ISIT2007, Nice, France, June 24 — June 29, 2007

Characterization of Rate Region in Interference
Channels with Constrained Power

Hajar Mahdavi-Doost, Masoud Ebrahimi, and Amir K. Khandani
Coding & Signal Transmission Laboratory (www.cst.uwaterloo.ca)
Dept. of Elec. and Comp. Eng., University of Waterloo
Waterloo, ON, Canada, N2L 3G1
e-mail: {hajar, masoud, khandgm@cst.uwaterloo.ca

Abstract—In this paper, an n-user Gaussian interference The authors in [6] show that the boundary of the capacity
channel under arbitrary linear power constraints is considered. region with one user’s power fixed and the rest unbounded is
Using Perron-Frobenius theorem, a closed-form expression for 4 ghift of the boundary of some capacity region with modified
the boundary points of the rate region of such a channel is 2. . .
derived. This is a generalization of the well-known result on the parameters, but unlimited power. However, this result is not
maximum rate that some interfering links can simultaneously in @ closed form and cannot be extended for the other forms
achieve when the power is unbounded. Moreover, this result is of power constraints.
extended to the time-varying channels with constraints on the |t ijs shown that the feasible SINR region is not convex,
average power. in general [7]-[9]. In [10], it is shown that in the case of
unlimited power, the feasible SINR region is log-convex. The
authors in [5] also consider a CDMA system without power

Channel sharing is known as an efficient scheme to increagsstraints, and show that the feasible inverse-SINR region
the spectral efficiency of the wireless systems. While sugh a convex set. In [7], it is proved that the feasible QoS
a scheme increases the capacity and the coverage arege@fon is a convex set, if the SINR is a log-convex function of
systems, it suffers from the interference among the concurréié corresponding QoS parameter. Reference [11] shows that
links (co-channel interference). Consequently, the signal-tgnder a total power constraint, the infeasible SINR region is
interference-plus-noise-ratio (SINR) of the links are uppefiot convex.
bounded, even if there is no constraint on the transmit powersin this paper, we extend the result on the maximum achiev-

There have been some efforts to evaluate the maximuble SINR in [1] to the systems with certain constraints on the
achievable SINR in the interference channels. In [1], thsower of transmitters. This result yields a closed-form solution
maximum achievable SINR of a system with no constraifiér the rate region of the systems with constraints on the power,
on the power is expressed in terms of the Perron-Frobeninsterms of the PF-eigenvalue of anx n irreducible matrix.
(PF) eigenvalue of a non-negative matrix. Then, this expressiPhe approach that we use is more general as compared to the
is utilized to develop an SINR-balancing scheme for satalecheme used in [4] in the sense that it is easily applied to
lite networks. This formulation for the maximum achievablehe systems with different power constrains. In addition, the
SINR is deployed in many other wireless communicatiofesulting closed-form solution has a direct relationship with
applications such as [2], [3] afterwards. In [4], the maximurthe solution for the systems with unbounded power presented
achievable SINR is obtained based on the PF-eigenvaluei®{1]. This result is extended to a time-varying system, where
an (n+ 1) x (n+1) primitive non-negative matrix, when thethe channel gain is selected from a limited-cardinality set, and
total poweris constrained. the average power of users are subject to some upper-bounds.

Recently, the rate region of interference channels and itSNotation: All boldface letters indicate column vectors
properties has been investigated in the literature. In [5], it (®ower case) or matrices (upper case); and x; represent
shown that the capacity region when the power is unboundg@ entry (i,5) and column; of the matrix X, respectively.
is convex. The capacity region in [5] is defined as the set of matrix X,,«,,, is called non-negativeif z;; > 0 Vi,j €
feasible processing gains while for a constant bandwidth, the, ... n}, and denoted byX > 0. Also, we haveX >
processing gain is inversely proportional to the rate. In [6) +—= X — Y > 0, whereX,Y and 0 are non-negative
some topological properties of the capacity region (with th@atrices of compatible dimensions [12t(X), Tr(X), X/,
aforementioned definition) of CDMA systems are investigatethd |X| denote the determinant, the trace, the transpose, and
for the cases when there are constraints on the powertli¢ norm of the matrixX, respectivelyI is an identity matrix
individual users and when there is no constraint on the powiith compatible size.® represents the Kronecker product

operator. diagx) is a diagonal matrix whose main diagonal
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and a set of indices,

