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Abstract— A wireless multicast network with a stringent de-
coding delay constraint and a minimum required multicast data
rate is characterized. Assuming the channel state information is
available only at the receiver sides, and a single antenna system,
the optimal expected rate achievable by a random user in the
network is derived in terms of the minimum multicast require-
ment in two scenarios: hard coverage constraint and soft coverage
constraint. In the first case, the minimum multicast requirement
is expressed by multicast outage capacity while in the second
case, the expected multicast rate should satisfy the minimum
requirements. Also, the optimum power allocation in an infinite
layer superposition code, achieving the highest expected typical
rate, is derived subject to the coverage constraints. For the MISO
case, a suboptimal coding scheme is proposed, which is shown to
be asymptotically optimal, when the number of transmit antennas
grows at least logarithmically with the number of users in the
network 1.

I. INTRODUCTION

In a wireless multicast system, a common source is trans-
mitted to N users, through a fading channel. In such networks,
two issues can be studied as a measure of performance:
network coverage and quality of service. In the first case,
the objective is to cover all the nodes in the network at
least with a basic service, regardless of their channel quality.
From this point of view, all the users have basically the same
opportunity to receive data. However, in the second case, the
average quality of service is the main objective. Therefore,
users with better channel status should receive higher data rates
and consequently, better quality of service. The coverage issue
in such systems is generally addressed as multicast minimum
requirement.

Multicasting has been recently studied as a special scenario
in broadcasting, where all the users are listening to a common
source. In [2], the system challenges in lossy broadcasting of a
common source are studied from information theoretical point
of view. For an analog Gaussian source with a bandwidth equal
to the channel bandwidth, analog transmission achieves the
minimum average end-to-end distortion. The scenario in which
the source has a larger bandwidth is studied in [3], where
different methods of digital transmission are investigated.

1 This work is financially supported by Nortel and by matching funds from
the federal government of Canada (NSERC) and province of Ontario (OCE).

Since the performance of a multicast network is strongly
affected by the user with the worst channel condition, we
are motivated to define a more fair approach. We consider
a wireless multicast network in a slowly fading Gaussian
environment. The objective is to maximize the average per-
formance while a multicast constraint is satisfied. Average
performance is defined as the service received by a randomly
chosen user (typical user) in the network, while the multicast
requirement is the service received by all the users. These
two requirements in a multicast network define a tradeoff,
since the first one deals with a typical user of the network
while the second depends on the worst channel state in the
system. We assume the transmission block is large enough
to yield a reliable communication. However, averaging over
time is not possible because of the delay constraint. In other
words, all the symbols within a transmission block experience
the same channel gain. The channel state information (CSI)
of each user is assumed to be known only at the receiver
end. In this case, the ergodic capacity is not defined since
the channel dose not have an ergodic behavior. The outage
capacity [9] is defined for such channels as the maximum
rate of single layered data, decodable with a high probability.
In [6], a broadcast approach for a single user channel with
these assumptions is proposed which optimizes the expected
decodable rate. We will apply both “outage capacity” and
“expected rate” definitions to characterize our network. Outage
capacity is exploited when we have a hard coverage constraint
on multicast data. In this case, we want to assure that a specific
amount of data is conveyed within one transmission block to
all the users, with a high probability. We relax the coverage
constraint by stating it in terms of the expected delivered rate
to all the users within one block. In both cases we maximize
the expected typical rate.

This minimum-service based approach has been studied in
[4] for a single user fading channel, assuming CSI is known at
the transmitter. In that work, given a service outage constraint
for a real time application, the average rate is maximized for
a non real time application sent on top of it.

We will investigate the proposed multicast system in both
SISO and MISO cases. The MISO multicast asymptotical
capacity limits are examined in [5], when the CSI is available
at the transmitter. It is shown that the adverse impact of the
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large number of users on the multicast capacity could be
compensated by increasing the number of transmit antennas.
We will study a similar scenario in our network and explore
the effect of using multiple antennas.

