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Abstract— We consider the problem of cooperative commu-
nication for a network composed of two half-duplex parallel
relays with additive white Gaussian noise. Two protocols, i.e.,
Simultaneous and Successive relaying, associated with two pos-
sible relay orderings are proposed. The simultaneous relaying
protocol is based onDynamic Decode and Forward (DDF) scheme.
For the successive relaying protocol, aNon-Cooperative Coding
based onDirty Paper Coding (DPC) is proposed. We also propose a
general achievable rate based on the combination of the proposed
simultaneous and successive relaying schemes. The optimum
ordering of the relays and hence the capacity of the half-duplex
Gaussian parallel relay channel in low and high SNR scenarios
is derived. In low SNR scenario, we show that under certain
conditions for the channel coefficients the ratio of the achievable
rate of the simultaneous relaying protocol, based on theDDF
scheme, to the cut-set bound of the half-duplex Gaussian parallel
relay channel tends to 1. On the other hand, as SNR goes to
infinity, we prove that successive relaying protocol, basedon the
DPC scheme, asymptotically achieves the capacity of the network.

I. I NTRODUCTION

The continuous growth in wireless communication has mo-
tivated information theoretists to extend shannon’s information
theoretic arguments for a single user channel to the scenarios
that involve communication among multiple users. In this
regard, cooperative wireless communication has been in the
focus of attention during recent years.

Basically, relay channel is a three terminal network which
was introduced for the first time by Van der Meulen in 1971
[1]. The most important capacity results of relay channel
were reported by Cover and El Gamal [2]. Relaying strategies
for the network with multiple relays have been discussed in
[3]- [6]. Schein in [3] studied the possible coding scheme
for a parallel relay channel, which consists of a source, two
parallel relays, and the final destination. Later on, authors
in [4] considered cooperative strategies for general multiple
relay network. These works are dealt with full-duplex relay
networks.

Since the current operating radios that can receive and
transmit simultaneously in the same frequency band require
complex and expensive components, half-duplex relaying has
drawn a great deal of attention recently.

In this paper, we study transmission strategies for a network
with a source, a destination, and two half-duplex relays with

additive white Gaussian noise which cooperate with each
other to facilitate data transmission from the source to the
destination.

Half-duplex relaying, in multiple relay networks, is studied
in [8] [13]- [21]. Gastpar in [8] show that in a half-duplex
Gaussian parallel relay channel with infinite number of relays,
the optimum coding scheme is AF. Rankov and Wittneben in
[13] [14] further study the problem of half-duplex relayingin a
two-hop communication scenario. In their study of half-duplex
networks, they also consider a parallel relay setup with two
relays where there is no direct link between the source and the
destination, while there exists a link between the relays. Their
relaying protocols are based on either AF or DF, in which the
relays successively forward their messages from the sourceto
the destination. We call this protocol “Successive Relaying”
in the sequel. Xue and Sandhu in [15] further study different
half-duplex relaying protocols for the Gaussian parallel relay
channel.

In this work, we consider the problem of half-duplex relay-
ing in a network with two relays in which there is no direct
link between the transmitter and the receiver. Our primary
objective is to find the best ordering of the relays. We consider
two relaying protocols, i.e., simultaneous relaying versus suc-
cessive relaying, associated with two possible relay orderings.
For simultaneous relaying, each relay exploits “Dynamic DF
(DDF)”. It should be noted that the DDF scheme proposed
here is slightly different from the DDF introduced in [18] and
[19]. In those works, they apply DDF scheme to the set-up
of the single relay channel where the nodes have just the CSI
of their receiving channel. For successive relaying, we study
a Non-Cooperative Codingscheme based on “Dirty Paper
Coding (DPC)”. In [21], we also study anotherCooperative
Coding scheme based on “Block Markov Encoding (BME)”
comprehensively and compare it with theNon-Cooperative
Coding scheme. It is worth noting that the authors in [20]
also propose successive relaying protocol for the set up with
two parallel relays and a direct link between the source and
the destination. They propose a simple repetition coding atthe
relays, and show that their scheme can recover the loss in the
multiplexing gain, while achieving some diversity gain.

We derive the optimum relay ordering in low and high SNR
scenarios. In low SNR scenarios and under certain channel



conditions, we show that the ratio of the achievable rate of
DDF for simultaneous relaying to the cut-set bound tends to
one. On the other hand, in high SNR scenarios, we prove
that the proposed DPC for successive relaying asymptotically
achieves the capacity. Unlike [16], in which the authors only
consider successive relaying and propose a combined BME
and DPC scheme, in this paper we combine simultaneous and
successive relaying protocols and propose a general achievable
rate for a half-duplex Gaussian parallel relay channel with
two relays. We show that in low SNR scenario and under
certain channel conditions, our general achievable schemeis
converted to simultaneous relaying based on DDF, while in the
high SNR scenarios, when the ratio of the relay powers to the
source power remain constant, it becomes successive relaying
based on DPC to achieve the capacity. In [21], we also prove
that not only BME with backward decoding achieves better
rate against BME with successive decoding, it also leads to a
simple strategy in which at most one of the relays is required
to cooperate with the other one in sending the bin index of
the other relay’s message. Accordingly, the combination of
employing BME at one relay and DPC at the other one always
achieves better rate than BME at both relays.

