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Abstract— For a state-dependent DMC with input alphabet.X Shannon [3] showed that the capacity of an SD-DMC where
and state alphabetS where the i.i.d. state sequence is known the i.i.d. state sequence is known causally at the encoder is
causally at the transmitter, it is shown that by using at most equal to the capacity of aassociatedregular (without state)

|X||S| — |S| + 1 out of |X|!S! input symbols of the Shannon’s : .
associatedchannel, the capacity is achievable. As an example of DMC with an extended input alphab@t and the same output

state-dependent channels with side information at the transmitter, alphabet). The input alphabet of the associated channel is
M-ary signal transmission over AWGN channel with additive the set of all functions from the state alphabet to the input

Q-ary interference where the sequence of iid. interference alphabet of the state-dependent channel. There are a total of

symbols is known causally at the transmitter is considered. | y|iS| of such functions, wheré| denotes the cardinality of
For the special case where the Gaussian noise power is zero, '

a sufficient condition, which is independent of interference, is a set. Any of the functions can be represent_ed b§|etuple
given for the capacity to belog, M bits per channel use. The (Ziysiy,---,; ) composed of elements df, implying that
problem of maximization of the transmission rate under the the value of the function at stateis z;_,s =1,2,...,|S]|.
constraint that the channel input given any current interference The capacity is given by [3]
symbol is uniformly distributed over the channel input alphabet
is investigated. For this setting, the general structure of a C=maxI(T;Y), (2)
communication system with optimal precoding is proposed. p(t)
I. INTRODUCTION where the maximization is taken over the probability mass
f . . h Is with k interf function (pmf) of the random variabl&.
Information transmission over channels with known interfer- In the capacity formula (1), we can alternatively replace

ence at the transmitter has received a great deal of attentior% (X, X,s)), where X, is the random variable that

. P ’ s
remarkable result on su_ch channels was obt_amed by C_OSta"}’ resents the input to the state-dependent channel when the
showed that the capacity of the additive white Gaussian no te iss. s — 1 S|

(AWGN) channel with additive Gaussian i.i.d. interference, This paper is organized as follows. In section II, we

where the sequence of interference symbols is known NUsrive an upper bound on the cardinality of the Shannon's

causally at the transmitter, is the_ same as the capac_ltya sociated channel input alphabet to achieve the capacity. In
AWGN channel [1]. Therefore, the interference does not NCUECtion 111, we introduce our channel model. In section IV,

any loss In the capacity. This re_sglt_was extended to arbitr investigate the capacity of the channel in the absence of
mter;‘eret?cg (rdanbdorg or d(;termlmstlrc]) InyErth;]al. [2] Thhe noise. In section V, we consider maximizing the transmission
result obtained by Costa does not hold for the case that Wg. \,nqer the constraint that the channel input given any

sequence of interference symbols is known causally at t Srrent interference symbol is uniformly distributed over the
transmitter. channel input alphabet. We present the general structure of a

Channels with known interference at the transmitter are SRS mmunication system for the channel with causally-known
cial case of channels with side information at the transmittgr

. . ) screte interference in section VI. We conclude this paper in
which were considered by Shannon [3] in causal knowled cti pap
. , . . ction VII.
setting and by Gel'fand and Pinsker [4] in non-causal knowl-
edge setting. 1. A BOUND ON THE CARDINALITY OF THE SHANNON’S
Shannon considered a discrete memoryless channel (DMC) ASSOCIATEDCHANNEL INPUT ALPHABET
whose transition matrix depends on the channel state. A stateyye can obtain the pmf of the channel outputas

dependent discrete memoryless channel (SD-DMC) is defined

by a finite input alphabet’ = {1, ..., 7x}, a finite output py(y) = ZPS(S)pY|S(y|8)

alphabet), and transition probabilitiep(y|z, s), where the s€S

states takes on values in a finite alphabgt= {1,...,|S|}. = Zps(s) Z px|s(z|s)py|x,s Y|z, 5)
1This work was supported by Nortel, the Natural Sciences and Engineering s€s ver

