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Abstract—A K-user memoryless interference chan-
nel is considered where each receiver sequentially de-
codes the data of a subset of transmitters before it
decodes the data of the designated transmitter. There-
fore, the data rate of each transmitter depends on (i)
the subset of receivers which decode the data of that
transmitter, (ii) the decoding order, employed at each
of these receivers. In this paper, a greedy algorithm is
developed to find the users which are decoded at each
receiver and the corresponding decoding order such
that the minimum rate of the users is maximized. It
is proven that the proposed algorithm is optimal.

I. Introduction

Wireless technology has been advancing at an exponen-
tial rate, due to increasing expectations for multi-media
services. This, in turn, necessitates the development of
novel techniques of signaling with high spectral efficiency.
Channel sharing is known as an effective scheme to in-
crease the spectral efficiency and coverage in the wireless
systems. The main source of impairment in such systems is
the interference among the links. These systems are known
with the general name of interference channels.

The interference channel was first introduced by Shan-
non [1]. In [2], it is shown that in the Gaussian interference
channels, very strong interference amounts to no interfer-
ence at all. In [3]–[5], the result of [2] is extended to general
discrete interference channels with strong interference.
In [6], [7], the capacity of degraded interference channels
is investigated. The best result on the capacity region
of the interference channels is introduced in [5]. In the
scheme presented in [5], each transmitter splits its message
into two independent massages, one is private which is
only decodable by the intended receiver and the other is
common which is decodable at both receivers.

A lot of research efforts have been devoted to the
problem of fairness in the interference channels. In [8], K-
user Gaussian interference channels without any constraint
on the transmit powers are considered and the maximum
signal-to-interference-plus-noise-ratio (SINR) that all the
transmitters can attain simultaneously is computed. The
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result in [8] is formulated as the inverse of the Perron-
Frobenius eigenvalue (see [9]) of a non-negative matrix.
Recently in [10], the result of [8] is generalized to the
case where the power of the transmitters are constrained.
In [11], the problem of spectrum sharing in unlicensed
bands is investigated. It is shown that in a K-user in-
terference channel, any rate vector inside the rate region
is achievable with a piece-wise constant power allocation
over 2K bandwidth intervals. In addition, it is investigated
whether fairness and efficiency can be attained if the users
follow a selfish spectrum sharing strategy. Generally in the
literature, including [8], [10], [11], it is assumed that each
receiver only decodes the data of the designated transmit-
ter, while the signals coming from other transmitters are
treated as interference.

In this paper, we consider a K-user memoryless interfer-
ence channel, where each receiver sequentially decodes the
data of a subset of transmitters before it decodes the data
of the designated transmitter. Since part of the interfer-
ence is canceled out, this system can potentially achieve
higher data rate. In this system, the data rate of each
transmitter depends on (i) the subset of receivers which
decode the data of that transmitter, (ii) the decoding
order employed at each receiver which decodes the data
of that transmitter. The main objective of this section is
to find the set of transmitters which are decoded at each
receiver and the corresponding order of decoding such that
the minimum rate of the users is maximized. A simple
greedy algorithm is proposed and proven to be optimal.
We established similar result for the memoryless multi-
access channels in [12].

II. Problem Formulation

We focus on a K-user memoryless interference channel
modeled by

Pr(y1, y2, . . . , yK |x1, x2, . . . , xK). (1)

It is assumed that user t, t ∈ E = {1, 2, . . . , K}, utilizes
the codebook C[t], with the input distribution Pr(xt).
Receivers have the possibility of successive decoding. Each
receiver decodes the data of some of the users in a specific
order and then it decodes the data of the designated
transmitter. For the sake of brevity, we say “user t is
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decoded at receiver r”, instead of saying “the data of the
user t is decoded at receiver r”.

The order of decoding at receiver r is denoted by the
permutation π[r] = (π[r](1), π[r](2), . . . , π[r](K)) of the
set E. Receiver r first decodes user π[r](K), then user
π[r](K − 1), and so forth until it decodes the data of the
designated transmitter (See Fig. 1). In the permutation
π[r], if l > i (l < i), we say user π[r](l) is located before
(after) user π[r](l), which means that at receiver r, user
π[r](l) is decoded before (after) user π[r](i). Apparently,
the users located after user r in the permutation π[r] are
not decoded at receiver r. The orders of decoding at all
receivers, i.e., π[1],π[2], . . . , π[K], are denoted by Π.