The rest of the paper is organized as follows. In section II,
the system model is introduced. In section III, the achievable
rates and coding schemes for a half-duplex relay network
are derived. Optimality results are discussed in section IV.
Simulation results are presented in section V. Finally, section
VI concludes the paper.

A. Notation

Throughout the paper, the superscriptH stands for matrix
operation of conjugate transposition. Lowercase bold letters
and regular letters represent vectors and scalars, respectively.
For any two functionsf(n) and g(n), f(n) = O(g(n)) is

equivalent tolimn→∞

∣

∣

∣

f(n)
g(n)

∣

∣

∣ < ∞, and f(n) = Θ(g(n)) is

equivalent tolimn→∞
f(n)
g(n) = c, where 0 < c < ∞. And

C(x) , 1
2 log2(1 + x).

II. SYSTEM MODEL

Our setup is a Gaussian network which consists of a source,
two half-duplex relays, and a destination, and there is no direct
link between the source and the destination. Here we define
four time slots according to the transmitting and receiving
mode of each relay (See Figure 1). The portion of the time that
the communication is performed in time slotb is denoted by
tb (
∑4

b=1 tb = 1). Nodes 0, 1, 2, and 3 represent the source,
relay 1, relay 2, and the destination, respectively. Moreover,
the transmitting and receiving signals at nodea during time
slot b are represented byx(b)

a andy(b)
a , respectively. Hence, at

each nodec ∈ {1, 2, 3} we have

y(b)
c =

∑

a∈{0,1,2}

hacx(b)
a + z(b)

c . (1)

wherehac
,s denote channel coefficients from nodea to node

c, and z(b)
c

,s are AWGN terms with zero mean and variance
of “1” per dimension at each nodec.

d) Time slot 4 with duration t4:
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3 .
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(4)
1 and x

(4)
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(1)
0 and x

(1)
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The first relay and the destination receive
y

(1)
1 and y

(1)
3 , respectively.

The source and the second relay transmit The source and the first relay transmit
the vectors x

(2)
0 and x

(2)
1 .

The second relay and the destination receive
y

(2)
2 and y

(2)
3 , respectively.
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Relay 1

Relay 2
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h13
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a) Time slot 1 with duration t1:

c) Time slot 3 with duration t3:

b) Time slot 2 with duration t2:

Fig. 1. System Model.

Noting the transmission strategies in Fig. 1, we have

y(1)
1 = h01x(1)

0 + h21x(1)
2 + z(1)

1 , (2)

y(1)
3 = h23x(1)

2 + z(1)
3 , (3)

y(2)
2 = h02x(2)

0 + h12x(2)
1 + z(2)

2 , (4)

y(2)
3 = h13x(2)

1 + z(2)
3 , (5)

y(3)
k = h0kx(3)

0 + z(3)
k , k ∈ {1, 2}, (6)

y(4)
3 =

2
∑

k=1

hk3x(4)
k + z(4)

3 . (7)

Throughout the paper, we assume thath01 ≥ h02 unless
specified otherwise, and from reciprocity assumption, we have
h12 = h21. Furthermore, the power constraintsP0, P1, andP2

should be satisfied for the source, the first relay, and the second
relay, respectively. Hence, denoting the power consumption of
nodea at time slotb by P

(b)
a = E

[

x(b)H
a x(b)

a

]

, we have

P
(1)
0 + P

(2)
0 + P

(3)
0 = P0, (8)

P
(2)
1 + P

(4)
1 = P1,

P
(1)
2 + P

(4)
2 = P2.

III. A CHIEVABLE RATES AND CODING SCHEMES

In this section, we propose two cooperative protocols,
i.e. Successiveand Simultaneousrelaying, for a half-duplex
Gaussian parallel relay channel.

A. Successive Relaying Protocol

In successive relaying protocol, at each odd and even
time slots with durationst1 and t2, source transmits a new
message to one of the relays, and the destination receives
a new message from the other relay, successively. Hence, in
successive relaying protocol,t3 = t4 = 0, and the relations
between the transmitted and received signals at the relays and
the destination follow from (2)-(5). For the successive relaying
protocol, we propose aNon-Cooperative Codingin the sequel.