Research Council of Canada (NSERC), and the Ontario Centres of Excellence = Zps(s) Z px. (T)py|x,s(ylz,s).  (2)
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The capacity of the associated channel, which is the sameximum of /(X;--- X|s;Y), is achieved by a feasible

as the capacity of the original state-dependent channel, is gwdution with at mostX||S| — |S| + 1 nonzero variables.®
maximum of I(T;Y) = I(X1Xs--- X|s;Y) over the joint Theorem 1 states that at mdst||S| — |S| + 1 out of | XS]

pmf vaIueSpiliz...i‘s‘ =PX; =x;,... , Xis| = inSI}’ i.e., input symbols of the associated channel are needed to be used
with positive probability to achieve the capacity. However, in
general one does not know which of the inputs must be used
to achieve the capacity. If we knew the marginal pmfs for
The mutual information betweei and Y is the difference X,..., X, induced by a capacity-achieving joint pmf, we
between the entropieg (Y") andH (Y'|T'). It can be seen from could obtain the capacity-achieving joint pmf itself by solving
(2) that py (y), and henceH (Y'), are uniquely determined the linear program (5).

by the marginal pmfs{pxs(a:i)}iﬂ, s = 1,...,|S]. The
conditional entropyH (Y'|T') is given by

C= max I(XlXQ---X|S|;Y). (3)

Piyig---ig)

IIl. THE CHANNEL MODEL

We consider data transmission over the channel
H(Y|T)=H(Y|X1X5---X|g))

|| x| YV=X+5+N, (6)
=D Y iy Py (4)  whereX is the channel input, which takes on values in a fixed
=1 5=l real constellation
Wherehil...i‘s‘ :H<Y|X1 :xi17-~-aX\8| :xi\5\>' X:{$1,$2,...,$M}, (7)

There are|X|!S! variables involved in the maximization _ L _ _ _
problem (3). Each variable represents the probability of gn 'S the channel outputl is additive white Gaussian noise
input symbol of the associated channel. The following theoreffith Power P, and the interferencé' is a discrete random
regards the number of nonzero variables required to achi&iable that takes on values in
the maximum in (3). _ _ . S ={s1,52,...,5Q} (8)

Theorem 1:The capacity of the associated channel is
achieved by using at most’||S| —|S|+1 out of | X|IS| input  With probabilitiesry, 2, ..., 7q, respectively. The sequence of
symbols with nonzero probabilities. i.i.d. interference symbols is known causally at the encoder.

Proof: Denote bY{ﬁES)}Lﬂ = {px. (%‘)}Lﬂ the pmf The above channel can be con_sidered as a special case of
of X,, s = 1,2,...,|S|, induced by a capacity-achievingState'd_epende”t channels considered by Sha_nnon Wlth one
joint pmf {pil'“iw}Lﬁ!..,i‘5‘=1' We limit the search for a €xception, that th(_e c_hannel output alphabet is _contlnuous.
capacity-achieving joint pmf to those joint pmfs that yield thd? our case, the likelihood functiorfy x5 (ylz, s) is used
same marginal pmfs a&, .., }m . By limiting the instead of_the transition probapllmes. We denote the input to

151 the associated channel Ky, which can also be represented

) i1yl S|=1
search to this smaller set, the maximumIof - - - Xs;Y) as (X1, Xa...., Xo), where X; is the random variable that

remains unchanged since the capacity-achieving joint pmi

L S represents the channel input when the current interference
{ﬁil.,.i‘s‘}f‘ is=1 1S in the smaller set. But all joint pmfs syrr)nbol iss:, j =1 0 P
R P . . . ) =1,
in the smallgr set yield the sanié(Y') since they induce th_e The likelihood function for the associated channel is given
same marginal pmfs oX1, ..., X|s. Therefore, the maxi- b
mization problem in (3) reduces to the linear minimization
problem Q
x X frir@lt) = > rifyvix.sWla,,s;)
j=1
pin Z Z Py iy Pin s Q
LTS =1 ijs|=1 = ijN(y - Lq; — Sj)7 (9)
| X |X] i i
Z Z Dirire =, i =1, x| where fy denotes the pdf of the noisév, and ¢ is
oo Rl s e ooy the input symbol of the associated channel represented by
(xil,a;iz, e ,(EiQ).
: : According to theorem 1, the capacity of our channel is
|x| |X] obtained by using at most/@Q — @ + 1 out of M? input

Z Z Piroirg, :ﬁﬂf“)j ilsg=1,...,|x|, symbols of the associated channel.
11=1 i‘s‘_lzl

. . IV. THE NOISE-FREE CHANNEL
pil"‘i\s\ ZO, 1.5 8] :1,2,...,|X|. (5)

