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1 Abstract— In this paper, we consider the problem of robust
joint source-channel coding over an additive white Gaussian noise
channel. We propose a new scheme which achieves the optimal
slope for the signal-to-distortion (SDR) curve (unlike the previous
known coding schemes). We also drive some theoretical bounds
on the asymptotic performance of delay-limited hybrid digital-
analog (HDA) coding schemes. We show that, unlike the delay-
unlimited case, for any family of HDA codes, the asymptotic
performance loss is unbounded (in terms of dB).

I. INTRODUCTION

In many applications, delay-limited transmission of analog
sources over an additive white Gaussian channel is needed.
Also, in many cases the exact signal-to-noise ratio is not
known at the transmitter, and may vary over a large range
of values. Two examples of this scenario are transmitting
an analog source over a quasi-static fading channel and/or
multicasting it to different users (with different channel gains).

Without considering the delay limitations, digital codes can
theoretically achieve the optimal performance. Indeed, for the
ergodic channels, Shannon’s source-channel coding separation
theorem [1] [2] ensures the optimality of separately designing
source and channel codes. However, for the case of a limited
delay, several articles [3] [4] [5] [6] [7] have shown that joint
source-channel codes have a better performance, compared to
the separately designed source and channel codes (which are
called tandem codes). Also, digital coding is very sensitive to
the mismatch in the estimation of the channel signal-to-noise-
ratio (SNR).

To avoid the saturation effect of digital coding, in [8] and
[9] analog codes, based on dynamical systems are proposed.
Although these codes can provide asymptotic gains (for high
SNR) over the simple repetition code, they suffer from a
threshold effect. Indeed, when the SNR becomes less than a
certain threshold, the performance of these systems degrades
severely. Therefore, the parameters of these methods should be
chosen according to the operating SNR, hence, these methods
are still very sensitive to the errors in the estimation of
SNR. Also, although the performance of the system is not
saturated for the high SNR (unlike digital codes), the scaling
of the end-to-end distortion is far from the theoretical bounds.
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Theoretical bounds on the robustness of joint source channel
coding schems (for the delay-unlimited case) are presented in
[10] and [11].

In this paper, we present a delay-limited analog coding
scheme which achieves the optimum slope of the signal-
to-distortion curve, with just a single mapping for different
SNR values. We also analyze the limits on the asymptotic
performance of delay-limited source-channel coding schemes.

II. SYSTEM MODEL AND THEORETICAL LIMITS

We consider a memoryless {Xi}∞i=1 uniform source with
zero mean and variance 1

12 , i.e. − 1
2 ≤ xi < 1

2 . For other
sources, such as the Gaussian source, we can use the standard
companding techniques. Also, the samples of the source
sequence are assumed independent with identical distributions
(i.i.d.).

The transmitted signal is sent over an additive white Gaus-
sian noise (AWGN) channel. The problem is to map the one-
dimensional signal to the N -dimensional channel space, such
that the effect of the noise is minimized. This means that the
data x, − 1

2 ≤ x < 1
2 , is mapped to the transmitted vector

s = (s1, ..., sN ) (with an average power less than 1). At
the receiver side, the received signal is y = s + z where
z = (z1, ..., zN) is the additive white Gaussian noise with
variance σ.

As an upper bound on the performance of the system, we
can consider the case of delay-unlimited. In this case, we can
use Shannon’s theorem on the separation of source and channel
coding. By combining the lower bound on the distortion of
the quantized signal (using the rate-distortion formula) and
the capacity of N parallel Gaussian channels with the noise
variance σ2, we have [9]

D ≥ cσ2N (1)

where c is a constant number and D is the average distortion.

III. PREVIOUS WORKS

Previously, three related schemes, based on dynamical sys-
tems, have been proposed for the scenario of delay-limited
analog coding:

1) Shift-map dynamical system [8], and
2) Spherical shift-map dynamical system [9]
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Fig. 1. The shift-map modulated signal set for N = 3 dimensions and
a = 2.

In [8], an analog transmission scheme based on shift-map
dynamical systems is presented. In this method, every analog
data x is mapped to the modulated vector (s1, ..., sN ) where

s1 = x mod 1 (2)

si+1 = bisi mod 1, for 1 ≤ i ≤ N − 1 (3)

where bi is an integer number, bi ≥ 2. The set of modulated
signals generated by the shift map consists of b = b1...bN−1

parallel segments inside an N -dimensional unit hypercube. In
[9], the authors have shown that by appropriately choosing the
parameters {bi} for different SNR values, one can achieve the
SDR scaling (versus the channel SNR) with the slope N − ε,
for any positive number ε. Indeed, we can have these bounds
on the end-to-end distortion:

Theorem 1 Consider the the shift-map analog coding system
which maps the modulating signals to N -dimensional modu-
lated vectors,

i) For any noise variance σ2, we can find a number a such
that for the shift-map scheme with the parameters bi = ai, the
distortion of the decoded signal D is bounded as

D ≤ cσ2N (− log σ)N−1

ii) For any shift-map scheme, the output distortion is lower
bounded as

D ≥ c′σ2N (− logσ)N−1

where c and c′ are constant numbers (depending on only N ).