Stop Start

= r

π[r](η[r](r))
π

[r] = π[r](K)

D[r]

Fig. 1. Order of Decoding at Receiver r

Definition 1 The vector η[t] is defined such that η[t](r)
shows the position of user t in π[r], therefore,

π[r](η[t](r)) = t.

Definition 2 The set D[r] is defined as the set of users
which are decoded at receiver r, i.e.,

D[r] = {π[r](η[r](r)), π[r](η[r](r) + 1), . . . , π[r](K)}. (2)

Note that π[r](η[r](r)) is equal to r, which is the last user,
decoded at receiver r. The users located after user r in
π[r] are not decoded at receiver r.

Definition 3 The set E[t] is defined as the set of receivers
which decode user t. Apparently, t ∈ E[t].

Receiver r and the transmitter in D[r] can be considered
as a multi-access channel, while the contributions of the
users in E−D[r] are treated as interference. Regarding the
order of decoding applied at receiver r, the rate of user t,
t ∈ D[r], is upper-bounded by

ϑt ≤ I(yr; xt|xπ[r](η[t](r)+1), xπ[r](η[t](r)+2), . . . , xπ[r](K)).
(3)

Note that {xπ[r](η[t](r)+1), xπ[r](η[t](r)+2), . . . , xπ[r](K)} is
the set of users decoded before user t at receiver r.

Therefore, if the decoding orders Π are employed at the
receivers, the maximum possible value for ϑt, denoted by
ϑt(Π), is obtained by,

ϑt(Π) =
min

r, r∈E[t]
I(yr; xt|xπ[r](η[t](r)+1), xπ[r](η[t](r)+2), . . . , xπ[r](K)).

(4)

Example Consider a 3-user memoryless interference
channel, where the order of decoding is as follows:

π[1] = (2, 1, 3), (5)

π[2] = (3, 1, 2), (6)

π[3] = (1, 3, 2). (7)

Therefore, receiver one first decode the data of transmitter
three and then its own data, i.e. D[1] = {1, 3}. Receiver
two just decode its own data (sent by transmitter two),
i.e. D[2] = {2}. Receiver three first decodes the data of
transmitter two, then decodes its own data. i.e. D[3] =
{3, 2}. Consequently, transmitter one is only decoded at
receiver one. i.e. E[1] = {1}, transmitter two is decoded at
receiver two and three, i.e E[2] = {2, 3}, and transmitter
three is decoded at receiver one and three E[3] = {1, 3}.
Therefore, the rate of the users are obtained by,

ϑ1(Π) = I(y1;x1|x3), (8)

ϑ2(Π) = min
{

I(y2;x2), I(y3; x2)
}

, (9)

ϑ3(Π) = min
{

I(y1;x3), I(y3; x3|x2)
}

. (10)

Note that since at receiver one, user three is decoded before
user one, it is helpful for user one in terms of reducing the
interference and increasing the data rate. Whereas, it is
restrictive for user three by imposing extra condition on
the data rate of this user (user three must be decodable
at receiver one).

The objective of this section is to find the optimal
decoding orders π[t], t = 1, . . . ,K, such that the minimum
of ϑt(Π), t = 1, . . . ,K, is maximized.

Note that there are
(∑K

i=1
K!
i!

)K

possible choices for the
decoding orders, and it is prohibitively complex to find the
optimal answer through the exhaustive search.