The rest of this paper is organized as follows: in section
II, the system model is elaborated. Section III and IV are
specified to characterization of multicast network when we
have a single antenna at the transmitter and at each receiver.
In section III, we evaluate the optimal performance of the
network in terms of the achievable expected typical rate and
the multicast outage capacity. In other words, this section de-
scribes the hard multicast coverage constraint scenario. Section
IV corresponds to a soft multicast coverage constraint, where
expected multicast rate decoded in a block should satisfy the
minimum requirement. In this scenario, we will explore the
achievable expected typical rate. Section V investigates the
MISO case, where we derive the asymptotical capacity limits
for the multicast network.

II. SYSTEM MODEL

When a single-antenna transmitter sends a common data
to N single-antenna receivers, the received signal at the jth
receiver, denoted by yj can be written as

yj = sjx + nj . (1)

In the above equation, {x} is the transmitted signal with the
total average power constraint E[x2] ≤ P , {nj} ∼ CN (0, 1)
is the Additive White Gaussian Noise (AWGN) at this receiver,
and sj ∼ CN (0, 1) is the channel coefficient from the
transmitter to the jth receiver. Therefore, the channel gain
hj = |sj |2 has the following CDF:

Fj(h) = 1− e−h,

and is assumed to be constant during the transmission block.
The typical (average) channel of the multicast network is
defined as the channel of a randomly selected user. Since all
the channels are i.i.d., the typical channel gain distribution is
identical to that of each channel, i.e.,

Ftyp(h) = Fj(h) = F (h). (2)

Since all the N channels are Gaussian and they receive a
common signal, the multicast channel is equivalent to the
worst channel in the network. Due to statistical independence
of the channels, the gain of that user has the following
distribution:

Pr
{

min
i

(hi) > h
}

= (Pr {hi > h})N = e−Nh.

As a result, we have:

Fmul(h) = Fmini(hi)(h) = 1− e−Nh.

In this paper, we are dealing with three measures defined
in our network, as follows:
• the multicast outage rate, Rε, the rate decodable at the

multicast channel with probability (1− ε),

• the expected multicast rate, Rmul = Ehmul
[R(h)], where

hmul = mini(hi), and R(h) is the decodable data rate
for the channel state h,

• the expected typical rate, Rave = Ehtyp
[R(h)].

III. BROADCAST MODEL FOR AN UNKNOWN FADING
CHANNEL

In [6], a virtual broadcast model is proposed to optimize
the expected rate of a SISO channel with a stringent decoding
delay constraint. In this paper, we exploit the same model for a
multicast channel in a more general fashion. In the following,
we will study this model in detail.

Because of a decoding delay constraint in our network, each
receiver is experiencing a single fading level during the whole
period of transmission. Hence, for any coding scheme, we have
a function R(h) which determines the data rate decoded in
channel state h. Regarding the degraded nature of the Gaussian
channels, this function is increasing. Therefore

R(h)−R(h− dh) = dRh ≥ 0

Consider an infinite number of differently indexed virtual
receivers, such that receiver rh is experiencing a fading level
between h and h + dh. With this assumption, rh is receiving
all the data received by rh−dh in addition to dRh. The virtual
receivers introduce a degraded broadcast network in which the
rate associated to the virtual user rh is dRh. The actual user
selects receiver rh with probability f(h)dh, where f(h) is the
channel gain distribution function.

With this interpretation, for a given coding scheme, the
distinction between different channels is their different proba-
bility distribution of virtual antenna selection. Hence, provided
that both multicast and typical channel deal with the same
signalling, all the measures defined in the previous section
could be written in this setting:

Rave =
∫∞
0

R(h)f(h)dh =
∫∞
0

(1− F (h))dRh,

Rmul =
∫∞
0

(1− Fmul(h))dRh,

Rε = R(hε) =
∫ hε

0
dRh, (3)

where hε = F−1
mul(ε). The first two derivations are statistical

averaging of decoded rate over different selected antennas.
In the case of multicast channel, the selected antenna has a
channel level lower than hε with probability ε, and hence,
the highest decodable rate with probability 1 − ε is R(hε).
As seen above, the performance measures in our network
are three different positive weighted sum-rates of the virtual
broadcast network which forms a performance vector. We are
always interested to achieve the optimal performance vector.
In the following, we will propose a search space for the virtual
broadcast rate vector which results in the optimal performance.
Before that, we should give a definition for the optimality of
a performance vector.

