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1 Abstract— In this paper, the inherent drawbacks of the naive
lattice decoding for MIMO fading systems is investigated. We
show that using the naive lattice decoding for MIMO systems
has considerable deficiencies in terms of the rate-diversity trade-
off. Unlike the case of maximum-likelihood decoding, in this
case, even the perfect lattice space-time codes which have the
non-vanishing determinant property can not achieve the optimal
rate-diversity trade-off. Indeed, we show that in the case of naive
lattice decoding, all the codes based on full-rate lattices have
the same rate-diversity trade-off as V-BLAST. Also, we drive
a lower bound on the symbol error probability of the naive
lattice decoding for the fixed-rate MIMO systems (with equal
numbers of receive and transmit antennas). This bound shows
that asymptotically, the naive lattice decoding has an unbounded
loss in terms of the required SNR, compared to the maximum
likelihood decoding.

I. INTRODUCTION

In recent years, there has been extensive research on
designing practical encoding/decoding schemes to approach
theoretical limits of MIMO fading systems. The optimal rate-
diversity trade-off [1] is considered as an important theoret-
ical benchmark for practical systems. For the encoding part,
recently, several lattice codes are introduced which have the
non-vanishing determinant property and achieve the optimal
trade-off, conditioned on using the exact maximum-likelihood
decoding [2] [3] [4]. The lattice structure of these codes
facilitates the encoding. For the decoding part, various lat-
tice decoders, including the sphere decoder and the lattice-
reduction-aided decoding are presented in the literature [5]
[6]. To achieve the exact maximum likelihood performance,
we need to find the closest point of the lattice inside the
constellation region, which can be much more complex than
finding the closest point in an infinite lattice. To avoid this
complexity, one can perform the traditional lattice decoding
(for the infinite lattice) and then, discard the out-of-region
points. This approach is called Naive Lattice Decoding (NLD).

In [7], the authors have shown that this sub-optimum decod-
ing (and even its lattice-reduction-aided approximation) still
achieve the maximum receive diversity in the fixed-rate MIMO
systems. Achieving the optimal receive diversity by a low
decoding complexity makes lattice-reduction-aided decoding
(using the LLL reduction) an attractive choice for different
applications. Nonetheless, this work shows that for the case
of rate-diversity trade-off, the optimality can not be provided
by the naive-lattice decoding or its approximations.
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In [8], using a probabilistic method, a lower bound on the
best achievable trade-off, using the naive lattice decoding, is
presented. In this paper, we present an upper bound for the
performance of the naive lattice decoding for codes based
on full-rate lattices. We show that NLD can not achieve the
optimum rate-diversity trade-off. Also, for the special case of
equal number of transmit and receive antennas, we show that
even the best full-rate lattice codes (including perfect space-
time codes such as the golden code [3]) can not perform better
than the simple V-BLAST (if we use the naive lattice decoding
at the receiver).

In section IV, we complement the result of [7] by showing
that for the special case of equal number of transmit and
receive antennas, although the naive lattice decoding (and its
LLL-aided approximation) still achieve the maximum receive
diversity, their gap with the optimal ML decoding grows
unboundedly with SNR.

II. SYSTEM MODEL

We consider a multiple-antenna system with M transmit
antennas and N receive antennas. In a multiple-access system,
we consider different transmit antennas as different users. If
we consider y = [y1, ..., yN ]T , x = [x1, ..., xM ]T , w =
[w1, ..., wN ]T and the N×M matrix H, as the received signal,
the transmitted signal, the noise vector and the channel matrix,
respectively, we have the following matrix equation:

y = Hx + w. (1)

The channel is assumed to be Raleigh, i.e. the elements of H

are i.i.d with the zero-mean unit-variance complex Gaussian
distribution, and the noise is Gaussian. Also, we have the
power constraint on the transmitted signal, E‖x‖2 = 1. The
power of the additive noise is σ2 per antenna, i.e. E‖w‖2 =
Nσ2. The signal to noise ratio (SNR) is defined as ρ = M

σ2 .
We send the transmitted vector x with independent entries

from Z[i] and at the receiver, we find x̃ as H−1ỹ where ỹ is
the closest lattice point to y.