III. Preliminaries

Definition 4 [13, Ch. 18] Let E = {1, 2, . . . , K} and
f : 2E −→ R+ be a set function. f is called a rank function,
if it satisfies the following conditions,

(normalized) f(∅) = 0, (11)
(increasing) f(S) ≤ f(T ) if S ⊂ T, (12)
(submodular) f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ). (13)

We define the set function f[r] as

f[r](S) = I (yr; {xi, i ∈ S}|{xi, i ∈ Sc}) , ∀S ⊂ E. (14)

It is proven that f[r](S) is a rank function [14]. In addition,
it is easy to see that (3) and (4) are respectively rewritten
as

ϑt ≤ f[r](xπ[r](1), xπ[r](2), . . . , xπ[r](η[t](r)))−
f[r](xπ[r](1), xπ[r](2), . . . , xπ[r](η[t](r)−1)). (15)

ISIT2007, Nice, France, June 24 – June 29, 2007

2867



and

ϑt(Π) = min
r, r∈E[t]

f[r](xπ[r](1), xπ[r](2), . . . , xπ[r](η[t](r)))

− f[r](xπ[r](1), xπ[r](2), . . . , xπ[r](η[t](r)−1)).
(16)

IV. Algorithm

In this section, we develop an algorithm to specify the
optimal decoding orders. In the proposed algorithm, the
decoding order for each receiver is determined in a greedy
fashion, independent of the decoding orders selected for
the other receivers. While this algorithm has a very low
complexity, we prove that the resulting decoding orders
are optimal.

Algorithm I
For each receiver r, r ∈ E,

1) Set α = K, D∗[r] = ∅.
2) Set π∗[r](α) as

π∗[r](α) = arg min
z∈E,z/∈S

f[r]
(
E −D∗[r] − {z}

)
. (17)

3) Set D∗[r] ←− D∗[r] ∪ {π∗[r](α)} and α ←− α − 1.
If α ≥ 1 and π∗[r](α + 1) 6= t, then go to step two,
otherwise go to the next step.

4) If α 6= 0, randomly allocate the entries of E −D∗[r]

to π[r](1), π[r](2), . . . , π[r](α).
The following theorem proves the optimality of the

proposed algorithm.

Theorem 1 Let
(
ϑ1(Π∗), ϑ2(Π∗), . . . , ϑK(Π∗)

)
be the rate

vector corresponding to the decoding orders π∗[1], π∗[2], . . .,
π∗[K]. Then for the rate vector

(
ϑ1(Π), ϑ2(Π), . . . , ϑK(Π)

)
corresponding to any decoding orders π[1], π[2], . . ., π[K],
we have

min
i

ϑi(Π∗) ≥ min
i

ϑi(Π). (18)

Proof: Let η∗[r] and E[∗r] respectively be η[r] and E[r]

corresponding to the decoding orders obtained by the al-
gorithm. Assume that user t̂ has the minimum rate among
the users, where the decoding orders π∗[1],π∗[2], . . . , π∗[K]

are employed at the receivers. Therefore, regarding (16),
∃r̂ ∈ E[∗t̂] such that

ϑt̂(Π
∗) = f[r̂](xπ∗[r̂](1), xπ∗[r̂](2), . . . , xπ[∗r̂](η[∗t̂](r̂)))−

f[r̂](xπ[∗r̂](1), xπ[∗r̂](2), . . . , xπ[∗r̂](η[∗t̂](r̂)−1)) (19)

In other words, among the receives which decode user t̂,
the receiver r̂ imposes the dominant upper-bound on the
data rate of the user t̂. For now, we assume that t̂ 6= r̂.
Similar arguments are used to prove the optimality of the
algorithm for the case that t̂ = r̂.

In what follows, we prove that if the decoding orders
π∗[1], π∗[2], . . . , π∗[K] are permuted to generate new decod-
ing orders, then the minimum rate of users is not greater
than ϑt̂(Π

∗).

Case 1. Choosing arbitrary permutations for π[l], l ∈
E, l 6= r̂: Assume that arbitrary decoding orders are chosen
for the receivers l, l ∈ E and l 6= r̂, while the user r̂
is employed π∗[r̂] as the decoding order. Then user t̂ is
still decoded at receiver r̂, in the order determined by
π∗[r̂]. Therefore, according to (16), the rate of user t̂ is
still upper-bounded by the right-hand side of (19), which
is ϑt̂(Π

∗). Consequently, if the new decoding orders are
employed, the minimum rate of the users is less than or
equal to ϑt̂(Π

∗).
Before starting the other cases, we define two sets:
• The set of users located after user t̂ in the permeation

π∗[r̂],

Φ∗[r̂] = {π∗[r̂](1), . . . , π∗[r̂](η[∗t̂](r̂)− 1)}. (20)

Note that r̂ ∈ Φ∗[r̂]. In addition, some of the users in
Φ∗[r̂] are not decoded at receiver r̂.

