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Abstract— We address data transmission over the M-user
Gaussian interference channel, where users send data using
single Gaussian codebooks. We first present a polynomial-time
algorithm for finding the maximum decodable subset among
interfering users, provided the users’ rates and powers are given.
Given any ordering of users, we characterize an achievable rate
vector in which users’ rates are successively maximized based
on the ordering. It is also shown that in a noncooperative
scenario where users refuse to send below their conservative
rates, there are achievable vectors that are feasible with respect
to the conservative rates vector which can be obtained by using
a simple iterative algorithm.

I. INTRODUCTION

Treating interference as noise is not always an intelligent
strategy for the Gaussian Interference Channel (GIC). For
instance, in the case of strong and very strong two-user GICs,
the capacity regions are achieved when both receivers decode
both users’ messages [1] [2]. However, when interference is
caused by multiple users, the situation becomes more delicate.
In this case, it may be possible to decode some parts of the
interference and treat the rest as noise.

The capacity region of the GIC remains an open problem.
The best inner bound for the case of a two-user GIC is the
Han-Kobayashi achievable rate region characterized in [3]. In
their scheme, each user splits its data into two parts and then
uses different codebooks to transmit each part. The idea is to
make some part of the data decodable by the unintended user.
In [4], Chong et.al. have found a shorter description of the
Han-Kobayashi achievable rate region. It is worth noting that
even for the GIC the full characterization of the Han-kobayshi
region is not known, due to the large number of variables
involved in the problem. The situation is more complicated in
the case of M-user GIC since generalizing the Han-Kobayashi
method requires invoking an exponentially many dependent
variables. The reason is that each user must split its data to
2M—1 parts.

We study the case where M transmitter-receiver pairs try to
communicate reliably over a GIC. Furthermore, we make the
following assumptions:

1) The users send at their maximum power.
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2) They use single codebooks.
3) They use Gaussian codebooks for data transmission.

The problem here is to adjust the users’ data rates such that
each receiver can reliably decode its own data. However, the
rate adjustment depends on the decoding strategies and there
are exponentially many of them. For example, we can point
out two extreme cases. In the first case, the strategy for each
receiver is to consider the interference caused by other users
as noise. In this case, we can find a point in the achievable
rate region. In the second case, however, each receiver decodes
all data transmitted from all transmitters. By this strategy, we
obtain an achievable rate region corresponding to the capacity
region of the M-user Compound Multiple Access Channel [5].
Therefore, by characterizing the achievable rate region for each
strategy and taking the union over all regions, we obtain an
achievable rate region.

We can enumerate all possible strategies. To this end, we
see that there are 22~ possible subsets of users that can be
considered as the decodable subset for a receiver. Since there
are M receivers in the system, we have 2M(M—1) possible
strategies to choose from. Hence, finding the union of the
achievable rate regions is computationally difficult.

In this paper, we take advantage of polynomial-time al-
gorithms for discrete optimization problems to investigate
different solutions for several problems in our system. The
basic problem among them is finding the maximum decodable
subset among interfering users provided users’ rates and
powers are given.

II. PRELIMINARIES

Throughout this paper, we use following notations. Vectors
are represented by bold faced letters. Matrices and sets are
denoted by capital letters where the difference is clear from
the context. The transpose of a matrix or vector is denoted by
apex T'. For any set S and any vector x, we use the compact
notation x(.5) to denote ) ¢ x;. The difference between two
sets U and V is represented by U — V. The complement of a
subset U is denoted by U. The cardinality of a set E is denoted
by |E|.