xXj+y J€ S
X; otherwise

VXy,5) =2=lz] 2= {

Il. PROBLEM FORMULATION

A Gaussian interference channel, includimdinks (users),
is represented by the gain mati® = [g;;]nxn Whereg;;
is the attenuation of the power from transmitfeto receiver
i. This attenuation can be the result of fading, shadowing, or
the processing gain of the CDMA system. A white Gaussian
noise with zero mean and varianeg is added to each signal
at the receiver terminal. In many applications, the QoS of

the system is measured by an increasing function of SINR. In 1=(09802)
an interference channel, SINR of each user, denotegl; bis o s 1 1 2 28 s 35 4 45
X7 ) .
Vi = g"p , Vie{l,...,n}, Fig. 1. The boundary of SINR Region for an interference channel
o2+ Z Gi;Dj with 2 users
j=1
J#i

wherep; is the power of transmittei: In addition, in practice, SiNceé we are interested in maximizing the minimum SINR,
the power vectop is subject to a set of constraints. The maiff SINR of one user is more tha,n that of the others, it can
goal is to find the maximum SINR which can be obtained bigduce its power to other users’ advantage, and finally the

all users in the presence of such constraints. To this end, (pElImMum SINR is improved. Therefore, equality holds in (5).
solve the following optimization problem After reformulating the problem in a matrix form we will have

1 .
max y 1) (;I — diag(p)A)p = 1. (7)
st v > ey (2) L ) . .
- 3 The objective is to find the maximum while the system of

p=0 ®) linear equations in (7) yields a power satisfying the constraints

> " pi <P, (4) on the power vector (3), (4).

i€Q When there is no constraint on the power vector (rather than
whereQ) C {1,...,n} with £ elements ang is a given vector trlvu_al Cr? nstr::unF Ofdpbz OL’ theﬂ:na;qmum I;d cht;evgblihSINR,
with 1; > 0 and |u| = 1. As we will see, the solution can” , Is characterized based on the Perron-Frobenius theorem as
be easily extended for the case of multiple power constraints X 1

v (8)

M*(diag(p)A)
provides thezefgllexibility of satisfying different rate servicegvhereA™ is the Perron-Frobenius eigenvalue of the associated
for different users. According to Fig. 1, the solution of (1jnatrix [12]. This result was deployed in the communication
yields the maximum achievable SINR in the direction ofystems for SINR-balancing( = u2 = ... = u,) in [1] for
vector u1. Although the numerical solution of this problem ighe first time.
already obtained through geometric programming [13], [14], We find the maximum achievable SINR, considering certain
we propose a different approach which leads to a closed-foktaper-bounds on the power of transmitters in the following

of the form > “p; < P for different @ C {1,...n}. p

result. sections.
By defining the normalized gain matriX as lI. SINR REGION CHARACTERIZATION
9i #7J We defineF as
A = [ajjlnxn, aij = Gii
0 i=y F =1 — ydiag(p)A. 9)
the constraint (2) is rewritten as Then, the system of linear equations in (7) is reformulated as
Pi .
— >, Vie{l,...,n}, (5) Fp = n, (10)
it ;Ma”pj wheren is defined in (6). According to the Cramer’s rule, the
solution to (10) is obtained by
where
B pio? B ©) o det(H®)
771 — Gii ) n= [7]z}n><1~ Di = det(F) )
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whereH® — [h§-“]m, ' = 'fm j=t Since F and H(") are the same except for the first column,
o 4 ‘ R K using Lemma 1 , we will have
Defining h®(y) = det(H®) and f(y) = det(F), we R
have 4 det (F) — det(HY) = det (p(F,— 21 {1})).  (16)
~ h9(y) Do
Cf(y) On the the other hand, using the fact that addition or substrac-
Therefore, the constraint in (4) can be written as tion o_f columns does not change the value of the determinant,
we will have
> 0 ) ORBNQ :
prd < an det (H'") = det (¢(H", —h;" {1,...,i— 1})). (a7)
f) Then, using (16) and (17) and regardlhﬁ) —, we can
Definingua () = Bof(y) — 3 1 (7), the inequality (11) is rewrite (15) as Pa’
. 1€Q
equivalent to o) ua(9) zﬁQ(det( (F, - 777 {1})) (18)
uQ(y
— >0. 12
) ~ 42

—Zdet (00 —ﬂ A1, i—l}))).

