ r







(31)
According to [14], (30) and (31) define the probability of
outage from the rater log(P ) in an equivalentp× q MIMO
point-to-point channel. Hence, we havedRS(r) ≥ dp×q(r).
On the other hand, due to the cut-set bound Theorem [20], we
know that the DMT of the system is upper-bounded by the
minimum of the DMT of the equivalent point-to-pointp×m
and n × p channels. Hence,dRS(r) ≤ dopt(r) = dp×q(r).
Accordingly, we havedRS(r) = dopt(r) = dp×q(r) which
completes the proof.

The statement of Theorem 2 can be generalized to multi-
hop networks as follows.

Theorem 3 Consider a multi-antenna multi-hop network
consisiting of a single source and destination and full-duplex
relays, with exactly one relay in each hop and assume all
the nodes are equipped withN antennas. ProvidingL is



large enough such thatL ≥ N3, the RS scheme achieves
the optimum DMT which is the piecewise-linear function
connecting the points(k, (N − k)2), k = 0, 1, . . . , N .

Proof: See [19].

B. Parallel Relay Network

Theorem 4 Consider a multi-antenna parallel relay net-
work consisiting of a source equipped withm antenna, a
destination equipped withn antenna andK half-duplex
relays each equipped withp antenna. Assume that there
exists no direct link between the source and the desti-
nation. For any fixedB ≥ min2(p, q)max(p, q), the RS
scheme withL = BK, S = BK + 1, the path sequence
Q ≡ (q1, . . . , qK , q1, . . . , qK , . . . , q1, . . . , qK) whereqk ≡
(0, k,K+1) and the timing sequencesi,j = i+j−1 achieves
the diversity gain

dRS(r) ≥ Kdp×q

((

1 +
1

BK

)

r

)

, (32)

whereq , min(m,n) anddp×q(r) denotes the diversity gain
of the point-to-point MIMOp× q channel corresponding to
the rate r log(P ). Moreover, asB → ∞, the RS scheme
achieves the diversity gainKdp×q(r).

Proof: See [19].
In the following Theorem, we show thatKdp×q(r) is the
optimum DMT for the 2 relays half-duplex parallel relay
network in whichm = n.

Theorem 5 Consider a multi-antenna parallel relay network
consisiting of a source and a destination each equipped with
m antennas, andK = 2 half-duplex relays equipped with
nk, k = 1, 2 antennas. Assume that there exists no direct
link between the source and the destination. Consider the RS
scheme withL = BK, S = BK+1, and the path and timing
sequences defined in Theorem 4. AsB → ∞, the RS scheme
achieves the optimum DMT of the network.

Proof: First, notice that according to the argument of
Theorem 4, asB → ∞, the RS scheme achieves the DMT
dRS,∞(r) , min0≤ν≤2r dm×n1(ν) + dm×n2(2r − ν). Now,
to proof the Theorem, we just have to show thatdRS,∞(r)
is indeed an upper-bound for the optimum DMT. According
to the cut-set Theorem [20], we have an upper-bound for
the capacity of the network for each channel realization.
Hence, we can apply the cut-set Theorem to find an upper-
bound for the optimum DMT. In general, for any general
half-duplex relay network withK number of relays and any
set {0} ⊆ S ⊆ {0, 1, . . . ,K}, we say the network is in the
stateS, if the network nodes inS are transmitting and the
network nodes inSc , {0, 1, . . . ,K + 1} /S are receiving.
Notice that as the source is always transmitting and the
destination is always receiving, we have0 ∈ S,K + 1 ∈ Sc.
Accordingly, we define a1 × 2K state vectorρ such that
for any setS ⊆ {1, 2, . . . ,K}, ρS shows the portion of
time that the half-duplex relay network spends in thestate

S (
∑

S⊆{1,2,...,K} ρS = 1). As the relay nodes and the
source are assumed to have no channel state knowledge, we
can assume that a fixed state vectorρ is associated with
the strategy that achieves the optimum DMT. Denoting the
outage event byO, for any general half-duplex relay network
consisiting ofK relays, we have

P {O}
(a)

≥ min
ρ

P

{

⋃

{0}⊆T ⊆{0,1,...,K}

(

∑

{0}⊆S⊆{0,1,...,K}

ρSI
(

X (S ∩ T ) ;Y (Sc ∩ T c)|X (S ∩ T c)
)

< r log(P )

)}

(b).
= min

ρ

max
{0}⊆T ⊆{0,1,...,K}

P

{

∑

{0}⊆S⊆{0,1,...,K}

ρS×

I
(

X (S ∩ T ) ;Y (Sc ∩ T c)|X (S ∩ T c)
)

< r log(P )

}

.(33)

Here,(a) follows from the cut-set bound Theorem [20] and
(b) follows from the union bound on the probability. Now, in
our 2-relay parallel setup, let us define two setsT1 , {0, 1}
andT2 , {0, 2} corresponding to two cut-sets. Moreover, let
us define two eventsO1 andO2 as