1) Non-Cooperative Coding:In Non-Cooperative Coding
scheme, each relay considers the other one’s signal as interfer-
ence (See Figure 2). Since the transmitter knows each relay’s
message, it can apply the Gelfand-Pinsker’s coding scheme to
transmit its message to each of the relays. In this case, we
have the following theorem.

R(1)

Source Destination Source Destination

Time Slot 1 with duration t1 Time Slot 2 with duration t2

R(1)

R(2) R(2)

Fig. 2. Non-Cooperative Coding for successive relaying protocol for
two relays.

Theorem 1 For the half-duplex parallel relay channel, assum-
ing successive relaying, the following rateRDPC is achiev-
able:

RDPC = max
0≤t1,t2,t1+t2=1

R(1) + R(2), (9)

subject to:

R(1) ≤ min
(

t1(I(U
(1)
0 ; Y

(1)
1 ) − I(U

(1)
0 ; X

(1)
2 )),

t2I(X
(2)
1 ; Y

(2)
3 )

)

, (10)

R(2) ≤ min
(

t2(I(U
(2)
0 ; Y

(2)
2 ) − I(U

(2)
0 ; X

(2)
1 )),

t1I(X
(1)
2 ; Y

(1)
3 )

)

. (11)

with probabilities:

p(x
(1)
2 , u

(1)
0 , x

(1)
0 ) = p(x

(1)
2 )p(u

(1)
0 |x(1)

2 )p(x
(1)
0 |u(1)

0 , x
(1)
2 ),

p(x
(2)
1 , u

(2)
0 , x

(2)
0 ) = p(x

(2)
1 )p(u

(2)
0 |x(2)

1 )p(x
(2)
0 |u(2)

0 , x
(2)
1 ).

Proof: Codebook Construction:
Let us divide time slot numberb, b = 1, 2, · · · , B + 1 into
odd and even numbers. At odd and even time slots, source
generates2nR(1)

u and2nR(2)
u sequencesu(1)

0 (q1) andu(2)
0 (q2)

according to
∏t1n

i=1 p(u
(1)
0,i ) and

∏t2n

i=1 p(u
(2)
0,i ), respectively.

Then, source throwsu(1)
0 and u(2)

0 sequences uniformly into
2nR(1)

and2nR(2)

bins, respectively.
Relay 1 and relay 2 generate2nR(1)

and2nR(2)

i.i.d x(2)
1 and

x(1)
2 sequences according to probabilities

∏t2n

i=1 p
(

x
(2)
1,i

)

and
∏t1n

i=1 p
(

x
(1)
2,i

)

. Furthermore, for allq1 andq2, the source gen-

erates double indexed code-booksx(1)
0

(

w(b)|w(b−1), q1

)

and

x(2)
0

(

w(b)|w(b−1), q2

)

according to
∏t1n

i=1 p(x
(1)
0,i | x

(1)
2,i , u

(1)
0,i )

and
∏t2n

i=1 p(x
(2)
0,i | x

(2)
1,i , u

(2)
0,i ), respectively.

Encoding:
Encoding at the source:
In the odd time slotb, since source knows what it has
transmitted during the even time slot, from the desired bin

w(b) ∈ {1, · · · , 2nR(1)}, it chooses a codewordu(1)
0 (q1) such

that q1 ∈ f−1
Bin

(

w(b)
)

and
(

u(1)
0 (q1) , x(1)

2

(

w(b−1)
)

)

∈ A
(n)
ǫ

(The binning functionfBin(qi) : Qi = {1, 2, · · · , 2nR(i)
u }

−→ {1, 2, . . . , 2nR(i)} is defined byfBin(qi) = w(b), ∀i ∈
{1, 2}. WherefBin(.) assigns a randomly uniform distributed
integer w(b) between 1 and2nR(i)

independently to each
memberqi of Qi.). Such a task can be done almost surely,
if R

(1)
u − R(1) ≥ t1I

(

U
(1)
0 ; X

(1)
2

)

( [7]). Following that it

sendsx(1)
0 (u(1)

0 , x(1)
2 ). Similarly, in even time slots, the source

sendsx(2)
0 (u(2)

0 , x(2)
1 ) if R

(2)
u − R(2) ≥ t2I

(

U
(2)
0 ; X

(2)
1

)

.
Encoding at relay 1:
Relay 1 encodesw(b) ∈ {1, · · · , 2nR(1)} to x(2)

1

(

w(b)
)

in even
time slots.
Encoding at relay 2:
Relay 2 encodesw(b) ∈ {1, · · · , 2nR(2)} to x(1)

2

(

w(b)
)

in odd
time slots.
Decoding:
Decoding at relay 1:
In odd time slotb, relay 1 declareŝw(b) = fBin (q1) iff all
the sequencesu(1)