We desire to find the largest possible interval where both the
numerator and the denominator have the same sign. It can
be shown that this interval is connected and adjacent to zef#ce F and H() are the same except for the column

Apparently,uq(0) >0, and £(0) > 0. Consequently, i, we can easily see thap(F, —;— {1,...,4 — 1}) and
Q

3 e>0 : f(e)>0 and ug(e) >0. Y(H), _m {1,...,i—1}) are the same except for th#

Q
Therefore, both the numerator and the denominator are pd&lumn. Therefore,
tive in the positive neighborhood of zero. For satisfying (12), m .

. o . F,—— {1,...,i—1
we have to find the smallest positive real simple root of the det (Y (F, Do AL i -1))

numerator and the denominatefug) andr(f), and take the — det ((A® ~m 5 i—1}))
minimum of the two as Topg
’Y77
4 = min {r(f), r(uq)}. (13) = det (¢(F, - {1 - 1}).
For the sake of simplicity, without loss of generality, weapplying this result to (18) successively yields the following
assume thaf) = {1,...,k}, k < n, i.e, the firstk users lemma.
are subject to the total power constraint. For the numerator
we have Lemma 2 ug(y) = Py det ((F, -1 Q).
Do
ug(y) = Po det (F) — Zdet (H) We utilize the result in Lemma 2 to find the smallest positive

simple root of up using Perron-Frobenius theorem. This
theorem states some properties about the eigenvalues of an

det Zdet S ) (14 irreducible matrix. A square non-negative matkxis said to
be irreducible if for every pait, j of its mdex set, there exists
whereH® is defined as a positive integefn = m(i, j) such thatz: ™) > 0 which xgn)
o is theij" element ofX™ [12].
HO = [BEZ)]nxm ﬁ;‘i) = { Do T
f; Jj#i Theorem 1 [12] (The Perron-Frobenius Theorem for ir-

reducible matrices) SupposX is an m x m irreducible
Lemma 1 If square matricesX andY differ only in column non-negative matrix. Then there exists an eigenvaltigX)

i ie., X] #Y; J :? , then (Perron-Frobenius eigenvalue or PF-eigenvalue) such that
=y; J#Fi () \*(X) >0 and it is real.
det (X) + det(Y) = det (¢(X, i, {i})) (i) there is a positive vectov such thatXv = \*(X)v.
— det ($(Y, x;, {i})) (i) A*(X) > |A(X)]| for any eigenvalue\(X) # A*(X).
T ' (iv) If X>Y >0, then\*(X) > |A(Y)]| for any eigenvalue
Equation (14) is rewritten as of Y.
(v) A*(X) is a simple root of the characteristic polynomial
uo(v) = bg (det (F) — det(H Zdet (AY)). (15) of X.
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Lemma 3 The smallest positive root af,(v) is Since ¢ (diag(p)A., Q,Q) > diag(u)A and both are irre-
o) 1 ducible, using Theorem 1 we have
riug) = .
X (¢(ding()A, 2. 9) X (4(ding() A, (i) > X° (diag()A),
Q i

and consequently the maximum achievabler a system with
constraint on the total power of any subset of the users is
achieved. This discussion leads to the following theorem.

Proof:

ug(7) = P det (4(F, 27, )

Do Theorem 2 The maximum achievable in an interference
_ . n channel withn links and gain matrixA, where power vector
=pq det (Y(I —~d A ——Q . . . .
P det ((I — ydiag(u) A, Do’ ) is subject to the following constraints,
1 . _
= Py det (-1 - diag(p)A, —-, Q) p>0, Y pi<Dg
Y Po i€
1 . .
= Poy" det (-1 — (diag(w)A, -, Q). is equal to
Y Pa
7= !
Consequently,gﬂwn) is the reciprocal of the characteristic A* (d}(diag(u)A,]g,Q))
pa” Q
polynomial of ¢(diag(u)A, ,E,Q)- Therefore, the roots of whereQ2 C {1,...,n} is an arbitrary subset of the users.

this polynomial are equal to gtzhe inverse of the eigenvalues ofWhen multiple constraints on power exist, it is obvious

¥(diag(p)A, %7Q>- On the other hand, according to Theothat the maximum achievable SINR is the minimum of the
maximum achievable SINR when each of the constraints is

_ . Q| - applied separately, i.e.,
PF-eigenvalue of this matrix is real and positive and has the

largest norm among all eigenvalues. Also it is the simple root Y= mingg,

of the characteristic polynomial of the aforementioned matri{fvherey?‘ is the maximum achievable SINR for the constraint