O1 ,
{∣

∣Im + PG1G
H
1

∣

∣ ≤ ν̂ log(P ),
∣

∣In2 + PH2H
H
2

∣

∣ ≤ (2r − ν̂) log(P )
}

, (34)

and

O2 ,
{∣

∣In1 + PH1H
H
1

∣

∣ ≤ ν̂ log(P ),
∣

∣Im + PG2G
H
2

∣

∣ ≤ (2r − ν̂) log(P )
}

, (35)

where ν̂ , argmin
0≤ν≤2r

dm×n1(ν) + dm×n2(2r − ν). Hence, in

our setup,(33) can be simplified as

P {O}
(a)

≥̇min
ρ

max

(

P

{

∑

{0}⊆S⊆{0,1,2}

ρSt1(S) ≤ r log(P )

}

,

P

{

∑

{0}⊆S⊆{0,1,2}

ρSt2(S) ≤ r log(P )

})

≥min
ρ

max

(

P

{

(

ρ{0,1} + ρ{0,1,2}

)

∣

∣Im + PG1G
H
1

∣

∣

+
(

ρ{0} + ρ{0,1}
) ∣

∣In2 + PH2H
H
2

∣

∣ ≤ r log(P )

}

,

P

{

(

ρ{0,2} + ρ{0,1,2}
) ∣

∣Im + PG2G
H
2

∣

∣+

(

ρ{0} + ρ{0,2}
) ∣

∣In1 + PH1H
H
1

∣

∣ ≤ r log(P )

})

(b)

≥min
ρ

max
(

Y1P {O1} ,Y2P {O2}
)

(c)

≥̇P−dRS,∞(r), (36)
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Fig. 1. Parallel relay network withK = 2 relays, each node with3
antennas and no direct link between source and destination.

where ti(S) , I
(

X (S ∩ Ti) ;Y (Sc ∩ T c
i )|X (S ∩ T c

i )
)

,

Y1 , 1
[

r −
(

ρ{0,1,2} + ρ{0,1}
)

ν̂ −
(

ρ{0,1} + ρ{0}
)

(2r − ν̂)
]

,
Y2 , 1

[

r −
(

ρ{0} + ρ{0,2}
)

ν̂ −
(

ρ{0,2} + ρ{0,1,2}
)

(2r − ν̂)
]

,
and 1[x] = 1 for x ≥ 0 and is 0 otherwise. Here,
(a) results from taking the maximization of the
right-hand side of (33) overT1, T2. (b) results from
the facts that i) conditioned onO1 and assuming
r ≥

(

ρ{0,1,2} + ρ{0,1}
)

ν̂ +
(

ρ{0,1} + ρ{0}
)

(2r − ν̂),
we have

(

ρ{0,1} + ρ{0,1,2}
) ∣

∣Im + PG1G
H
1

∣

∣ +
(

ρ{0} + ρ{0,1}
) ∣

∣In2 + PH2H
H
2

∣

∣ ≤ r log(P );
and ii) conditioned on O2 and assuming
r ≥

(

ρ{0} + ρ{0,2}
)

ν̂ +
(

ρ{0,2} + ρ{0,1,2}
)

(2r − ν̂),
we have

(

ρ{0,2} + ρ{0,1,2}
) ∣

∣Im + PG2G
H
2

∣

∣ +
(

ρ{0} + ρ{0,2}
) ∣

∣In1 + PH1H
H
1

∣

∣ ≤ r log(P ). Knowing
P {O1} = P {O2} .

= P−dm×n1(ν̂)−dm×n2(2r−ν̂) =
P−dRS,∞(r) and the fact that1[x] + 1[y] ≥ 1[x + y] result
in (c). (36) completes the proof of the Theorem.

However, if we do not apply random unitary matrix
multiplication at the relay nodes, applying the proof-steps of
Theorem 4, one can easily show that the RS scheme achieves
the DMTKdGH(r) wheredGH(r) denotes the DMT of the
product of the channel matrixH from the source to the relay
and the channel matrixG from the relay to the destination
(see (15)). Finally, applying the NAF scheme, one can easily
show that the DMTKdGH(2r) is achievable.

C. Multiple-Antenna Single Relay Channel

[11] shows that in the multiple-antenna half-duplex single
relay channel consisiting of the source, relay, and the desti-
nation equipped withm,p, andn antennas, respectively, the
NAF protocol achieves the DMTdNAF (r) ≥ dm×n(r) +
dGH(2r). Here, we show that using random independent
unitary marices also improves the DMT of the NAF scheme
for the multiple-antenna single relay channel.

Theorem 6 Consider the multiple-antenna half-duplex sin-
gle relay channel consisiting of a source, a relay, and a
destination equipped withm,p, andn antennas, respectively.
Let us consider a modified NAF scheme in which the received

signal is multiplied by a random unitary matrix at the relay
node and finally, multiplied by a scalarα ≤ 1 such that
the output power constraint is satisfied. Let us assume that
the modified NAF scheme is applied forB consecutive slots.
AssumingB ≥ min2(p, q)max(p, q) whereq , min(m,n),
the modified NAF scheme achieves the DMT

dMNAF (r) ≥ dm×n(r) + dp×q(2r). (37)

Proof: See [19].
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