0 (q1) which are jointly typical withy(1)
1

belong to a unique bin̂w(b). Therefore, in order to make the
probability of error zero from [7], we have

R(1)
u ≤ t1I

(

U
(1)
0 ; Y

(1)
1

)

. (12)

According to (12) and the encoding at source, we have

R(1) ≤ t1

(

I(U
(1)
0 ; Y

(1)
1 ) − I(U

(1)
0 ; X

(1)
2 )
)

. (13)

Decoding at relay 2:
In even time slotb, relay 2 declaresŵ(b) = fBin (q2) iff
all the sequencesu(2)

0 (q2) which are jointly typical withy(2)
2

belong to a unique bin̂w(b). Therefore, in order to make the
probability of error zero from [7], we have

R(2)
u ≤ t2I

(

U
(2)
0 ; Y

(2)
2

)

. (14)

According to (14) and the encoding at source, we have

R(2) ≤ t2

(

I(U
(2)
0 ; Y

(2)
2 ) − I(U

(2)
0 ; X

(2)
1 )
)

. (15)

Decoding at the final destination:
In odd time slot b, destination declareŝw(b) = w(b) iff
(

x(1)
2

(

ŵ(b)
)

, y(1)
3

)

∈ A
(n)
ǫ . Hence, in order to make the

probability of error zero from [7], we have

R(1) ≤ t1I(X
(1)
2 ; Y

(1)
3 ). (16)

Similarly in even time slotb, we have

R(2) ≤ t2I(X
(2)
1 ; Y

(2)
3 ). (17)

From the encoding at the source and (12)-(17), we obtain (9)-
(11).

From Theorem 1, we have the following corollary for the
Gaussian case.
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h01

h23

Destination

h13

h02

t3 t4

Source

Relay 1

Fig. 3. Simultaneous relaying protocol for two relays.

corollary 1 For the half-duplex Gaussian parallel relay chan-
nels, assuming successive relaying protocol with power con-
straints at the source and at each relay, DPC achieves the
following rate

RDPC= max
(

R(1) + R(2)
)

, (18)

subject to:

R(1) ≤ min

(

t1C

(

h2
01P

(1)
0

t1

)

, t2C

(

h2
13P1

t2

)

)

,

R(2) ≤ min

(

t2C

(

h2
02P

(2)
0

t2

)

, t1C

(

h2
23P2

t1

)

)

,

P
(1)
0 + P

(2)
0 = P0,

t1 + t2 = 1,

0 ≤ t1, t2, P
(1)
0 , P

(2)
0 .

Proof: From Costa’s Dirty Paper Coding [12], by having

U
(1)
0 = X

(1)
0 +

h01h12P
(1)
0

h2
01P

(1)
0 + t1

X
(1)
2 , (19)

U
(2)
0 = X

(2)
0 +

h02h12P
(2)
0

h2
02P

(2)
0 + t2

X
(2)
1 . (20)

where X
(1)
0 ∼ N (0, P

(1)
0 ), X

(2)
0 ∼ N (0, P

(2)
0 ), X

(1)
2 ∼

N (0, P2), and X
(2)
1 ∼ N (0, P1), and applying them to

Theorem 1, we obtain corollary 1.

B. Simultaneous Relaying Protocol

Then, Figure 3 shows simultaneous relaying protocol for
two relays. In simultaneous relaying, in one time slot of
duration t3 the source transmits its signal simultaneously to
the two relays. In the next time slot of durationt4, two relays
transmit their signal coherently to the final destination. Hence,
in this protocol,t1 = t2 = 0 and our system model follows
from (6) and (7).

1) Dynamic Decode-and-Forward (DDF):In DDF scheme
each relay decodes the transmitted message from the source
in time slot t3 (Broadcast State (BC)), and forwards its
re-encoded version in time slott4 (Multiple Access State
(MAC)). Hence, the achievable rate of DDF is equal to
RDDF = Rp + Rc, where (Rp, Rc) should be both in the
capacity region of BC (corresponding to the BC state) and
MAC (corresponding to the MAC state). Since what the second
relay receives is a degraded version of what the first relay

receives (h01 ≥ h02), applying the superposition coding of
the degraded BC [7] the following rates are achievable for the
first hop:

Rp ≤ t3I(X
(3)
0 ; Y

(3)
1 | U

(3)
0 ),

Rc ≤ t3I(U
(3)
0 ; Y

(3)
2 ). (21)

with probability p(u
(3)
0 , x

(3)
0 ) = p(u

(3)
0 )p(x

(3)
0 |u(3)

0 ).
And using the superposition coding of the extended MAC

( [9], [10]) the following rates are achievable for the second
hop:

Rp ≤ t4I(X
(4)
1 ; Y

(4)
3 | X

(4)
2 ),

Rp + Rc ≤ t4I(X
(4)
1 , X

(4)
2 ; Y

(4)
3 ). (22)

with probability p(x
(4)
1 , x

(4)
2 ) = p(x

(4)
1 )p(x

(4)
2 |x(4)

1 ).
In the Gaussian case, the source splits its total available

power P0 to P
(3)
0−p and P

(3)
0−c associated with the“Private”

and the“Common” messages, respectively. LettingX(3)
0 ∼

N (0, P0), U
(3)
0 ∼ N

(

0, P
(3)
0−c

)

, and X
(4)
1 ∼ N (0, P1),

assuming that relay 1 and relay 2 transmit their codewords
associated with the common message withN

(

0, P
(4)
1−c

)

and

N (0, P2), and using (21) and (22) we have the following
corollary.

corollary 2 For the half-duplex Gaussian parallel relay chan-
nels, assuming simultaneous relaying protocol with power
constraints at the source and at each relay, DDF achieves
the following rate

RDDF = Rp + Rc, (23)

subject to:

Rp ≤ t3C

(

h2
01P

(3)
0−p

t3

)

,

Rc ≤ t3C

(

h2
02P

(3)
0−c

t3 + h2
02P

(3)
0−p

)

,

Rp ≤ t4C

(

h2
13P

(4)
1−p

t4

)

,

Rp + Rc ≤ t4C











h2
13P

(4)
1−p +

(

h13

√

P
(4)
1−c + h23

√
P2

)2

t4











,

t3 + t4 = 1,

P
(3)
0−p + P

(3)
0−c = P0,

P
(4)
1−p + P

(4)
1−c = P1,

0 ≤ t3, t4, P
(3)
0−p, P

(3)
0−c, P

(4)
1−p, P

(4)
1−c.

C. General Achievable Rate for the Half-Duplex Parallel
Relay Channel

In this section, we propose an achievable rate for the half-
duplex parallel relay channel with two relays. Our achievable
scheme is based on the combination of the successive relaying



d) Time slot 4 with duration t4

Source Destination

Relay 1

Relay 2

Source Destination

Relay 1

Relay 2

Source Destination

Relay 1

Relay 2

Source Destination

Relay 1

Relay 2

R1

R2

R3

R4

R6

(R7, R9)

(R8, R9)

(R5, R6)

a) Time slot 1 with duration t1 b) Time slot 2 with duration t2

c) Time slot 3 with duration t3

Fig. 4. General scheme for the half-duplex parallel relay channel.

protocol based on DPC and simultaneous relaying protocol
based on DDF. The general achievable scheme is illustrated in
Figure 4. As indicated in the figure, transmission is performed
in 4 time slots. Relay 1 transmits its private message which
has received in time slotst1 andt3 (corresponding to ratesR1

andR5) in time slotst2 andt4 (corresponding to ratesR3 and
R7). On the other hand, relay 2 transmits its private message
which has been received in time slott2 (corresponding to rate
R4) in time slotst1 andt4 (corresponding to ratesR2 andR8).
Furthermore, the two relays send the common message they
have already received in time slott3 (corresponding to rate
R6) coherently in time slott4 (corresponding to rateR9). As
observed, here we consider private rate for both relays in MAC
state, i.e. time slott4. This is due to the reason that relay 2
also receives the private message in time slott2. Hence, from
the above description and Figure 4, we have

R =min (R1 + R4 + R5 + R6, R2 + R3 + R7 + R8 + R9) ,

subject to:

R9 ≤ R6, R1 + R5 ≤ R3 + R7, R4 ≤ R2 + R8.(24)

corollary 3 For the half-duplex Gaussian parallel relay chan-
nels, with power constraints at the source and at each relay,
the following rateR is achievable

R = min

(

t1C

(

h2
01P

(1)
0

t1

)

+ t2C

(

h2
02P

(2)
0

t2

)

+

t3C

(

h2
01P

(3)
0−p

t3

)

+ t3C

(

h2
02P

(3)
0−c

t3 + h2
02P

(3)
0−p

)

,

t1C

(

h2
23P

(1)
2

t1

)

+ t2C

(

h2
13P

(2)
1

t2

)

+

t4C

(

h2
13P

(4)
1−p + h2

23P
(4)
2−p

t4

)

+

t4C











(

h13

√

P
(4)
1−c + h23

√

P
(4)
2−c

)2

t4 + h2
13P

(4)
1−p + h2

23P
(4)
2−p





















, (25)

subject to:

t4C











(

h13

√

P
(4)
1−c + h23

√

P
(4)
2−c

)2

t4 + h2
13P

(4)
1−p + h2

23P
(4)
2−p











≤

t3C

(

h2
02P

(3)
0−c

t3 + h2
02P

(3)
0−p

)