Proof: see [12].
In [9], a spherical code based on the linear system ṡT =

AsT is introduced, where sT is the 2N -dimensional modu-
lated signal and A is a skew-symmetric matrix, i.e. AT =
−A.

This scheme is very similar to the shift-map scheme. In-
deed, with an appropriate change of coordinates, the above
modulated signal can be represented as

sT =
1√
N

(

cos 2πx, cos 2aπx, ..., cos 2aN−1πx,

sin 2πx, sin 2aπx, ..., sin 2aN−1πx
)

(4)

for some parameter a.
If we consider ssm as the modulated signal generated by

the shift-map scheme with parameters bi = a in (3), then (4)
can be written in the vector form as

sT =
(

Re
{

eπissm
}

, Im
{

eπissm
})

.

The relation between the spherical code and the linear shift-
map code is very similar to the relation between PSK and PAM
modulations. Indeed, the spherical shift-map code and PSK
modulation are, respectively, the linear shift-map and PAM
modulations which are transformed from the unit interval,
[−1

2 , 1
2 ), to the unit circle.

For the performance of the spherical codes, the same result
as Theorem 1 is valid. Indeed, for any parameters a and
N , the spherical code asymptotically has a saving of (2π)2

12
or 5.17 dB in the power. This asymptotic gain results from
transforming the unit-interval signal set (with length 1 and
power 1

12 ) to the unit-circle signal set (with length 2π and
power 1) . However, the spherical code uses 2N dimensions
(compared to N dimensions for the linear shift-map scheme).

For both these methods, for any fixed parameter a, the
output SDR asymptotically has linear scaling with the channel
SNR. The asymptotic gain (over the simple repetition code)
is proportional to a2(N−1) (because the modulated signal is
stretched approximately aN−1 times)2. Therefore, larger scal-
ing parameters a results in higher asymptotic gains. However,
by increasing a, the distance between the parallel segments of
the modulated signal set decreases. This distance is approxi-
mately 1

a
and for the low SNRs (when the noise variance is

larger than or comparable to 1
a

), jumping from one segment of
the modulated signal set to another one becomes the dominant
factor in the distortion of the decoded signal which results in
a poor performance in this SNR region. Thus, there is a trade-
off between the gain in the high-SNR region and the critical
noise level which is fatal for the system. By increasing the
scaling parameter a, the asymptotic gain increases, but at the
same time, a higher SNR threshold is needed to achieve that
gain. In [13], the authors have combined the dynamical-system
schemes with LDPC and iterative decoding to slightly reduce
the critical SNR threshold. However, overall behavior of the
output distortion is the same for all these methods.

The shift-map analog coding system can be seen as a slight
variation of a Hybrid Digital-Analog (HDA) joint source-
channel code. Various types of these hybrid schemes are
investigated in [10] and [14]. Indeed, for the shift-map system,
we can rotate the modulated signal set such that all the parallel
segments of it become aligned in the direction of one of the
dimensions. In this case, by slightly changing the support
region of the modulated set (which is a rotated N -dimensional

2The exact asymptotic gain is equal to the scaling factor of the sig-
nal set, i.e. a2(N−1)

“

1 + 1
a2 + ... + 1

aN−1

”

for the shift map and
(2π)2

12
a2(N−1)

“

1 + 1
a2 + ... + 1

aN−1

”

for the spherical shift map.
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cube) to the standard cube, we obtain a new similar modulation
with almost the same performance. In the new modulation, the
information signal is quantized by aN−1 points which are sent
over (N − 1) dimensions, and the quantization error is sent
over the remaining dimension.

Regarding the scaling of the output distorsion, the perfor-
mance of the shift-map scheme, with appropriate choice of
parameters for each SNR, is very close to the theoretical
limit. In fact, the output distortion scales as σ2N (− log σ)N−1,
instead of being proportional to σ2N . However, for any fixed
set of parameters, the output SNR (versus the input SNR) is
saturated by the unit slope (instead of N ). This shortcoming
is an inherent drawback of schemes like the shift-map code
or spherical code (which are based on dynamical systems).
Indeed, in [15], it is shown that no single differentiable
mapping can achieve an asymptotic slope better than 1. This
article addresses this shortcoming.

IV. A NEW APPROACH

We propose a scheme for analog coding using a bandwidth
expansion factor of N . In this technique, the mapping is not
differentiable and it can achieve the optimal slope of N .