We consider a special case where the noise power is zero
There are|X||S| equality constraints in (5) out of whichin (6). In the absence of noise, the channel ouljugkes on
|X]|S| — |S| + 1 are linearly independent. From the theorat most M@ different values since differenk and S pairs
of linear programming, the minimum of (5), and hence thmay yield the same sum. If takes on exacth/Q different
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T+ 51 T+ 81 x3+ St Zy +S1

values, then it is easy to see that the capacitipgs M bits  yw.
. The decoder just needs to partition the set of all possible
channel output values intd/ subsets of siz€) corresponding 0 nte  mts s ot s
to M possible inputs, and decide that which subset the current :
received symbol belongs to. 5

In general, where the cardinality of the channel output?: ‘ ‘ ‘
symbols can be less than @, we will show that under some ., TSt A Tt b Int o
condition on the channel input alphabet there exists a coding
scheme that achieves the raig, M in one use of the channel.Fig. 1. The elements g9(1), ..., Y(@+1) shown as shifted version of each
We do this by considering a one-shot coding scheme whieter. The elements Q#(**) up toxy + sq+1 appear iny?).
uses onlyM (out of M?) inputs of the associated channel.

In a one-shot coding scheme, a message is encoded to ) ) )
a single input of the associated channel. Any input of the e prove by induction o) that there exist\/ mutually-
associated channel can be represented Bytaple composed disjoint (multi-)sets of size() composed of the elements
of elements ofY. Given that the current interference symboPf ywye vj_}(Q) (one element from each). If we can
is s;, the jth element of theQ-tuple is sent through the find such ZV.I multi-sets of size@, then we can obtaln.the
channel. Therefore, one single message can result in (up §8jrespondingV/ Q-tuples of elements oft’ by subtracting
Q symbols at the output. For convenience, we consider ifhe corresponding interference terms from the elements of the

output symbols corresponding to a single message as a miRHlti-sets. Thesél/ Q-tuples can serve as the inputs of the
set of size (exactly)Q. If the M multi-sets at the output associated channel to be used for sending any/oflistinct

corresponding ta\/ different messages are mutually disjointMeSSages through Fhe_ channel Without.error in one use of the

reliable transmission through the channel is possible. channel, hence achieving the rade, 1 bits per channel use.
Unfortunately, we cannot always find/ inputs of the For@ = 1, the statement of the theorem is true since we can

associated channel such that the corresponding multi-sets @& {21+ 51}, {za+s1}, ... {oam + 51} as mutually-disjoint

mutually disjoint. For example, consider a channel with theets Of size one. _ o _

input alphabett = {0,1,2,4} and the interference alphabet Assume that there exist/ mutually—dlspmt multi-sets of

S = {0,1,3}. It is easy to check that for this channel weiZ€®@ = ¢. ForQ = ¢-+1, we will have the new set of channel

cannot find four triples composed of elementsiouch that OUIPUSY'THD) = {&1 + 5041, w2+ g1, @ar + g1} We

the corresponding multi-sets are mutually disjoint. In fact, bgPnSider two possible cases: _

entropy calculations we can show that the capacity of theCase 1 None of the elements gp(“*!) appear in any of

T1+ 8, o+ S w3+ g Tpr o Sq

channel in this example is less tharbits. the multi-sets of siz&) = g. .
However, if we put some constraint on the channel input In this case, we include the elementsf?*") in the M/
alphabet, the rativg, M is achievable. multi-sets arbitrarily (one element is included in each multi-

Theorem 2:Suppose that the elements of the channel inpgE?)- It i obvious that the resulting multi-sets of size= ¢+1

alphabet form an arithmetic progression. Then the capaci§® mutually disjoint. _
of the noise-free channel Case 2 Some of the elements ¢f(?+1) appear in some of

the multi-sets of siz&) = q.

Y =X+5, (10)  Suppose that the largest element)df~!) which appears
in any of the setsy™, ..., Y@ (or equivalently, in any of

where the sequence of interference symbols is known causallg multi-sets of size) = q) is zj + 5411 for somel <
at the encoder equalsg, M bits. k < M — 1. Then sincey(@t1) is shifted version of each
Proof: Let V(@) be the set of all possible outputs of they( .. Y@ ands,y; > s, > --- > s1, exactly one of the
noise-free channel when the interference symbal,js.e., setsYM, ..., Y@, say YU for somel < j < ¢, contains