Deffinition 1 The boundary set B1 of a closed convex region
R1 ⊂ R+n, is defined as

B1 = {x ∈ R1| 6 ∃x′ ∈ R++n
, x′ 6= 0, x + x′ ∈ R1}
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where R+ and R++ are the set of nonnegative and strictly
positive real numbers, respectively.

With the above definition, a performance vector is optimal
if it is in the boundary set of all possible performance vectors.

Lemma 1 Consider a mapping function g(.) from a closed
region R1 ⊂ R+n to R2 ⊂ R+k, such that g(x) = Mx,
where M ∈ R+k × R+n. Denote B1 and B2 the boundary
sets of regions R1 and R2, respectively. We have

B2 ⊂ g(B1)

The proof is given in [10].

Corollary 1 Given two positive weighted sum rate of a vir-
tual broadcast channel, Rw1 =

∫
w1(h)dRh and Rw2 =∫

w2(h)dRh, for any vector v in the boundary set of
(Rw1 , Rw2), there exists a scalar positive function ρv(h) such
that

dRv
h = log(1 +

hρv(h)dh

1 + h
∫∞

h
ρv(u)du

)

and v = [
∫

w1(h)dRv
h,

∫
w2(h)dRv

h], where
∫∞
0

ρv(u)du =
P .

The proof which is given in [10] is concluded from the above
lemma and the fact that superposition coding achieves the
capacity region of a degraded broadcast channel. We will use
the above lemma in this paper to deduce that superposition
coding achieves the optimal performance vector.

IV. HARD COVERAGE CONSTRAINT

In this section, we consider a scenario where the multicast
data has a high priority. Hence, it should be delivered to all the
users in the network with a high probability (1 − ε), where
ε is the outage probability of the system. In this case, any
loss of the multicast data by any user is defined as a coverage
outage. Given this constraint, we want to maximize the average
rate received by a randomly chosen user in the network. This
average rate includes the expected rate of all data received by
a typical user, even if the user is in outage. However, we will
show that for a small enough outage probability, the users in
the outage do not contribute to the expected average rate (it
is optimum not to allocate them any power). In this scenario,
we deal with two channels: (i) a multicast channel for which
we want to guarantee an outage rate Rε, and (ii) an average
channel for which the highest expected rate Rave is desired.

Setting w1(h) = 1{h≤hε} and w2(h) = 1−F (h), Corollary
1 states that the boundary set of (Rε, Rave) is achieved by
superposition coding:

dRh = log
(
1 + hρ(h)dh

1+hI(h)

)
=

∫ I(h)+ρ(h)dh

I(h)
hdp

1+hp , (4)

where I(h) =
∫∞

h
ρ(u)du. Note that, dRh is not necessarily

very small since our power allocation function might have
some impulses in the general case. As stated before, we want
to jointly optimize the weighted sum of these rates according

to the weighting functions w1(h) and w2(h). The optimization
is on the function I(h) and ρ(h). However, we can simplify
our optimization problem to a point optimization. Let us define
s(p) as

s(p) = max {h| I(h) ≥ p} .

It is evident that this function is a decreasing function of p.
According to (4), we can write the expected rate as

Rave =
∫∞
0

(1− F (h))dRh =
∫ P

0
g(p, s(p))dp, (5)

where g(x, y) = (1− F (y)) y
1+xy . It is proved in [10] that

arg max(g(x, y)|x=p) = I−1
0 (p), (6)

where I0(h) = (1−F (h))−hf(h)
h2f(h) . Moreover, g(x, y)|x=p is

increasing for y < I−1
0 (p), and decreasing elsewhere.

Let us define P
s(.)
ε for the function s(.) as

P s(.)
ε = min {p|s(p) ≤ hε} ,

where hε = F−1
mul(ε). For simplicity, we assume hε ≤ 1 (this

assumption is justified in [10]). With the above definitions, our
problem is translated to find

max s(.) Rave = maxs(.)