A. System Model

We focus on the M-user GIC where users use Gaussian
codebooks for data transmission. The received symbol of user



i can be modeled by

M
Yi :Zhijl'j + zi, (D
i=1
where x; is transmitted signal of user j and h;; denotes the
link’s gain between jth transmitter and ¢th receiver. z; is white
Gaussian noise with zero mean and variance N;. User ¢ is
also subject to an average power constraint P;. It is more
convenient to write the system model in matrix form as follows

y = Hx+z, 2
where y = [y1,v2,...,ym)? and x = [z1,20,...,227]7
denote the output and input vectors, respectively. H = [h;;]
is the matrix of links’ gains, and z = [z, 22, . . . ,zM]T is the

Gaussian noise vector. Even though, noise correlations do not
affect the capacity region [12], we assume that the covariance
matrix of the noise vector is a diagonal matrix. By scaling
transformation, it is possible to write the channel model (2) in
standard form which changes the noise variances and diagonal
elements of H all to unity [6].

If users treat interference as noise, then the following rate
is achievable for user ¢

)

Definition 1: Let E be a finite nonempty set. A function
f:2F — R is called a submodular function if it satisfies

FVUU)+F(VNAU) < f(V)+ f(U) for all V,U C E, (4)

WP,
fo=o <N v ep
i+ 2= g N P

1log(1 + ).

3

where 7(z)

B. Submodular Functions

for any V,U C E. A function f is called suppermodular if
—f is submodular. A modular function is a function which is
both submodular and suppermodular.

Submodular functions are the most important functions in
discrete mathematics. They, in fact, play the same role in dis-
crete mathematics as convex functions do in continuous math-
ematics [8]. Therefore, submodualr function minimization is
an important issue in discrete mathematics. Beside, having
a polynomial-time algorithm based on ellipsoid method [7],
there are combinatorial algorithms for minimizing submodular
functions in strongly polynomial time, c.f. [8] and [9]. In
this paper, we make use of these algorithms to develop new
algorithms for the problems we are interested in.

If a submodular function is nondecreasing, i.e. f(U) <
f(V)if U CV, and f(2) = 0 then the associated polyhedron

B(f) = {x|x(U) < f(U) VU C E,x > 0} )

is a polymatroid. Likewise, if a suppermodular function is
nondecreasing and (&) = 0 then the associated polyhedron

G(f) ={xx(U) = f(U) VU C E} ©)

is a contra-polymatroid.
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C. Multiple Access Capacity Region

One of the most important results in Information Theory
is the characterization of the capacity region of the Multiple
Access Channel (MAC) [10], [11]. In fact, the MAC is the
only multiuser channel that we know of the capacity region in
general. In particular, the capacity region of M-user Gaussian
Multiple access channel modeled by

)

with noise variance NV is characterized and can be stated as

Yy=x1+T2+- - -+xTM T2,

Ciac = (RIRW) <7 (F7) w e BR =0}, ®)

where R = [Rl, R27 ey R]\/[}T, P = [.Pl7 1:)27 N ,PN]]T are
the rates and the average powers vectors, respectively. £ =

{1,2,..., M} is the set of users’ indices. If we compare (5)
and (8), we conclude that the capacity region of the M-user
Gaussian MAC is a polymatroid provided that ~y % is a

submodular function and nondecreasing. It is easy to check
that «y is indeed a submodular function and nondecreasing [3].

III. SINGLE RECEIVER RATE MAXIMIZATION

In this section, we consider reliable data transmission over
an interference channel where the interference is caused by
M — 1 interfering users with known powers, rates, and code-
books. The model of the channel can be written as

(€))

where x and y denote transmit and received symbols, respec-
tively. x; is the input symbol of the ith interfering user with
power P; and rate R;, and z is the additive white Gaussian
noise with variance N. Consider the transmitter is subject to
average power P and tries to send data at the maximum rate.

If the receiver treats the interference as noise, then the
following rate is achievable

P
R=y|——5=— 1"
(N + 2?11 'P 1)
On the other extreme case, if it is possible for the receiver to

decode all the interfering signals considering its own signal as
noise then the following rate is achievable

(%)

Even though, we first decode the interference in (11) and then
we decode the intended signal, it is possible to decode jointly
the intended signal with part of the interference. Therefore,
in order to maximize the rate, it is needed to find the best
decodable subset. To this end, the receiver first assumes that
its own data is reliably decoded and its effect is removed. By
this assumption, it looks for a decodable subset of users. Then
it maximizes its own data rate in such a way that it can be
decoded jointly with other decodable users.