For the modulating signal x, − 1
2 ≤ x < 1

2 , we consider the
binary expansion of x + 1

2 :

x +
1

2
=

(

0 · b1b2b3...
)

2
(5)

Now, we construct s1, s2, ..., sN as

s1 =
(

0.b10bN(N+1)
2 +1

...bN(N+1)
2 +N+1

0b (2N)(2N+1)
2 +1

...
)

2

s2 =
(

0.b2b30b (N+1)(N+2)
2 +1

...b (N+1)(N+2)
2 +N+2

0...
)

2

...
...

sN =
(

0.bN(N−1)
2 +1

...bN(N+1)
2

0...
)

2
(6)

In summary, the bits of the binary expansion of x + 1
2 are

grouped such that the lth group (l = kN + i) consists of l bits
and is assigned to the ith user.

Theorem 2 3 Using the mapping constructed by the proposed
method, the output distortion D is upper bounded by

D ≤ c1σ
2N2c2

√
− log σ (7)

where c1 and c2 are constant4.

Proof: Consider wi as the Gaussian noise on the ith channel
and assume that n is selected such that

n
∑

k=1

kN + i ≤ − log2 σ <

n+1
∑

k=1

kN + i (8)

3This theorem is also presented in [16].
4Troughout this paper c1, c2, c3, ... are constant numbers, independent of

σ (they may depend on the dimensions).

The probability that |wi| ≥ 2−

Pn−1
k=1

kN+i

2 is negligible. Indeed,

Pr

{

|wi| ≥ 2
−

Pn−1
k=1

kN+i

2

∣

∣

∣

∣

∣

− log2 σ ≥
n

∑

k=1

kN + i

}

≤

Q
(

2nN−1
)

. (9)

On the other hand, when |wi| < 2
−

Pn−1
k=1

kN+i

2 , the first
∑n−1

k=1 kN + i bits of si can be decoded error-freely. The
same is true for all 1 ≤ i′ ≤ i, and for i < i′ ≤ N , the
first

∑n−2
k=1 kN + i′ can be decoded error-freely. Thus, the first

∑(n−1)N+i

j=1 j bits of x can be decoded error-freely. Now,

(n−1)N+i
∑

j=1

j ≥ (10)

N

n−2
∑

k=1

kN + i ≥ (11)

N

n+1
∑

k=1

kN + i − N (nN + i + (n + 1)N + i) ≥ (12)

N

n+1
∑

k=1

kN + i − N2 (2n + 3) ≥ (13)

N

n+1
∑

k=1

kN + i − c2

√

√

√

√

n+1
∑

k=1

kN + i (14)

where c2 depends only on N . Therefore, by using the assump-
tion (8),

(n−1)N+i
∑

j=1

j ≥ (15)

−N log2 σ − c2

√

− log2 σ (16)

Therefore the output distortion is bounded by

D ≤ 2−2
P(n−1)N+i

j=1 j (17)

≤ 22N log2 σ+2c2

√
− log2 σ (18)

=⇒ D ≤ c1σ
2N2c2

√
− log σ . (19)

�

Although the proposed scheme achieves the same SDR
slope as the theoretical limit, there is an unbounded asymptotic
gap between these two (when SNR−→ ∞). In [11], the
authors have shown that no single coding scheme can achieve
the optimum SDR curve for all ranges of SNR. Indeed, the
authors have shown that no coding scheme can touch the
optimum curve more than once. However the question about
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whether a bounded performance gap can be achieved by a
single coding scheme or not, remains open.

In [16], a lattice-based approach is introdiced to improve
the performance of the proposed scheme, by using larger
delays (by mapping from the n-dimensional source to a nN -
dimensional signal set). However, it can only result in a finite
gain (in terms of dB) and can not fill the unbounded gap.

V. APPROACHING A NEAR-OPTIMUM SDR BY
DELAY-LIMITED CODES

In [10], a family of hybrid digital-analog (HDA) source-
channel codes are proposed which together can achieve the
optimum SDR curve and each of them only suffers from the
mild saturation effect (the asymptotic unit slope for the curve
of SDR versus SNR). However, their approach is based on
using capacity-approaching digital codes as a component of
their scheme.

In this section, we consider the problem of finding a family
of delay-limited analog codes which together can achieve a
near-optimum SDR curve and have a bounded asymptotic loss
in the SDR performance (in terms of dB). Results of Section
III show that none the previous analog coding schemes (based
on dynamical systems) can construct such a family of codes.
In this section, we also show that no HDA source-channel
coding scheme can be used to achieve it. In the HDA source-
channel coding, in general, to map an M dimensional source
to an N dimensional signal set, the source is quantized by
k points which are sent over N − M dimensions and the
residual noise is transmitted over the remaining M dimensions.
In other words, the region of the source (which is a hypercube
for the case of a uniform source) is divided to k subregions
A1, ...,Ak. These subregions are mapped to k parallel subsets
of the N dimensional Euclidean space, B1, ...,Bk, where Bi

is an scaled version of Ai with a factor of a.