• The set of users decoded before user t̂ at receiver r̂
according to the permutation π∗[r̂]:

Ψ∗[r̂] = {π∗[r̂](η[∗t̂](r̂) + 1), . . . , π∗[r̂](K)} (21)

Therefore, according to (19), we have

ϑt̂(Π
∗) = f[r̂](Φ∗[r̂] ∪ {t̂})− f[r̂](Φ∗[r̂]). (22)

Case 2. Permutation in Φ∗[r̂] and Ψ∗[r̂], choosing ar-
bitrary permutations for π[l], l ∈ E, l 6= r̂ (see Fig.
2): Assume that the order of users in Φ∗[r̂] and Ψ∗[r̂]

are permuted to generate a new decoding order π[r̂] for
receiver r̂. Note that in the new permutation π[r̂], the set
of users located after and before user t̂ are still Φ∗[r̂] and
Ψ∗[r̂]. Also assume that for the rest of receivers, arbitrary
decoding orders are chosen. In this case, in π[r̂], user r̂ is
still located after user t̂ and therefore, user t̂ is decoded
at receiver r̂. In addition, according to (16), the rate of
user t̂ is still less than f[r̂](Φ∗[r̂] ∪ {t̂}) − f[r̂](Φ∗[r̂]), to be
decodable at receiver r̂. Therefore, if the new decoding
orders are employed, the minimum rate of the users is less
that or equal to ϑt̂(Π

∗).

t̂

t̂

Ψ
∗[r̂]

Ψ
∗[r̂]

Φ
∗[r̂]

Φ
∗[r̂]

π
∗[r̂]

=

π
[r̂]

=

Fig. 2. Case 2. Permutation in Φ∗[r̂] and Ψ∗[r̂].

Case 3. Moving a subset of users from Ψ∗[r̂] to Φ∗[r̂],
choosing arbitrary permutations for π[l], l ∈ E, l 6= r̂ (See
Fig 3): Assume a set Υ of users, Υ ⊂ Ψ∗[r̂], is moved from
Ψ∗[r̂] to Φ∗[r̂] to generate a new decoding order π[r̂] for
receiver r̂. Note that in the permutation π[r̂], the position
of user t̂ is still before user r̂, which means that user t̂ is
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decoded at receiver r̂. Assume that arbitrary permutations
are chosen for the other receivers. According to (16), if the
new decoding orders are employed, the rate of user t̂ is less
than or equal to,

ϑt̂(Π) ≤ f(Φ∗[r̂] ∪Υ ∪ {t̂})− f(Φ∗[r̂] ∪Υ), (23)

to be decodable at receiver r̂, regardless of the decoding
orders chosen for the other receivers.

Using (13), we have,

f(Φ∗[r̂] ∪ {t̂})+f(Φ∗[r̂] ∪Υ) ≥
f(Φ∗[r̂] ∪Υ ∪ {t̂}) + f(Φ∗[r̂]). (24)

Using (22), (23), and (24), we conclude that ϑt̂(Π) ≤
ϑt̂(Π

∗), and therefore, the minimum rate of the users in
the new decoding orders is less than or equal to ϑt̂(Π

∗).
Note that permuting the users located before (or after)

user t̂ in π[r̂] does not increase the rate of user t̂.

Ψ
∗[r̂]

t̂Φ
∗[r̂]

π
∗[r̂]

=

t̂ Ψ
∗[r̂]

− ΥΦ
∗[r̂]

∪ Υπ
[r̂]

=

Fig. 3. Case 3. Moving a set of users from Ψ∗[r̂] to the set Φ∗[r̂].