Y=+ +T2+---+Tpy_1+2,

(10)

(an



A. Maximum Decodable Subset

Suppose the receiver has successfully decoded z in (9) and
it can remove its effect. Then, we have

(12)

where users are transmitting at rates R = [Ry,..., Ra—1]
using Gaussian codebooks with average power constraints
P=[Py,...,Py_1]- Let E={1,2,..., M — 1} denote the
set of users’ indices. We are interested in decodable subsets
of E. There are 2V 1 subsets and in order to check that a
subset V with cardinality of k is decodable, 2¥ — 1 inequalities
must be satisfied due to (8). Hence, in general the number of
inequalities involved in the problem is

M-—1
Z (‘]\/Ik_ 1) (2k _ 1) — 3]\/]—1 _ 2M—1

k=0

y=T1+T2+ - +xTp1+ 2,

which is exponential in the number of users. The problem
is more complicated when we are searching for the best
decodable subset in some sense. The following definition puts
partial ordering on decodable subsets.

Definition 2 (Maximal decodable subset): A subset of
users is a maximal decodable subset if all users in the subset
are decodable by the receiver and it is not proper subset of
any other decodable subset. If the maximal decodable subset
is unique, we call it maximum decodable subset.

It is worth noting that even if a subset is jointly decodable
it does not imply every subset of it is jointly decodable by
considering the rest as noise.

Lemma 1: There is a maximum decodable subset for the
receiver in (12).

Proof: Suppose the receiver is able to decode two subsets
of users, namely, U and V such that none of them is subset
of the other. U and V are proper subsets of their union
U U V. Besides, their union is decodable by the receiver. This
contradicts the fact that both subsets are maximal. O

Lemma 2: None of the signals in (12) is decodable iff users’
rates satisfy

P{U)

R(U) > V(N+P(Ef )

Moreover, the region of those rates satisfying above inequali-
ties form a contra-polymatroid region.

Proof: Suppose a rate vector R satisfies (13) and V is
the maximum decodable subset. Form the characterization of
the capacity region of the Gaussian MAC, we have

R(V) < 7(%)

which is a contradiction and it completes the “if” part of
the proof. Now, we need to prove that if the inequalities
in (13) are not satisfied, there is at least a user which is
decodable. Suppose there are some subsets that do not satisfy
(13). Assume W has the minimum cardinality among all and

satisfies
P(W)
N+PE-W))

), foral U CE. (13)

(14)

R(W) < V( (15)
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If |W| = 1, then the user in W is decodable by considering
everything else as noise which is the desired result. Hence, we
assume |W| > 1. If all members of W are jointly decodable,
then we have found a subset which is decodable. Otherwise,
there must be a subset of W, say V, which satisfies

P(V)
R(V —_ . 16
( )>7(N+P(E7W)) (10
By decomposing the ~ function in (15), we obtain
P(V) P(X)
<
R(W) < W(NJrP(EfW)) +7<N+P(E7X) 7
a7
where X = W — V. From the minimality of |W|, we have
P(X)

By adding the two inequalities (16) and (18) and considering
the fact that R(W) = R(V) + R(X), we conclude that
P(V) P(X)
N+P(E—W)> +7<N+P(E—X)>’
19)

Which is a contradiction, and this completes the “only if” part
of the proof. It is easy to see that the function on the right
hand side of (13) is a suppermodular function and monotone,
hence the region formed by rates satisfying (13) is a contra-
polymatroid region. O

Theorem 1: A subset S C E is maximum decodable subset
iff the rates of the users satisfy the following inequalities

R(W) > 7(

P(V)
P(U) :