∫ P

0
g(p, s(p))dp, (7)

subject to
∫ P

P
s(.)
ε

m(p, s(p))dp ≥ Rε, where m(x, y) = y
1+xy

and s(.) is constrained to be a decreasing positive function. For
any chosen x, m(x, y) is an increasing function of y. Hence,
we can write

Rε ≤
∫ P

P
s(.)
ε

m(p, hε)dp = log
(

1+hεP

1+hεP
s(.)
ε

)
= C(P s(.)

ε ).

Since C(p) is a decreasing function of p,

P s(.)
ε ≤ C−1(Rε). (8)

Lemma 2 Denoting the optimizer of the problem (7) as s∗(.),
we have P

s∗(.)
ε ≤ I0(hε).

The proof is given in [10], considering the behavior of
the function g(x, y). The above lemma states the fact that,
applying the multicast outage constraint, more power will be
allocated to the channel gains lower than the outage threshold,
compared to the unconstrained scenario [6], where I0(.) is the
interference term which leads to the optimal expected rate.

Lemma 3 Given P
s(.)
ε = α, the optimizer of (7) is given by

s∗α(p) = η(λ, p) =





I−1
0 (p) p < α

hε α ≤ p ≤ Iλ(hε)
I−1
λ (p) p > Iλ(hε)

, (9)

where Iλ(h) = (λ+1−F (h))−hf(h)
h2f(h) , and

λ =
{

0,
RP

α
m(p, η(0, p))dp > Rε

arg (
RP

α
m(p, η(λ, p))dp = Rε), otherwise

.

The proof is given in [10].
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Theorem 1 The solution to the optimization problem (7) can
be written as

max Rave = max
0≤α≤min(C−1(Rε),I0(hε))

∫ P

0

g(p, s∗α(p))dp.

Proof: The proof is directly concluded from Lemma 2,
Lemma 3, and inequality (8).

Corollary 2 The boundary set of (Rε, Rave), is given by
(Cε, Cave), such that

Cε = log
(

1 +
hεβP

1 + hε(1− β)P

)
,

where β changes from 0 to 1 and

Cave = 2(Ei(θ(β))− Ei(1))− (e−θ(β) − e−1) + e−hεCε,

where θ(β) = 2

1+
√

1+4(1−β)P
, and Ei(x) =

∫∞
x

e−t

t dt, for

any ε > 0 such that hε ≤ I−1
0 (P).

The proof is given in [10].
An interesting conclusion of Corollary 2 is that, the expected

typical rate is maximized when the multicast rate is provided
in a single layer code. In the case we have no multicast
constraint, it is shown in [6] that a multilevel coding with a
small rate in each level is optimal in terms of maximizing the
expected rate. However, when we are constrained to distribute
a fraction of power to a set of low channel gains [0, hε]
(coverage constraint), it is optimum to allocate all the power
to the highest gain (hε).

Note that the assumption hε ≤ I−1
0 (P) is not hard

to satisfy, since the outage probability ε is usually small.
Moreover, the value of hε decreases significantly with the
number of users, such that it could be approximated by ε

N [10].
For example, for N = 5 and P = 100, the outage probability
ε could be as high as 0.38 in order to have hε ≤ I−1

0 (P). In
figure 1 we can see the capacity region of this network when
ε = 0.01. It is evident that due to hard coverage constraint
for all the users, the achievable outage rates are very small in
comparison with the expected rate values.

V. SOFT COVERAGE CONSTRAINT

In the previous section, we observed that a strict coverage
constraint for multicasting results in very small values of
multicast rate. We can relax the coverage requirement by
considering the average service received by all the users in one
channel block. In fact, we can replace the outage requirement
by the expected multicast rate. In this case, all the users should
receive a minimum rate in average and given that, we want
a typical user to receive the highest expected rate. Therefore,
the measures we are dealing with in this section are Rmul and
Rave.