Theorem 3 Consider a HDA joint source-channel code which
maps an M -dimensional uniform source (inside the unit cube)
to k parallel M -dimensional subsets of an N dimensional
Euclidean space (N > M ), with a power contranit of P . For
any noise variance σ2 and any integer k, the output distortion
is bounded by

D ≥ cσ
2N
M (− logσ)

N−M
M (20)

where c is a constant number (independent of SNR).

Sketch of the proof: By considering the volumes of
A1, ...,Ak and their scaled versions, to satisfy the power
constraint, a, the scaling factor, can not be greater than c3k

1
M ,

where c3 depends on P .
We consider three cases for k:
Case 1) k ≤ σ−(N−M)(− log σ)

−(N−M)
2 :

Each subset of the modulated signal set is the scaled version
of a segment of the source signal set by a factor of a, hence,
we can lower bound the distortion by only considering the
case the subset is decoded correctly and there is no jump to
adjacent subsets,

D ≥ E
{

|x̃ − x|2|no jump
}

(21)

=
σ2

a2
(22)

≥ σ2

c2
3k

2
M

(23)

≥ c4σ
2N
M (− log σ)

N−M
M (24)

Case 2) 2l < k

σ−(N−M)(− log σ)
−(N−M)

2

≤ 2l+1 for l ≥ 0:
In this case, we bound the output distortion by the average

distortion caused by a jump to another subset, during the
decoding. By considering the power constraint (and using
arguments based on Dirichlet’s box principle) we can conclude
that there are two constants c5 and c6 such that probability of
an squared error of at least c5

(

2−lk
)− 2

M is lower bounded by

Pr(jump) ≥ c6Q
(

√

− log σ
)

≥ c6σ

By considering the lower bound on the distortion caused by
this jump,

D ≥ c7

(

2−lk
)− 2

M σ ≥

c8

(

σN−M (− log σ)
(N−M)

2

)
2

M

σ =

c8σ
2N
M (− logσ)

N−M
M .

�

Now, we construct a family of delay-limited analog codes
which by a proper choice of parameters (according to the
channel SNR) have only a bounded asymptotic loss in the SDR
performance (in terms of dB). For any 2−k+1 < σ ≤ 2−k, for
k ≥ 0, we construct and analog code as the following:

For x + 1
2 =

(

0 · b1b2...bNk−1

)

2
+

{2Nk−1x}
2Nk−1 , where {·}

represents the fractional part, we construct s1, s2, ..., sN as

s1 =
k

∑

i=1

(2−i + 2−k(k − i))b(i−1)N+1

s2 =

k
∑

i=1

(2−i + 2−k(k − i))b(i−1)N+2

sN−1 =

k
∑

i=1

(2−i + 2−k(k − i))b(i−1)N+N−1

sN =

k−1
∑

i=1

(2−i+2−k(k−i))b(i−1)N+N +2Nk−k−2

{

2Nk−1x
}

2Nk−1

Theorem 4 In the proposed scheme, the output distortion D
is upper bounded by

D ≤ cσ2N (25)
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where c is a constant, independent of σ.

Sketch of the proof: The signal set consists of 2Nk−1

segments of length 2−k−1, where each of them is a scaled
version of a subsegment of the source region (the unit interval),
by a factor of 2Nk−k−2.

The probability that the first error occurs in the (i−1)N+jth
bit of x is bounded by Q(k − i) and it results in an output
deviation of at most 2(i−1)N−j+1. Therefore, by considering
the union bound over all possible errors:

D ≤
Nk−1
∑

l=1

Pl · Dl + Dno−bit−error

≤
Nk−1
∑

l=1

2−l+1Q(k − l/n) + 2−(Nk−k−2)σ

Now, by using Q(x) < e−
x2

2 and 2−k+1 < σ we have

D ≤ cσ2N .

�

It is worth noting that in the proposed family of codes, for
each code, the asymptotic slope of the SDR curve is 1 (as
we expected from the fact that for each code, the mapping is
partially differentiable).

VI. CONCLUSIONS

To avoid the mild saturation effect in analog transmission
systems and achieving the optimum scaling of the output
distortion, we need to use nondifferentiable mappings (more
precisely, mappings which are not differentiable on any in-
terval). A nondifferentiable scheme is introduced in this paper
which achieves the optimum slope for the curve of SDR versus
the channel SNR, with a simple mapping. Also, we have
introduced a family of delay-limited analog codes which have
only a bounded asymptotic loss (in terms of dB), compared to
the optimum performance. We have shown that no family of
hybrid digital-analog coding schemes can have this property.
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