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Abstract— In this paper, an n-user Gaussian interference
channel under arbitrary linear power constraints is considered.
Using Perron-Frobenius theorem, a closed-form expression for
the boundary points of the rate region of such a channel is
derived. This is a generalization of the well-known result on the
maximum rate that some interfering links can simultaneously
achieve when the power is unbounded. Moreover, this result is
extended to the time-varying channels with constraints on the
average power.

I. I NTRODUCTION

Channel sharing is known as an efficient scheme to increase
the spectral efficiency of the wireless systems. While such
a scheme increases the capacity and the coverage area of
systems, it suffers from the interference among the concurrent
links (co-channel interference). Consequently, the signal-to-
interference-plus-noise-ratio (SINR) of the links are upper-
bounded, even if there is no constraint on the transmit powers.

There have been some efforts to evaluate the maximum
achievable SINR in the interference channels. In [1], the
maximum achievable SINR of a system with no constraint
on the power is expressed in terms of the Perron-Frobenius
(PF) eigenvalue of a non-negative matrix. Then, this expression
is utilized to develop an SINR-balancing scheme for satel-
lite networks. This formulation for the maximum achievable
SINR is deployed in many other wireless communication
applications such as [2], [3] afterwards. In [4], the maximum
achievable SINR is obtained based on the PF-eigenvalue of
an (n + 1)× (n + 1) primitive non-negative matrix, when the
total power is constrained.

Recently, the rate region of interference channels and its
properties has been investigated in the literature. In [5], it is
shown that the capacity region when the power is unbounded
is convex. The capacity region in [5] is defined as the set of
feasible processing gains while for a constant bandwidth, the
processing gain is inversely proportional to the rate. In [6],
some topological properties of the capacity region (with the
aforementioned definition) of CDMA systems are investigated
for the cases when there are constraints on the power of
individual users and when there is no constraint on the power.
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The authors in [6] show that the boundary of the capacity
region with one user’s power fixed and the rest unbounded is
a shift of the boundary of some capacity region with modified
parameters, but unlimited power. However, this result is not
in a closed form and cannot be extended for the other forms
of power constraints.

It is shown that the feasible SINR region is not convex,
in general [7]–[9]. In [10], it is shown that in the case of
unlimited power, the feasible SINR region is log-convex. The
authors in [5] also consider a CDMA system without power
constraints, and show that the feasible inverse-SINR region
is a convex set. In [7], it is proved that the feasible QoS
region is a convex set, if the SINR is a log-convex function of
the corresponding QoS parameter. Reference [11] shows that
under a total power constraint, the infeasible SINR region is
not convex.

In this paper, we extend the result on the maximum achiev-
able SINR in [1] to the systems with certain constraints on the
power of transmitters. This result yields a closed-form solution
for the rate region of the systems with constraints on the power,
in terms of the PF-eigenvalue of ann× n irreducible matrix.
The approach that we use is more general as compared to the
scheme used in [4] in the sense that it is easily applied to
the systems with different power constrains. In addition, the
resulting closed-form solution has a direct relationship with
the solution for the systems with unbounded power presented
in [1]. This result is extended to a time-varying system, where
the channel gain is selected from a limited-cardinality set, and
the average power of users are subject to some upper-bounds.

Notation: All boldface letters indicate column vectors
(lower case) or matrices (upper case).xij and xi represent
the entry(i, j) and columni of the matrixX, respectively.
A matrix Xn×m is called non-negativeif xij ≥ 0 ∀i, j ∈
{1, . . . , n}, and denoted byX ≥ 0. Also, we haveX ≥
Y ⇐⇒ X − Y ≥ 0, where X,Y and 0 are non-negative
matrices of compatible dimensions [12].det(X), Tr(X), X′,
and |X| denote the determinant, the trace, the transpose, and
the norm of the matrixX, respectively.I is an identity matrix
with compatible size.⊗ represents the Kronecker product
operator. diag(x) is a diagonal matrix whose main diagonal
is x. We define the reciprocal of polynomialq(x) of degree
m as xmq( 1

x ). ψ(X,y,S) is a matrix defined as a function
of three parameters, which are respectively a matrix, a vector
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and a set of indices,