Case 4. Moving one or more users from the set Φ∗[r̂] to
the set Ψ∗[r̂], with or without moving some users from the
set Ψ∗[r] to the set Φ∗[r̂], choosing arbitrary permutations
for π[l], l ∈ E, l 6= r̂(See Fig 4): Assume that one or more
users move from Φ∗[r̂] to Ψ∗[r̂] (with or without moving
some users from the set Ψ∗[r̂] to the set Φ∗[r̂]) to generate
the new permutation π[r̂]. As depicted in Fig. 4, assume
that the user ν is positioned last in the permutation π[r̂]

among the users moved from Φ∗[r̂] to Ψ∗[r̂] (user π(1) is
positioned first and user π(K) is positioned last in the
permutation π). In the new permutation, user ν is located
before user r̂, which means that this user is decoded at
receiver r̂, otherwise, user ν is indeed user r̂ which is
apparently decoded at receiver r̂.

ν

t̂ Ψ
∗[r̂]

π
∗[r̂]

= Φ
∗[r̂]

Ω

t̂π
[r̂]

=

Fig. 4. Case 4. Moving one or more users from the set Φ∗[r̂] to the
set Ψ∗[r̂] (with or without moving some users from the set Ψ∗[r̂] to
the set Φ∗[r̂]).

Let Ω be the set of users located after the user ν in the
permutation π[r̂]. Using (16), and since ν is decoded at
receiver r̂, the rate of user ν is upper-bounded by,

ϑν(Π) ≤ f[r̂](Ω ∪ {ν})− f[r̂](Ω), (25)

to be decodable at receiver r̂. It is clear that,

{t̂} ∪ Φ∗[r̂] − {ν} ⊂ Ω. (26)

Using (13) with S = Φ∗[r̂] ∪{t̂} and T = Ω, and regarding
(26), we have,

f[r̂](Ω ∪ {ν})− f[r̂](Ω)

≤ f[r̂](Φ∗[r̂] ∪ {t̂})− f[r̂](Φ∗[r̂] ∪ {t̂} − {ν}). (27)

On the other hand, user ν is in the set Φ∗[r̂] in permutation
π∗[r̂]. It means that in Step 2 of the algorithm, this user
has been compared with other users in the set Φ∗[r̂] ∪ {t̂}
to be located in the position η∗[t̂](r̂) of the permutation
π∗[r̂], but user t̂ has been chosen for the position, i.e.,
f[r̂]

(
Φ∗[r̂] ∪ {t̂} − {t̂}

)
≤ f[r̂]

(
Φ∗[r̂] ∪ {t̂} − {ν}

)
, there-

fore,

f[r̂]
(
Φ∗[r̂]

)
≤ f[r̂]

(
Φ∗[r̂] ∪ {t̂} − {ν}

)
. (28)

Using (22), (25), (27), and (28), we conclude that vν(Π) ≤
vt̂(Π

∗), regardless of the decoding orders chosen for the
other receivers. Therefore, if the new decoding orders are
employed, the minimum rate of the users is less than or
equal to ϑt̂(Π

∗). Note that permuting of the users located
before (or after) user ν in π[r̂] does not increase the rate
of user ν.

A. Special Case: Gaussian Interference Channels

A Gaussian interference channel, including K users, is
represented by the gain matrix G = [grt]K×K , where grt

is the power gain from transmitter t to receiver r. A white
Gaussian noise with zero mean and variance σ2

r is added
to the received signal at receiver r terminal. In this case,
f[r], defined in (14), is written as

f[r](S) = log2

(
σ2

r +
∑

t∈S

grtpt

)
, (29)

where pt denotes the power of transmitter t.
We can show that Algorithm I simplifies as follows. The

set of users decoded at receiver r, D∗[r], is equal to

D∗[r] = {t : grtpt ≥ grrpr}. (30)

At receiver r, user i is decoded before user t if gripi ≥
grtpt. Therefore, to obtain the optimal decoding order for
receiver r, we sort gripi, i ∈ E, decreasingly. The optimal
decoding order for receiver r, i.e., π[∗r] is such that,

grπ[∗r](K)pπ[∗r](K) ≥ grπ[∗r](K−1)pπ[∗r](K−1) ≥ . . . ≥ grrpr.
(31)
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In addition, the set of receivers which decode user t, i.e.,
E∗[t] is derived as,

E∗[t] = {r : grtpt ≥ grrpr}. (32)

In this case, the rate of user t is obtained by

ϑt(Π∗) = min
r,r∈E∗[t]

log2


1 +

grtpt

σ2
r +

∑

i:grtpt>gripi

gripi


 .

(33)
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