The_r_efore_, the inverse of this elgenval_ue_glves the smaIIeZan power. The following corollary yields the maximum
positive simple root ofig () and the claim is proved. =

h i : h achievable SINR when the power of individual users and the
For the denominator using (9), we have total power are constrained.

rem 1, sincep(diag(p) A, 2, Q) is an irreducible matrix, the

f(7) = det (F) = det (I — diag(k)A) Corollary 1 The maximum achievabtein (1), where power

=~"det (11 — diag(p)A). (19) Vector is subject to the following constraints,
v n
Therefore,f(v) is the reciprocal of the characteristic polyno- p=0, p=p Zpi <D
mial of diag(p)A. On the other hand, according to Theorem =1
1, the PF-eigenvalue afiag(p)A., is real and positive. It also iS equal toy” =
has the largest magnitude (norm) among the eigenvalues of the 1 21
matrix and it is the simple root of the characteristic polynomial"™ - ) AN ’ (21)
X - s ) (w(dlag(u) ,57{17...,11}))
of the associated matrix. Therefora; (diag(p)A) is the Dy
inverse of the smallest positive simple rootddfig () A.. Thus, 1 1
1 A ((diag()A, 2L, {11) A ((diag()A, 2L, {23))
rf) = —— . (20) Py Ps
A* (dlag(u)A) 1
SR ' 7 .
On the other hand, according to (8)f) is also the maximum A (¢ (diag(p) A, = {n}))

achievable SINR for the system with unbounded powers o L
satisfying constraint (3). Consequently, using (13), (20) add'e¢ boundary of the SINR region in any direction can be
Lemma(3), the maximum achievable SINR to satisfy all cofotained by choosing, accordingly. Due to the explicit rela-

straints on the power (constraints (3) and (4)) is tionship between the SINR and the rate in Gaussian channels,
obtaining the SINR region in these channels amounts to the
o min{r(f)ﬂ-(u(i))} rate region characterization. As an example, Fig. 2 depicts the
in 1 1 ) rate region of a system with the gain matfik as
= min - s .
A+ (diag(p)A) A+ (1(diag () A, . {i}) G — | 06791 0.0999
b; 0.0411 0.6864 |’
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Theorem 3 The maximum achievable in a time-varying
interference channel with links and probability vectop,, ;,

Fig. 2. The rate region for &-user interference channel with the
following constraints on the power, A; > 0, p2 > 0, B: p1 +p2 <
Ppt >0,p2 >0C0<p1 <pi,ps>0,D:0<ps <pp, M
p1=>0 2]

while the power of individual users and the total power ard?!
upper-bounded ag, = 0.8, p, =1, p, = 1.4, ando} =
o =10"" [4]

IV. TIME-VARYING CHANNEL

So far, we have assumed that the channel gains are fix&d
with time. However, in practice, channel gains vary with time
due to the users’ movement or changing the environment
conditions. (6]

In this section, we consider an interference channel with
n co-channel links whose channel gain matrix is randomly7]
selected from a finite se{Gy,...,G;} with probability
p1,- -, p1, respectively. The matriA; denotes the normalized
gain matrix in the state, i € {1,...,l}. The objective is [8]
to find the maximumy which is achievable by all users in
all channel states, while the average power of the users are
constrained, i.e., [9]

max 7y [10]
st v >y, VieQied{l,... 1}

DPj,i 207 v] EQ,ZG {1771} [11]

JEQ [12]

where~; ; andp; ; are the SINR and the power of transmittefi3
j, respectively when the channel gain matrix @&;. We
define an expanded system includitig users with block [14]
diagonal matrice§x and A as the channel gain matrix and the
normalized gain matrix, respectively. In the matridégsand

A, thei'" matrix on the diagonal i€; and A, respectively. 15]
Applying a similar technique as before to this system, we can
obtain the maximum achievable SINR.
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and ;4 (i—1yn

with the following constraints on power,

P20V eQie{l,.... 1}, E[> p;il <bq
JEQ

. 1
is equal toy* = ——, where

Q)
Q =diag(1;x1 ® p)A
l
(. ;—",{j +(i—1n:jea),

i=1 Q

505

= ,jeied{l,... 1}
9j+(i—1)n,j+G—1)n

For the proof refer to [15].
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