ψ(X,y,S) = Z = [zj ], zj =
{

xj + y j ∈ S
xj otherwise

II. PROBLEM FORMULATION

A Gaussian interference channel, includingn links (users),
is represented by the gain matrixG = [gij ]n×n where gij

is the attenuation of the power from transmitterj to receiver
i. This attenuation can be the result of fading, shadowing, or
the processing gain of the CDMA system. A white Gaussian
noise with zero mean and varianceσ2

i is added to each signal
at the receiveri terminal. In many applications, the QoS of
the system is measured by an increasing function of SINR. In
an interference channel, SINR of each user, denoted byγi, is

γi =
giipi

σ2
i +

n∑

j=1
j 6=i

gijpj

, ∀i ∈ {1, . . . , n},

wherepi is the power of transmitteri. In addition, in practice,
the power vectorp is subject to a set of constraints. The main
goal is to find the maximum SINR which can be obtained by
all users in the presence of such constraints. To this end, we
solve the following optimization problem

max γ (1)

s.t. γi ≥ µiγ (2)

p ≥ 0 (3)∑

i∈Ω

pi ≤ pΩ, (4)

whereΩ ⊆ {1, . . . , n} with k elements andµ is a given vector
with µi ≥ 0 and |µ| = 1. As we will see, the solution can
be easily extended for the case of multiple power constraints
of the form

∑

i∈Ω

pi ≤ pΩ for different Ω ⊆ {1, . . . n}. µ

provides the flexibility of satisfying different rate services
for different users. According to Fig. 1, the solution of (1)
yields the maximum achievable SINR in the direction of
vectorµ. Although the numerical solution of this problem is
already obtained through geometric programming [13], [14],
we propose a different approach which leads to a closed-form
result.

By defining the normalized gain matrixA as

A = [aij ]n×n, aij =

{ gij

gii
i 6= j

0 i = j

the constraint (2) is rewritten as
pi

ηi +
n∑

j=1

µiaijpj

≥ γ, ∀i ∈ {1, . . . , n}, (5)

where

ηi =
µiσ

2
i

gii
, η = [ηi]n×1. (6)
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Fig. 1. The boundary of SINR Region for an interference channel
with 2 users

Since we are interested in maximizing the minimum SINR,
if SINR of one user is more than that of the others, it can
reduce its power to other users’ advantage, and finally the
minimum SINR is improved. Therefore, equality holds in (5).
After reformulating the problem in a matrix form we will have

( 1
γ
I− diag(µ)A

)
p = η. (7)

The objective is to find the maximumγ while the system of
linear equations in (7) yields a power satisfying the constraints
on the power vector (3), (4).

When there is no constraint on the power vector (rather than
trivial constraint ofp ≥ 0), the maximum achievable SINR,
γ∗, is characterized based on the Perron-Frobenius theorem as

γ∗ =
1

λ∗
(
diag(µ)A

) . (8)

whereλ∗ is the Perron-Frobenius eigenvalue of the associated
matrix [12]. This result was deployed in the communication
systems for SINR-balancing (µ1 = µ2 = . . . = µn) in [1] for
the first time.

We find the maximum achievable SINR, considering certain
upper-bounds on the power of transmitters in the following
sections.

III. SINR REGION CHARACTERIZATION

We defineF as

F = I− γdiag(µ)A. (9)

Then, the system of linear equations in (7) is reformulated as

Fp = γη, (10)

whereη is defined in (6). According to the Cramer’s rule, the
solution to (10) is obtained by

pi =
det(H(i))
det(F)

,
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whereH(i) = [h(i)
j ]n×n, h(i)

j =
{

γη j = i
fj j 6= i

.

Defining h(i)(γ) = det(H(i)) and f(γ) = det(F), we
have

pi =
h(i)(γ)
f(γ)

.