III. RATE-DIVERSITY TRADE-OFF FOR THE NAIVE LATTICE
DECODING

To drive the upper bound on the rate-diversity trade-off of
naive lattice decoding (NLD), we first present a lower bound
on the probability that the received lattice (the lattice code,
after passing through the fading channel) has a short vector.

Lemma 1 Assume that the entries of the N×M matrix H has
independent complex Gaussian distributions with zero mean
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and unit variance and consider dH as the minimum distance
of the lattice generated by HT L, where L is the full-rank
MT × MT generator of a complex lattice and HT is the
NT ×MT block diagonal matrix constructed from H. Then,
there is a constant C such that,

Prob{dH ≤ ε} ≥

C(det Λ)−
(N−M+1)

T ε2M(N−M+1)

where det Λ , det(L∗L)
1
2 is the volume of the fundamental

region of L.

Sketch of the proof: The probability that H has a singular
value less than εM .(detΛ)−

1
2T

2M (MN)(M−1) can be lower bounded by

Pr

{

σmin <
εM .(det Λ)

−1
2T

2M (MN)
(M−1)

}

≥ c1

(

εM .(det Λ)
−1
2T

2M (MN)
(M−1)

)2(N−M+1)

where c1 is a constant2.
Consider vmin as the singular vector of H, corresponding

to σmin. For each MT -dimensional complex vector v =
[a1v

T

min a2v
T

min... aT vT

min]T,

‖HTv‖ ≤ εM .(det Λ)
−1
2T

2M (MN)(M−1)
‖v‖

Consider A as a 2MT -dimensional orthotope whose 2T

edges are parallel to the subspace spanned by these vectors
(with length 2(MN)(M−1)(detΛ)

1
2T

εM ) and the other 2T (M − 1)
edges are orthogonal to that subspace and have length 2. There
are more than ε−2MT (MN)

2T (M−1) points of lattice L inside
this orthotope.

Now, if σmax (the largest singular value of H) is less
than MN , then HTA is inside an 2MT -dimensional or-
thotope (in the subspace spanned by HT ) whose 2T edges
have length 21−M and the length of the other 2T (M − 1)
edges are at most 2MN . This orthotope can be covered
by ε−2MT (MN)

2T (M−1) hypercubes of size ε. By using
Dirichlet’s box principle, in one of these hypercubes there are
at least 2 points of the new lattice, hence dH ≤ ε.

It is easy to show that Pr {σmax < MN} ≥ 1
2 . Therefore,

Pr{dH ≤ ε} ≥

Pr

{

σmin <
εM .(det Λ)

−1
2T

2M (MN)(M−1)

}

· Pr {σmax < MN}

≥ c2

(

εM .(det Λ)
−1
2T

2M (MN)
(M−1)

)2(N−M+1)

≥ C(det Λ)
−(N−M+1)

T ε2M(N−M+1).

2Throughout this paper, c1, c2, ... are constants.

�

Theorem 2 Consider a MIMO fading channel with M trans-
mit and N receive antennas (M ≤ N ) with codebooks from
a MT -dimensional lattice L, which are sent over T channel
uses. For the naive lattice decoding, the rate-diversity trade-off
of the system is

dNLD(r) ≤ M(N − M + 1) − r (N − M + 1) ,

for 0 ≤ r ≤ M.

Sketch of the proof: Consider the code of rate r, constructed
from the lattice. According to lemma 1,

Pr{dH ≤ ε} ≥

C(det Λ)
−(N−M+1)

T ε2M(N−M+1)

≥ C(SNR)rT ·
(N−M+1)

T ε2M(N−M+1).