W B all elements of(9*Y) up toxy, + s,41. See fig. 1. Since any
VO ={z1+s5g,22+5q,...,am + 5}, q=1,...,Q of the disjoint multi-sets of siz€) contain just one element
_ _ _ A1) of YU, the elements of(@*1) up to zy, + s,.1 appear in
The union of¥(@s is the set of all possible outputs of thejiferent multi-sets of siz&) = ¢. We can form the disjoint
noise-free channel. multi-sets of size; + 1 by including these common elements
Without loss of generality we can assume that < jn the corresponding multi-sets and including the elements of
sy < -+ < sg. The elements of@ form an arithmetic That + Sqr1s- .2 Tas + Sq41} in the remaining multi-sets
progressiong = 1,...,Q. Furthermore, thesé& arithmetic arbitrarily. n
progressions are shifted versions of each other. The condition on the channel input alphabet in the statement
of theorem 2 is a sufficient condition for the channel capacity
1This is' true even if the interference sequence is unknown to the gnquﬁ. be log, M. However, it is not a necessary condition. For
2A multi-set differs from a set in that each member may have a multiplicit 2 ' . .. .
xample, the statement of theorem 2 without that condition is

greater than one. For exampll, 3, 3, 7} is a multi-set of size four where - ) )
3 has multiplicity two. true for the case of) = 2. Because in the second iteration,
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we do not need the arithmetic progression condition to form . Maximum achievable rate for uniform transmission

M mutually-disjoint multi-sets of size two. 0ol oo gl”z'fgzjl‘,z’w (ointererence) 57~
The proof of theorem 2 is actually a constructive algorithm ol A Py

for finding M (out of M%) inputs of the associated channel g

0.7 7

to be used with probability’: to achieve the ratig, M bits.
Itis interesting to see that the set containingdtieelements

0.6 . v

Mutual Information

of the M Q-tuples obtained by the constructive algorithm is al R LAk AT st
X, q=1,...,Q. This is due to the fact that each multi-set o4 St
contains one element from ead!), ..., V(@ Therefore, oap o7 -
a uniform distribution on thelM @-tuples induces uniform o2r ” - ~
distribution onXy, ..., Xq. 01w’
V. UNIFORM TRANSMISSION % o 5 10

SNR (dB)
In the sequel, we study the maximization of the rate
I(X1---Xq;Y) over joint pmfs{p;, ..., }%winl that in-  Fig. 2. Maximum mutual information vs. SNR for the channel with=
duce uniform marginal distributions ok, ..., Xg, i.e., S={-1,+1} andr1 =r2 = 5.

pM @@ L v @12
M Q@ + 1 nonzero elements is optimal depends on the coeffi-

for which we show how to obtain the optimal input probacients{;, ..., }. The coefficienth;,...;,, is determined by the
bility assignment. We call a transmission scheme that indudegerference levels, ..., sg, the probability of interference
uniform distribution onXj, ..., X asuniform transmission levelsry,...,rq, the noise powePy, and the signal points
The uniform distribution forXy,..., Xo implies uniform z, 2, ... 2z, The optimal probability assignment is ob-
distribution for X, the input to the state-dependent channeiined by solving the linear programming problem (13) using
defined in (6). the simplex method [6].

In the previous section, we established that the capacity
achieving pmf for the asymptotic case of noise-free chanrfel TWo-Level Interference
induces uniform distributions oy, ..., X (provided that  If the number of interference levels is two, i.€),= 2, we
we can findM Q-tuples such that the corresponding multican make a stronger statement than corollary 1.
sets are mutually disjoint). Theorem 3:The maximum of I(X;X5;Y) over

Considering the constraints in (12), the maximization dfpi,i, };.;,—; With uniform marginal pmfs for X; and
I(X,---Xq;Y) is reduced to the linear minimization prob-X> is achieved by using exactly/ out of M* inputs of the

lem associated channel with probability.
M M Proof: The equality constraints of (13) can be written in
min Riy i Dig i matrix form as
Piaiq 1'12:1 in—l L Ap =1, (14)
S. t.

o M where A is a zero-oneM/ Q x M© matrix, p is M times the
Z Z Piroig = i’ iw=1,..., M, yector containing alp;, ...;,s in lexicographical order, antl
M is the all-oneM @ x 1 vector.
For Q = 2, it is easy to check thaA is the vertex-edge
incidence matrix off{»s 5s, the complete bipartite graph with

ia=1  ip=1

M M 1 M vertices at each part. Therefor&, is a totally unimodular
Z Z Pir-iq = ig=1,..., M, matrix® [5]. Hence, the extreme points of the feasible region
i1=1  ig-1=1 F = {p:Ap=1,p >0} are integer vectors. Since the
Piyio > 0, i1,...,i9 =1,2,..., M. (13) optimal value of a linear optimization problem is attained at