,

t1C

(

h2
01P

(1)
0

t1

)

+ t3C

(

h2
01P

(3)
0−p

t3

)

≤

t2C

(

h2
13P

(2)
1

t2

)

+ t4C

(

h2
13P

(4)
1−p

t4

)

,

t2C

(

h2
02P

(2)
0

t2

)

≤ t1C

(

h2
23P

(1)
2

t1

)

+ t4C

(

h2
23P

(4)
2−p

t4

)

,

P
(1)
0 + P

(2)
0 + P

(3)
0−p + P

(3)
0−c = P0,

P
(2)
1 + P

(4)
1−p + P

(4)
1−c = P1,

P
(1)
2 + P

(4)
2−p + P

(4)
2−c = P2,

t1 + t2 + t3 + t4 = 1,

0 ≤ t1, t2, t3, t4, P
(1)
0 , P

(2)
0 , P

(3)
0−p, P

(3)
0−c,

0 ≤ P
(2)
1 , P

(4)
1−p, P

(4)
1−c, P

(1)
2 , P

(4)
2−p, P

(4)
2−c.

Proof: Using corollaries 1, 2, and the fact that the
common message should be first decoded at the receiver side
( [21]), corollary 3 is immediate.

IV. OPTIMALITY RESULTS

In this section, an upper bound for parallel relay networks
with two relays is derived and investigated. The authors in [11]
proposed some upper bounds on the achievable rate for general
half-duplex multi-terminal networks. Here, we explain their
results briefly and apply them to our half-duplex parallel relay
network.

Authors in [11] define the concept ofstatefor a half-duplex
network with N nodes. The state of the network is avalid
partitioning of its nodes into two sets of the “sender nodes”
and the “receiver nodes” such that there is no active link that
arrives at a sender node, and t̂m is the portion of the time
that network is used in statem wherem∈ {1, 2, . . . , M}. The
following theorem for the upper bound of the information flow
from the subsetS1 to the subsetS2 of the nodes, whereS1

andS2 are disjoint is proved in [11].

Theorem 2 For a general half-duplex network withN nodes
and a finite number of states,M , the maximum achievable
information rates{Rij} from a node setS1 to a disjoint node
setS2, S1, S2 ⊂ {0, 1, . . . , N − 1}, is bounded by

∑

i∈S1,j∈S2

Rij ≤

sup
p(x

(m)
0 ,x

(m)
1 ,...,x

(m)
N−1),t̂m

min
S

M
∑

m=1

t̂mI
(

X
(m)
S ; Y

(m)
S | X

(m)
Sc

)

.



for some joint probability distribution
p(x

(m)
0 , x

(m)
1 , . . . , x

(m)
N−1) when the minimization is over

all the setsS ⊂ {0, 1, . . . , N − 1} subject toS
⋂

S1 = S1,
S
⋂

S2 = ∅ and the supremum is over all the non-negativet̂m
subject to

∑M

i=1 t̂m = 1. Here,x(m)
S , y

(m)
S , and x

(m)
Sc denote

the signals transmitted and received by nodes in setS, and
transmitted by nodes in setSc, during statem, respectively.

In high SNR scenarios, we have the following theorem.

Theorem 3 In high SNR scenarios, assuming non-zero
source-relay and relay-destination links, when power available
for the source and each relay tends to infinity, DPC achieves
the capacity of a half-duplex Gaussian parallel relay channel
as

Cup = RDPC + O

(

1

log P0

)

.

Sketch of the proofThroughout the proof, we assume the
power of the relays goes to infinity asP1 = γ1P0, P2 = γ2P0

whereγ1, γ2 are constants independent of the SNR. Applying
Theorem 2 to our set up, substitutingX(1)

0 ∼ N (0, P̂
(1)
0 ),

X
(2)
0 ∼ N (0, P̂

(2)
0 ), X

(3)
0 ∼ N (0, P̂

(3)
0 ), X

(2)
1 ∼ N (0, P̂

(2)
1 ),

X
(4)
1 ∼ N (0, P̂

(4)
1 ), X

(1)
2 ∼ N (0, P̂

(1)
2 ), and X

(4)
2 ∼

N (0, P̂
(4)
2 ) in the resulting upper bound, and assuming com-

plete cooperation between the transmitting and receiving nodes
for each cut, we obtain (26). Furthermore, from corollary 1,
the achievable rate of the DPC scheme can be expressed as

RDPC ≤ min

(

t1C

(

h2
01P

(1)
0

t1

)

+ t2C

(

h2
02P

(2)
0

t2

)

,

t2C

(

h2
02P

(2)
0

t2

)

+ t2C

(

h2
13P1

t2

)

,

t1C

(

h2
01P

(1)
0

t1

)

+ t1C

(

h2
23P2

t1

)