Proof: Inequality (20) corresponds to the capacity region
of the MAC for members of S considering members of S
as noise. Hence, the members of S are decodable iff the
inequalities in (20) are satisfied. After decoding the users
in S successfully, receiver can remove their effect. Now, by
applying Lemma 2, we conclude that none of the users in
S is decodable iff the inequalities in (21) are satisfied. This

completes the proof. O
We first define function f : 2 — R as follows
fV)=~(V) = R(V), (22)

for every V C E.
Lemma 3: The function f defined in (22) is a submodular
function.
Proof: Since 7y is a submodular function and R is a
modular function, the function f is a submodular function. [
We now introduce the following submodular function min-
imization problem

W) = min f(V)

VCE (23)

If the minimum of f in (23) is zero, then all users are
decodable by the receiver due to (8). Otherwise, there is at



least a user of the set E which is not decodable. In the
following theorem, we prove that indeed all members of
the minimizer of f are not decodable, and they need to be
considered as noise.

Theorem 2: None of the members of the subset W that
minimizes f in (23) is decodable by the receiver provided the
minimum is not zero and the minimum cardinal minimizer is
used. In fact, all users in W must be considered as noise, i.e.,
if S is the maximal decodable subset then W NS = @.

Proof: Suppose U = W NS and W =W —U. Since U
is a subset of the maximum decodable subset S, we have
P(U) )

R < (5 b

The inclusion W C S implies P(W) < P(S). Hence
R(U) <~ (LW) .
N+P(W)
From the definition of f in (22), we have
P(W
rav) =+ (B52) - R

The v function in (26) can be decomposed as follows

PO P(V) (29, @
7( N _7< N )JW vieon) @
Substituting into (26) and using R(W) = R(W) +R(U), we
obtain

(24)

(25)

(26)

7 PU) )
W)=fW)+~v| ——==) —R(0). 28
$OV) = 00+ 7 (g ) ROL @
Using the inequality in (25), we conclude that
FOV) < W), (29)
which is a contradiction. This completes the proof. O

By applying Theorem 2 and using the well-known submod-
ular function minimization algorithms as a subroutine, c.f. [9]
and [8], we propose the following polynomial-time algorithm
for finding the maximum decodable subset.

Algorithm 1 (Finding the maximum decodable subset):

1) Set S=EF.

2) Find W such that

fW) = min f(V),

VCs
where f is the following function

FV) =1 (%) |

3) If W = @ Stop. S is the maximal decodable subset.
Otherwise, S — W — S.

4) If S = @ Stop. None of the subsects of E is decodable.
Otherwise, GO TO step 2.

Since in each iteration W is a nonempty set (otherwise,
the algorithm stops), this algorithm converges at most in |E)|
iterations. Hence, the total running time of the algorithm is
polynomial in time.

(30)
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Fig. 1. The function g(R) for a two-user GIC

B. Maximum Rate

We now return to the main problem which is rate maxi-
mization of user in (9). By making use of Algorithm 1, we
first partition the set of interfering users into two subsets .S
and S where S is the maximum decodable subset and S is
the noise part of the interference. By using (8), it is easy to
prove that the maximum rate can be derived from the following
optimization problem

R=g(R)=min~y

nin (P +P(U)

N+P(5’)> R(U). 3D
The optimization problem in (31) is again a submodular
function minimization and can be solved by polynomial-time
algorithms.

In order to derive some properties of the function g defined
in (31), we need the following definition.

Definition 3 (piecewise linear functions): A function f :
RM — R is piecewise linear if firstly its domain can be
represented as the union of finitely many polyhedral sets,
and secondly f is “affine” within each polyhedral set, i.e.,
f(x) = aTx + b for some vector a and scalar b.

In the following theorem, we summarize some properties of
g.
Theorem 3: The function g defined in (31) is continuous

and piecewise linear. More precisely, g consists of 3M~1
hyperplanes.
Proof: We omit the proof here. O

In Fig. 1, an example of the function g for the two-user GIC
is illustrated. As depicted in the figure, it is piecewise linear
and has 9 faces.