Now, having SNR = M
σ2 , we bound the symbol error

probability Pe,

Pe ≥ Pr

{

dH ≤ 1√
SNR

}

.Q

(

1√
M

)

≥ c3
(SNR)r(N−M+1)

SNRM(N−M+1)

=⇒ dNLD(r) = lim
SNR→∞

− log Pe

log SNR

≤ M(N − M + 1) − r (N − M + 1)

�

Corollary 1 In a MIMO fading channel with M = N

transmit and receive antennas, if we use the naive lattice
decoding, the rate-diversity trade-off for full-rate lattice code
can not be better than that of V-BLAST.

Proof: When M = N , according to Theorem 1,

dNLD(r) ≤ M − r

On the other hand, for the V-BLAST system [1] with lattice
decoding,

d(r) = M − r

�

It is interesting to compare this result with the results on
lattice space-time codes which have non-vanishing determi-
nants. Although by ML decoding, these codes (such as the
2×2 golden code) achieve the optimal rate-diversity trade-off,
when we replace ML decoding with the naive lattice decoding
(and its approximations), their performance is not much better
than the simple V-BLAST scheme (specially when the number
of transmit and receive antennas are the same)
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Fig. 1. Comparison between the optimal rate-diversity tradeoff and the upper
bound on the rate-diversity trade-off of full-rate lattice codes (including perfect
space-time codes such as the golden code)

To better understand the difference between the naive lattice
decoding and the ML decoding, we note that for small constel-
lations, when the generator of the received lattice has a small
singular value, the minimum distance of the lattice can be
much smaller than the minimum distance of the constellation.
Figure 2 shows this situation for a small 4-point constellation
from a 2-dimensional lattice.

We should note that this upper bound is for full-rate lattices.
Lattices which lower rates, can provide higher diversity, but
their rate is limited by the dimension of the lattice. For
example, The Alamouti code, based on QAM constellations,
can achieve the full diversity for fixed rates (r = 0), but its rate
is limited by one. For the general case (including non-full-rate
lattices), we have these conjectures:

Conjecture 1 Consider a MIMO fading channel with M

transmit and N receive antennas (M ≤ N ) with codebooks
from a KT -dimensional lattice L (1 ≤ K ≤ M ), sent over T

channel uses. For the naive lattice decoding, the rate-diversity
trade-off of the system is upper bounded by

dNLD−K(r) ≤ M(N − K + 1) −
(

K(N − K + 1)

M
r

)

,

for 0 ≤ r ≤ K.

Conjecture 2 For a MIMO fading channel with M transmit
and N receive antennas (M ≤ N ), if we restrict ourself
to lattice coding and the naive lattice decoding, the best
achievable rate-multiplexing trade-off is

d∗NLD(r) = max
K

{

M(N − K + 1) −
(

K(N − K + 1)

M
r

)}

,

for 0 ≤ r ≤ M.

dmin

dH

Fig. 2. Minimum distance of the lattice, compared to the minimum distance
of the code

IV. ASYMPTOTIC PERFORMANCE OF THE NAIVE LATTICE
DECODING FOR M = N

In [7], it is shown that for N ≥ M , the naive lattice
decoding achieves the receive diversity in V-BLAST systems
(indeed, even its simple latice-reduction-aided approximation
still achieves the optimum receive diversity of order N ).
However, there is a difference between two cases of M < N

and M = N . While for M < N , compared to ML decoding,
the performance loss of the naive lattice decoding is bounded
in terms of SNR, this is not valid for the case of M = N .
This dichotomy is related to the bounds on the probability of
having a short lattice vector in a lattice generated by a random
Gaussian N × M matrix.

In [9], the following upper bound on the probability of
having a short lattice vector is given

Lemma 3 Assume that the entries of the M×M matrix H has
independent complex Gaussian distributions with zero mean
and unit variance and consider dH as the minimum distance
of the lattice generated by H. Then, there is a constant C such
that [9],

Prob{dH ≤ ε} ≥ Cε2M ln

(

1

ε

)N−1

.

The term ln
(

1
ε

)

suggests an unboundedly increasing gap
between the performance of ML decoding and the naive lattice
decoding (though both of them have the same slope N ).