,

t1C

(

h2
23P2

t1

)

+ t2C

(

h2
13P1

t2

))

. (27)

By setting P
(1)
0 = P

(2)
0 = P0

2 , t1 = t2 = 0.5 in (27), and
using the following inequality

ln(x) ≤ ln(1 + x) ≤ ln(x) +
1

x
, ∀x > 0. (28)

(27) can be simplified as

RDPC ≥ 1

2
lnP0 + c. (29)

where c is some constant which depends on channel coeffi-
cients. Knowing that the term corresponding to each cut-setin
(26) for the optimum values of̂t1, · · · , t̂4 is indeed an upper-
bound for RDPC , by setting P̂

(1)
0 = P̂

(2)
0 = P̂

(3)
0 = P0

in (26), using the inequality betweenRDPC and the first
cut of (26) and the inequality (28) to lower/upper-bound the

corresponding terms, we can bound the optimum value oft̂4
in (26) as

0 ≤ t̂4 ≤ O

(

1

log P0

)

. (30)

Similarly, by considering the fourth cut in (26), we can derive
another bound on the optimum value oft̂3 as follows:

0 ≤ t̂3 ≤ O

(

1

log P0

)

. (31)

Applying the inequality betweenRDPC and the term corre-
sponding to the second cut in (26), knowing (from (30) and
(31)) the fact that̂t3 ≤ c3

ln P0
, and t̂4 ≤ c4

lnP0
(wherec3 andc4

are constants), and using inequalities (28), and

ln(1 + x) ≤ x, ∀x ≥ 0, (32)

and also the fact that̂t1 + t̂2 + t̂3 + t̂4 = 1, and having the
same argument for the third cut of (26), we obtain

1

2
− c2

log P0
≤ t̂2 ≤ 1

2
+

c1

log P0
, (33)

1

2
− c1

log P0
≤ t̂1 ≤ 1

2
+

c2

log P0
. (34)

wherec1 and c2 are constants. Hence, from (30), (31), (33),
and (34) asP0 → ∞, t̂3, t̂4 → 0 and t̂1, t̂2 → 0.5.

Similarly, considering the inequality between the first cut
of RDPC and (26) and knowing the fact thatt̂1, t̂2 are strictly
above zero (approaching0.5), we observe that the optimum
value of P̂ (1)

0 , P̂
(2)
0 are

P̂
(1)
0 , P̂

(2)
0 ∼ Θ (P0) . (35)

Now, we prove that the DPC scheme with the parameters
t1 = t̂1+

t̂3+t̂4
2 , t2 = t̂2+

t̂3+t̂4
2 , P (1)

0 = P̂
(1)
0 andP

(2)
0 = P̂

(2)
0 ,

wheret̂1, · · · , t̂4, P̂
(1)
0 , P̂

(2)
0 are the parameters corresponding

to the optimum value of (26), achieves the capacity with a gap
no more thanO

(

1
log P0

)

. To prove this, using (35) and the

fact that t̂3, t̂4 ∼ O
(

1
log P0

)

and t̂1, t̂2 ∼ 0.5 + O
(

1
log P0

)

,
we show that each of the four terms in (27) is no more than
O
(

1
log P0

)

below the corresponding term (from the same cut)
in (26). For the complete proof see [21].

Theorem 4 In low SNR scenarios, assumingP1 =
γ1P0, P2 = γ2P0 with γ1, γ2 constants independent of the
SNR, when the power available for the source and each relay
tends to zero and

(

h13
√

γ1 + h23
√

γ2

)2 ≤ min
(

h2
01, h

2
02

)

,
the ratio of the achievable rate of the simultaneous relaying
protocol based on DDF to cut-set upper bound goes to 1. In
this scenariot3 = t4 = 1

2 , and no private messages should be
transmitted.

Proof: Throughout the proof, we assume the power of
the relays goes to zero asP1 = γ1P0, P2 = γ2P0 whereγ1, γ2

are constants independent of the SNR. By the same argument
as in theorem 3 and considering only the fourth cut, we can



Cup ≤ min

(

t̂1C

(

h2
01P̂

(1)
0

t̂1

)

+ t̂2C

(

h2
02P̂

(2)
0

t̂2

)

+ t̂3C

(

(h2
01 + h2

02)P̂
(3)
0

t̂3

)

,

t̂2C





h2
02P̂

(2)
0

t̂2
+

(h2
12 + h2

13)P̂
(2)
1

t̂2
+

2h02h12

√

P̂
(2)
0 P̂

(2)
1

t̂2
+

h2
02h

2
13P̂

(2)
0 P̂

(2)
1

t̂22



+

t̂3C

(

h2
02P̂

(3)
0

t̂3

)

+ t̂4C

(

h2
13P̂

(4)
1

t̂4

)