Therefore, the constraint in (4) can be written as
∑

i∈Ω

h(i)(γ)

f(γ)
≤ pΩ. (11)

Defining uΩ(γ) = pΩf(γ)−
∑

i∈Ω

h(i)(γ), the inequality (11) is

equivalent to
uΩ(γ)
f(γ)

≥ 0. (12)

We desire to find the largest possible interval where both the
numerator and the denominator have the same sign. It can
be shown that this interval is connected and adjacent to zero.
Apparently,uΩ(0) > 0, and f(0) > 0. Consequently,

∃ ε > 0 : f(ε) > 0 and uΩ(ε) > 0.

Therefore, both the numerator and the denominator are posi-
tive in the positive neighborhood of zero. For satisfying (12),
we have to find the smallest positive real simple root of the
numerator and the denominator,r(uΩ) andr(f), and take the
minimum of the two as

γ̂ = min {r(f), r(uΩ)}. (13)

For the sake of simplicity, without loss of generality, we
assume thatΩ = {1, . . . , k}, k ≤ n, i.e., the firstk users
are subject to the total power constraint. For the numerator
we have

uΩ(γ) = pΩ det (F)−
k∑

i=1

det (H(i))

= pΩ

(
det (F)−

k∑

i=1

det (Ĥ(i))
)
, (14)

whereĤ(i) is defined as

Ĥ(i) = [ĥ(i)
j ]n×n, ĥ(i)

j =

{ γη

pΩ

j = i

fj j 6= i
.

Lemma 1 If square matricesX andY differ only in column

i, i.e.,

{
xj 6= yj j = i
xj = yj j 6= i

, then

det
(
X) + det(Y

)
= det

(
ψ(X,yi, {i})

)

= det
(
ψ(Y,xi, {i})

)
.

Equation (14) is rewritten as

uΩ(γ) = pΩ

(
det (F)− det(Ĥ(1))−

k∑

i=2

det (Ĥ(i))
)
. (15)

SinceF and Ĥ(1) are the same except for the first column,
using Lemma 1 , we will have

det (F)− det(Ĥ(1)) = det
(
ψ(F,−γη

pΩ

, {1})). (16)

On the the other hand, using the fact that addition or substrac-
tion of columns does not change the value of the determinant,
we will have

det (Ĥ(i)) = det
(
ψ(Ĥ(i),−ĥ(i)

i , {1, . . . , i− 1})). (17)

Then, using (16) and (17) and regardingĥ(i)
i =

γη

pΩ

, we can

rewrite (15) as

uΩ(γ) = pΩ

(
det

(
ψ(F,−γη

pΩ

, {1})) (18)

−
k∑

i=2

det(ψ(Ĥ(i),−γη

pΩ

, {1, . . . , i− 1}))
)
.

Since F and Ĥ(i) are the same except for the column
i, we can easily see thatψ(F,−γη

pΩ

, {1, . . . , i − 1}) and

ψ(Ĥ(i),−γη

pΩ

, {1, . . . , i− 1}) are the same except for theith

column. Therefore,

det
(
ψ(F,−γη

pΩ

, {1, . . . , i− 1}))

− det
(
ψ(Ĥ(i),−γη

pΩ

, {1, . . . , i− 1}))

= det
(
ψ(F,−γη

pΩ

, {1, . . . , i})).

Applying this result to (18) successively yields the following
lemma.

Lemma 2 uΩ(γ) = pΩ det
(
ψ(F,−γη

pΩ

, Ω)
)
.

We utilize the result in Lemma 2 to find the smallest positive
simple root of uΩ using Perron-Frobenius theorem. This
theorem states some properties about the eigenvalues of an
irreducible matrix. A square non-negative matrixX is said to
be irreducible if for every pairi, j of its index set, there exists
a positive integerm ≡ m(i, j) such thatx(m)

ij > 0 which x
(m)
ij

is the ijth element ofXm [12].