In this section, we present a lower bound for the error
probability of the naive lattice decoding and show that this
unboundedly increasing gap does exist.

Lemma 4 For the lattice generated by a M × M random
complex Gaussian matrix H ,

Prob{dH ≥ ε} ≥ C ′ε2M ln

(

1

ε

)

.

Sketch of the proof: Consider L(v1,...,vM) as the lattice
generated by v1,v2,...,vM . Each point of L(v1,...,vM) can be
represented by v(z1,...,zM) = z1v1 + z2v2 + ... + zMvM ,
where z1, ..., zM are complex integer numbers. The vectors
v1,v2,...,vM are independent and jointly Gaussian. Therefore,
for every integer vector z = (z1, ..., zM ), the entries of the
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vector v(z1,...,zM) have complex Gaussian distributions with
the variance

%2
z

= ‖z‖2%2 =
(

|z1|2 + ... + |zM |2
)

%2. (2)

Therefore, we have this bound:

c4
ε2M

(|z1|2 + ... + |zM |2)M
≥ Pr

{

‖v(z1,...,zM )‖ ≤ ε
}

≥ c5
ε2M

(|z1|2 + ... + |zM |2)M
.

Now, we find an upper bound on the probability of this event
for two different complex integer vectors z′ and z′′ (which are
not multiplier of eachother), at the same time. We can write
z′ as az′′ + z′′′ where a is a complex number and z′′′ is
orthogonal to z′′. Assuming ‖z′‖ < ε−

1
2M and ‖z′′‖ < ε−

1
2M ,

we can show that ‖z′′′‖ > ε
1

2M and a < ε−
1

2M . Therefore,
after straightforward steps,

Pr{‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε}

≤ Pr {‖vz′′‖ ≤ ε} · Pr
{

‖vz′′′‖ ≤ ε1− 1
2M

}

≤ c6ε
4M−2

Now, we use the Bonferroni inequality [10],

Pr {dH ≤ ε} ≥ Pr
{

‖vz‖ ≤ ε, ‖z‖ < ε−
1

2M

}

≥
∑

z6=0,‖z‖<ε
−

1
2M

Pr {‖vz‖ ≤ ε}

−
∑

0<‖z′‖,‖z′′‖<ε
−

1
2M

Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε}

≥ c7ε
2M ln

(

1

ε

)

− c8ε
−2M× 1

2M .ε4M−2

≥ c7ε
2M ln

(

1

ε

)

− c8ε
4M−3

≥ C ′ε2M ln

(

1

ε

)

�

Theorem 5 Consider a MIMO fading channel with M trans-
mit and M receive antennas and a V-BLAST transmission
system. The naive lattice-decoding has an asymptotically un-
bounded loss, campared to the exact ML decoding.

Proof: For ML decoding, by using the Chernoff bound for
the pairwise error probability and then applying the union
bound for the finite constellation, we have

Perror−ML ≤ c9(SNR)−M

For naive lattice decoding,

Perror−NLD ≥ Pr

{

dH ≤ 1√
SNR

}

.Q

(

1√
M

)

≥ c10(SNR)−M ln(SNR)

Therefore, although both of them asymptotically have the same
slope and achieve the optimal receive diversity of order M , for
large SNRs, the gap between their performances is unbounded
(with a logarithmic growth, or in other words, log log SNR

in dB scale). �

V. CONCLUSIONS

In this paper, the inherent limitations of the performance
of the naive lattice decoding is investigated. The naive lattice
decoding and various implementions of it (such as the sphere
decoding) and its simple approximated versions (such as
the LLL-aided decoding) are very attractive for the practical
MIMO systems. Nontheless, to achieve theoretical benchmarks
(such as the rate-diversity trade-off), these techniques can not
be always sufficient. For the rate-diversity trade-off, although
different elegant lattice codes have been introduced which
achieve the optimal trade-off, the problem of achieving it by
a practical decoding scheme is still open.
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