,

t̂1C





h2
01P̂

(1)
0

t̂1
+

(h2
12 + h2

23)P̂
(1)
2

t̂1
+

2h01h12

√

P̂
(1)
0 P̂

(1)
2

t̂1
+

h2
01h

2
23P̂

(1)
0 P̂

(1)
2

t̂21



+

t̂3C

(

h2
01P̂

(3)
0

t̂3

)

+ t̂4C

(

h2
23P̂

(4)
2

t̂4

)

,

t̂1C

(

h2
23P̂

(1)
2

t̂1

)

+ t̂2C

(

h2
13P̂

(2)
1

t̂2

)

+ t̂4C





h2
13P̂

(4)
1 + h2

23P̂
(4)
2 + 2h13h23

√

P̂
(4)
1 P̂

(4)
2

t̂4







 . (26)

subject to:

P̂
(1)
0 + P̂

(2)
0 + P̂

(3)
0 = P0,

P̂
(2)
1 + P̂

(4)
1 = P1,

P̂
(1)
2 + P̂

(4)
2 = P2,

t̂1 + t̂2 + t̂3 + t̂4 = 1,

0 ≤ t̂1, t̂2, t̂3, t̂4, P̂
(1)
0 , P̂

(2)
0 , P̂

(3)
0 , P̂

(2)
1 , P̂

(4)
1 , P̂

(1)
2 , P̂

(4)
2 .

get another upper bound on the capacity. By the following
inequality

ln(1 + x) ≤ x. (36)

we can bound the upper bound on the capacity as

Cup ≤
(

h13
√

γ1 + h23
√

γ2

)2
P0

2 ln 2
. (37)

Now, assumingt1 = t2 = 0, t3 = t4 = 1
2 , and transmitting

just the common message, we can achieve the following rate
RDDF

RDDF = min

(

1

2
C
(

2h2
02P0

)

,

1

2
C
(

2 (h13
√

γ1 + h23
√

γ2)
2
P0

)

)

.

By the following inequality

x − x2

2
≤ ln (1 + x) , (38)

we have

1

ln 2
min

(

h2
02P0

2
− h4

02P
2
0

2
,

(

h13
√

γ1 + h23
√

γ2

)2
P0

2
−
(

h13
√

γ1 + h23
√

γ2

)4
P 2

0

2

)

≤ RDDF . (39)

By (37), (39), and(h13γ1 + h23γ2)
2 ≤ min

(

h2
01, h

2
02

)

, we
havelimP0→0

RDDF

Cup
→ 1.

V. SIMULATION RESULT

Figure 5 compares the achievable rate of our general scheme
with those of DPC scheme for successive relaying and DDF
scheme for simultaneous relaying protocols. Here we assume
symmetric scenario in whichh01 = h02 = h12 = h13 =
h23 = 1. In order to satisfy the condition in theorem 4,
i.e.

(

h13
√

γ1 + h23
√

γ2

)2 ≤ min
(

h2
01, h

2
02

)

, we also assume
P0 = P1 + 10(dB) = P2 + 10(dB). The upper bound is
also included in the figure. As Figure 5 shows, our pro-
posed general achievable rate almost coincides with the upper
bound over all ranges of SNR. In the high SNR scenario,
our proposed general scheme coincides with DPC and the
successive relaying protocol becomes optimum, while in low
SNR scenario it coincides with DDF and the simultaneous
relaying protocol is optimum.

VI. CONCLUSION

In this paper, we investigated the problem of cooperative
strategies for a half-duplex parallel relay channel with two
relays. We derived the optimum relay ordering and hence the
asymptotic capacity of the half-duplex Gaussian parallel relay
channel in low and high SNR scenarios.Simultaneousand
Successiverelaying protocols, associated with two possible



−10 −5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

Relay Power(dB)

R
at

e(
bi

t p
er

 d
im

en
si

on
)

Upper Bound

General Achievable Rate

DPC

DDF

Fig. 5. Rate versus relay power (P0 = P1+10(dB) = P2+10(dB)).

relay orderings were proposed. For simultaneous relaying,
each relay employsDDF. On the other hand, for successive
relaying, we proposed aNon-Cooperative Codingscheme
based on DPC. We also proposed a general achievable scheme
as a combination of the simultaneous and successive schemes.
In high SNR scenarios, we proved that ourNon-Cooperative
Coding scheme based on DPC asymptotically achieves the
capacity. Hence, in high SNR scenario, the optimum relay
ordering isSuccessive. On the other hand, in low SNR where
(h13γ1 + h23γ2)

2 ≤ min
(

h2
01, h

2
02

)

, DDF achieves the capac-
ity. Hence, in low SNR scenario the optimum relay ordering
is Simultaneous.
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