Theorem 1 [12] (The Perron-Frobenius Theorem for ir-
reducible matrices) SupposeX is an m × m irreducible
non-negative matrix. Then there exists an eigenvalueλ∗(X)
(Perron-Frobenius eigenvalue or PF-eigenvalue) such that

(i) λ∗(X) > 0 and it is real.
(ii) there is a positive vectorv such thatXv = λ∗(X)v.

(iii) λ∗(X) ≥ |λ(X)| for any eigenvalueλ(X) 6= λ∗(X).
(iv) If X ≥ Y ≥ 0, thenλ∗(X) ≥ |λ(Y)| for any eigenvalue

of Y.
(v) λ∗(X) is a simple root of the characteristic polynomial

of X.
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Lemma 3 The smallest positive root ofuΩ(γ) is

r(uΩ) =
1

λ∗
(
ψ(diag(µ)A,

η

pΩ

, Ω)
) .

Proof:

uΩ(γ) = pΩ det
(
ψ(F,−γη

pΩ

,Ω)
)

= pΩ det
(
ψ(I− γdiag(µ)A,−γη

pΩ

, Ω)
)

= pΩγn det
(
ψ(

1
γ
I− diag(µ)A,− η

pΩ

, Ω)
)

= pΩγn det
( 1
γ
I− ψ(diag(µ)A,

η

pΩ

,Ω)
)
.

Consequently,
uΩ(γ)
pΩγn

is the reciprocal of the characteristic

polynomial of ψ(diag(µ)A,
η

pΩ

, Ω). Therefore, the roots of

this polynomial are equal to the inverse of the eigenvalues of
ψ(diag(µ)A,

η

pΩ

, Ω). On the other hand, according to Theo-

rem 1, sinceψ(diag(µ)A,
η

pΩ

,Ω) is an irreducible matrix, the

PF-eigenvalue of this matrix is real and positive and has the
largest norm among all eigenvalues. Also it is the simple root
of the characteristic polynomial of the aforementioned matrix.
Therefore, the inverse of this eigenvalue gives the smallest
positive simple root ofuΩ(γ) and the claim is proved.

For the denominator using (9), we have

f(γ) = det (F) = det
(
I− γdiag(µ)A

)

= γn det
( 1
γ
I− diag(µ)A

)
. (19)

Therefore,f(γ) is the reciprocal of the characteristic polyno-
mial of diag(µ)A. On the other hand, according to Theorem
1, the PF-eigenvalue ofdiag(µ)A, is real and positive. It also
has the largest magnitude (norm) among the eigenvalues of the
matrix and it is the simple root of the characteristic polynomial
of the associated matrix. Therefore,λ∗

(
diag(µ)A

)
is the

inverse of the smallest positive simple root ofdiag(µ)A. Thus,

r(f) =
1

λ∗
(
diag(µ)A

) . (20)

On the other hand, according to (8),r(f) is also the maximum
achievable SINR for the system with unbounded powers
satisfying constraint (3). Consequently, using (13), (20) and
Lemma(3), the maximum achievable SINR to satisfy all con-
straints on the power (constraints (3) and (4)) is

γ∗ = min {r(f), r(u(i))}
= min{ 1

λ∗
(
diag(µ)A

) ,
1

λ∗
(
ψ(diag(µ)A,

η

pi

, {i}))
}.

Since ψ
(
diag(µ)A,

η

pi

,Ω
) ≥ diag(µ)A and both are irre-

ducible, using Theorem 1 we have

λ∗
(
ψ(diag(µ)A,

η

pi

, {i})) ≥ λ∗
(
diag(µ)A

)
,

and consequently the maximum achievableγ for a system with
constraint on the total power of any subset of the users is
achieved. This discussion leads to the following theorem.

Theorem 2 The maximum achievableγ in an interference
channel withn links and gain matrixA, where power vector
is subject to the following constraints,

p ≥ 0,
∑

i∈Ω

pi ≤ pΩ

is equal to

γ∗ =
1

λ∗
(
ψ(diag(µ)A,

η

pΩ

, Ω)
) ,

whereΩ ⊆ {1, . . . , n} is an arbitrary subset of the users.