IV. USERS ORDERING

In this section, we consider the M-user GIC modeled in
(2). Given an ordering of users, we aim at maximizing users’
rates in succession. In general, there are M! orderings of users
which result in M not necessarily distinct achievable rates in
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the capacity region; on the contrary, in the Gaussian MAC,
every permutation leads to a distinct achievable rate. Without
loss of generality, we may assume the order is the same as
users’ indices.

Setting the first user’s rate to its maximum value, i.e.,

WP : :

—— ) imposes some constraints on the other user’s rates
as they must be decoded by the first receiver. The reason is
that the first receiver needs to decode first all other users to
be able to decode its own signal at this rate. As we proceed,
we maximize the rates of the users successively. For instance,
for user ¢ we treat users below the index i as interference with
given rates and powers, and users above index ¢ as they do not
exist, i.e., we put constraints on their rates in such a way that
the receiver can decode them first. In order to be decodable
by receiver j € {1,2,...,i}, the rate of user ¢ must satisfy
the following inequality which is a consequence of (31)

h?zpl + ZkeW h?kpk

Nj+ X ke(e-s)) 2, P
-R(W) (32)

min
WCX; v

Ri < Rij(X;) =

where X is the maximum decodable subset of users with
indices less than 7. The following algorithm maximizes the
rates of the users successively.

Algorithm 2 (successive maximization of users’ rates):

1) Set R =~ (% )
2) Fori=1:M set: S; ={i,i+1,...,M} and U; = S;.
3) For i =2: M Do:
a) Find the maximum decodable subset V' in the set
U, for receiver i considering users in the set S; are
decoded first, and S; UV — S;
b) Solve the following optimization problem
R; = i R;; (S, NnU;),
et TS 0 0

where R;; is defined in (32).

(33)

V. FIXED POINT AND ITERATIVE ALGORITHM

We start this section with the following definition.

Definition 4 (conservative rate): The conservative rate of
a user is the rate that is achievable while considering the
interference caused by other users as noise.

In a noncooperative media, however, a user may reject any
rate which is below its conservative rate. Therefore, some
achievable rate vector characterized in the previous section
may not be feasible in a noncooperative scenario. The reason
is that a user to send at its maximum rate puts some constraints
on the other users’ rates which might make some users send
below its conservative rate, whereas a user may reject to
appease other users by sending at low rates. As a result, those
strategies are feasible that every user has a rate no less that
its conservative rate (3).

Suppose that users are transmitting at the rate vector R.
Now, by knowing the powers and rates of the other users,
user ¢ can maximize its own rate by running Algorithm
1 and solving the optimization problem in (31). Suppose

2200

the new rate of user i is R; = gi(R—;), where R_; =
[R1,...,Ri—1,Rit1,...,Rp). If all users do the same pro-
cedure simultaneously, then the new rate vector can be written
as a function of R, i.e.,

R=G(R)=[9:1(R_1),02(R_2),....9n(R_nr)]" . (34)

In the following theorem, we prove that the function G has a
fixed point.
Theorem 4: The function G in (34) has a fixed point.
Proof: By applying Theorem 3 to each function g;, we
conclude that G is continuous. Since the rate of user ¢ is

2 p.
bounded by v (hNP , the domain of G is a compact subset

of RM™ . Now, by applying Brouwer’s fixed-point theorem [14],
we conclude that G has a fixed point. O
In general, the fixed points of G are not unique. Moreover,
if we start from a rate vector and update the vector based on
(34), then in some cases, it does not converge to a fixed point.
However, the following algorithm can find some fixed points
of the function by updating just one rate at each iteration.
Algorithm 3 (Fixed Point Algorithm):
)

D Set Ro= [y (M) o (M), (Mgl
M.

N, ) No
and let 7 be a permutation on users.
2) Do the following until converges: For ¢

Ry = 9r(iy (R_z3))

=1
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