Theorem 2 The boundary set of (Rmul, Rave), is given by
(Cmul,Cave), such that:

Cave =
∫∞
0

e−u uργ(u)du
1+uIγ(u) , (10)

Cmul =
∫∞
0

e−Nu uργ(u)du
1+uIγ(u) , (11)
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Fig. 1. Hard coverage constraint: multicast outage capacity vs. expected
typical rate for P = 100 and N = 5
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Fig. 2. Soft coverage constraint: expected multicast rate vs. expected typical
rate for P = 100 and N = 5

where

Iγ(h) =





P if h < h0
e−h(1−h)+γe−Nh(1−Nh)

h2(e−h+γNe−Nh)
h0 < h < h1

0 h > h1

,

ργ(h) = −∂Iγ(h)
∂h , and h0 and h1 are real numbers, such that

e−h0 (1−h0)+γe−Nh0 (1−Nh0)
h2
0(e

−h0+γNe−Nh0 )
= P,

e−h1 (1−h1)+γe−Nh1 (1−Nh1)
h2
1(e

−h1+γNe−Nh1 )
= 0,

for different positive values of γ.

The proof is given in [10], setting w1(h) = 1− Fmul(h) and
w2(h) = 1− F (h) and using Corollary 1.

Figure 2 shows the achievable rate region for N = 5 and
P = 100. It is shown in [7], that a good fraction of the
highest expected rate with infinite layers of code is achieved
by two layers. Figure 2 shows that this is true for our multicast
network as well.

In figure 3, the optimal power distribution function is de-
picted for the multicast requirement Rmul ≥ 1.4 (nats/symbol)
and is compared to the case we have no multicast constraint.
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Fig. 3. Power distribution function ρ(h) for no multicast requirement and
for Rmul = 1.4 nats/symbol

As expected, the coverage constraint for all the users has
shifted the power to lower channel gains, in order to provide
service for the user with the worst channel quality in the
network.

VI. EXTENSION TO MISO

In the case we have multiple (M ) antennas at the transmitter,
we can adopt the broadcast approach proposed in [6]. In this
approach, the receiver with unknown quasi-static fading MISO
channel is modeled as a continuum of receivers each associated
with a channel realization. These receivers are ordered in a
degraded fashion, based on their normalized channel norm,
||HH†||

M . Using this model, we can convert the MISO case to
the previously studied SISO network with the channel fading
level 1

M ||HiH
†
i ||, corresponding to the user i. Hence, all the

results of the previous sections can be obtained, by using an
equivalent SISO channel with distribution

Ftyp(h) = F 1
M ||HiH

†
i ||(h) = 1− Γ(M, Mh)

Γ(M)
,

and multicast channel distribution

Fmul(h) = Pr
{

mini
1
M ||HiH

†
i || > h

}
=

(
Γ(M,Mh)

Γ(M)

)N

.

where Γ(α) is a gamma function, and Γ(α, β) is an upper
incomplete gamma function. Further analytical results are
presented in [10].

Since MIMO-BC is inherently non-degraded, this approach
dose not necessarily lead to the optimum performance. How-
ever, we will show that it is optimal when M is large enough
compared to number of users. Above that, we will prove
that one can compensate the adverse effect of increasing N
on multicast rate (as observed in figure 4), by using more
transmit antennas. This is sensible, since we are using multiple
independent paths to convey the data, so the probability of
having very low channel gains for all paths (which mainly
affects the capacity of the multicast channel) significantly
decreases. The above facts are true for both coverage constraint
scenarios. However, due to space limitation, we only study the
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Fig. 4. Soft coverage constraint: MISO expected multicast rate vs. expected
typical rate for different number of users, M = 2 and P = 100

case with a soft coverage constraint in the following theorem:

Theorem 3 For large values of M and N , the proposed
infinite layer superposition coding will provide Rmul, such
that Rmul ≥ Ropt − ε, if

M >
P2 log(N) + ω(1)

(1 + P)2ε2
, (12)

where Ropt is the highest achievable average rate for a
randomly selected user in the network and ε is an arbitrarily
small positive number.

The proof is given in [10].
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