When multiple constraints on power exist, it is obvious
that the maximum achievable SINR is the minimum of the
maximum achievable SINR when each of the constraints is
applied separately, i.e.,

γ∗ = min
i

γ∗i ,

whereγ∗i is the maximum achievable SINR for the constraint
i on power. The following corollary yields the maximum
achievable SINR when the power of individual users and the
total power are constrained.

Corollary 1 The maximum achievableγ in (1), where power
vector is subject to the following constraints,

p ≥ 0, p ≤ p,

n∑

i=1

pi ≤ pt

is equal toγ∗ =

min{ 1

λ∗
(
ψ(diag(µ)A,

η

pt

, {1, . . . , n}))
, (21)

1

λ∗
(
ψ(diag(µ)A,

η

p1

, {1}))
,

1

λ∗
(
ψ(diag(µ)A,

η

p2

, {2}))
,

. . . ,
1

λ∗
(
ψ(diag(µ)A,

η

pn

, {n}))
}.

The boundary of the SINR region in any direction can be
obtained by choosingµ, accordingly. Due to the explicit rela-
tionship between the SINR and the rate in Gaussian channels,
obtaining the SINR region in these channels amounts to the
rate region characterization. As an example, Fig. 2 depicts the
rate region of a system with the gain matrixG as

G =
[

0.6791 0.0999
0.0411 0.6864

]
,
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Fig. 2. The rate region for a2-user interference channel with the
following constraints on the power, A:p1 ≥ 0, p2 ≥ 0, B: p1 +p2 ≤
p̄t, p1 ≥ 0, p2 ≥ 0 C: 0 ≤ p1 ≤ p̄1, p2 ≥ 0, D: 0 ≤ p2 ≤ p̄2,
p1 ≥ 0

while the power of individual users and the total power are
upper-bounded asp1 = 0.8, p2 = 1, pt = 1.4, andσ2

1 =
σ2

2 = 10−1.

IV. T IME-VARYING CHANNEL

So far, we have assumed that the channel gains are fixed
with time. However, in practice, channel gains vary with time
due to the users’ movement or changing the environment
conditions.

In this section, we consider an interference channel with
n co-channel links whose channel gain matrix is randomly
selected from a finite set{G1, . . . ,Gl} with probability
ρ1, . . . , ρl, respectively. The matrixAi denotes the normalized
gain matrix in the statei, i ∈ {1, . . . , l}. The objective is
to find the maximumγ which is achievable by all users in
all channel states, while the average power of the users are
constrained, i.e.,

max γ

s.t. γj,i ≥ µjγ, ∀j ∈ Ω, i ∈ {1, . . . , l}
pj,i ≥ 0, ∀j ∈ Ω, i ∈ {1, . . . , l}
E[

∑

j∈Ω

pj,i] ≤ pΩ,

whereγj,i andpj,i are the SINR and the power of transmitter
j, respectively when the channel gain matrix isGi. We
define an expanded system includingln users with block
diagonal matricesG andA as the channel gain matrix and the
normalized gain matrix, respectively. In the matricesG and
A, the ith matrix on the diagonal isGi andAi, respectively.
Applying a similar technique as before to this system, we can
obtain the maximum achievable SINR.

Theorem 3 The maximum achievableγ in a time-varying
interference channel withn links and probability vectorρl×1,
with the following constraints on power,

pj,i ≥ 0, ∀j ∈ Ω, i ∈ {1, . . . , l}, E[
∑

j∈Ω

pj,i] ≤ pΩ

is equal toγ∗ =
1

λ∗(Q)
, where

Q =diag(1l×1 ⊗ µ)A

+
l∑

i=1

ψ(0ln×ln,
ρiη

pΩ

, {j + (i− 1)n : j ∈ Ω}),

and ηj+(i−1)n =
µjσ

2
j

gj+(i−1)n,j+(i−1)n
, j ∈ Ω, i ∈ {1, . . . , l}.

For the proof refer to [15].
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