The same argument used in the last part of the proof ape of the extreme points of its feasible region, the minimum

theorem 1 can be used to show that the maximum is achiev! 0(13) IS ‘?‘Ch'eved at_an all-integer vectpr. Considering .
at p* satisfies (14), it can only be a zero-one vector with

by using at mosiV/ @@ — @ + 1 inputs of the associated channe}
with positive probabilities. This is restated in the foIIowingexa_CtlyM ones. . . . "
Fig. 2 depicts the maximum mutual information (for the uni-

corollary. O .
. : -~ form transmission scenario) vs. SNR for the channel itk
me]‘:;)r{ollvarY 1}:Jhe_ maﬁ'&?%g&gﬁﬁ%ﬁ?;n}:;rgi\r/g Jgilgttri_ S ={-1,+1} and equiprgbable interference symbols. The
Diriq iy, ig=1 mutual information vs. SNR curve for the interference-free

butions onX,, X»,..., Xg is achieved by a joint pmf with . . .
at mostMQ — Q + 1 nonzero elements. AWGN channel with equiprobable input alphabet1, +1}

This reSUIt_ is indepquent Qf the Coe.ﬁiCien&ﬂir--iQ } 3A totally unimodular matrix is a matrix for which every square submatrix
However, which probability assignment with at mdet) — has determinan®, 1, or —1.
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is plotted for comparison purposes. As it can be seen, for
low SNRs, the input probability assignmept; = poy =
% is optimal, whereas at high SNRs, the input probabilitx T X v W
assignmentp, = po; = % is optimal. The maximum ﬂ[ Encoder Hprecoder j—*
achievable rate for uniform transmission is the upper envelope
of the two curves corresponding to different input probabilityig. 3. General structure of the communication system for channels with
assignments. Also, it can be observed that the achievable r@¢sally-known discrete interference.
approachedog, 2 = 1 bit per channel use as SNR increases
complying with the fact that we established in section IV for
the noise-free channel.

It turns out from the proof of theorem 3 that the optimum In this paper, we proved that the capacity of an SD-DMC
solution of the linear optimization problenp*, is a zero- With finite input alphabett’ and finite state alphabef and
one vector. So, if we add the integrality constraint to th@ith causally known i.i.d. state sequence at the encoder can be
set of constraints in (14), we still obtain the same optim&chieved by using at most'||S| —[S|+ 1 out of | X[ input
solution. The resulting integer linear optimization problem igymbols of the associated channel. As an example of state-
called theassignment problerf5], which can be solved using dependent channels with side information at the encoder, we

low-complexity algorithms such as titungarian method6].  investigatedM -ary signal transmission over AWGN channel
with additive Q-level interference, where the sequence of

B. Integrality Constraint for the)-Level Interference interference symbols is known causally at the transmitter.

The fact that for the cas@ = 2, there exists an optimag For the noise-free channel, provided that the signal points
which is a zero-one vector with exactly ones simplifies the are equally spaced, we proposed a one-shot coding scheme that
encoding operation. Because any encoding scheme just neégRs)M input symbols of the associated channel to achieves
to work on a subset of siz&/ of the associated channel inputhe capacitylog, M bits.
alphabet with equal probabilitieg; . We considered the transmission schemes with uniform pmfs

ForQ # 2, A is not a totally unimodular matrix. Therefore,for Xi,..., Xq. For this so called uniform transmission, the
not all extreme points of the feasible region definedAy = optimal input probability assignment with at mastQ — Q +
1,p > 0, are integer vectors. However, at the expense bfnonzero elements can be obtained by solving the linear
possible loss in rate, we may add the integrality constrai@ptimization problem (13). The optimal solution to (13) with
in this case. The resulting optimization problem is callethe integrality constraint has exactly nonzero elements. For
the multi-dimensional assignment probleffi]. The optimal the case) = 2, we showed that the integrality constraint does
solution of (13) with the integrality constraint, will be anot reduce the maximum achievable rate. The loss in rate (if
vector with exactly}/ nonzero elements with the valug. there is any) by imposing the integrality constraint for the
Therefore, any encoding scheme just needs toldsgymbols general case is a problem to be explored.
of the associated channel with equal probabilities, simplifying

VIl. CONCLUSION
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