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Abstract— A single-hop wireless network with K links is
considered, where the links are partitioned into M clusters, each
operating in a subchannel with bandwidth W

M
. We assume that

the links in each cluster perform the on-off power allocation
strategy proposed in [1]. The problem is to analyze the average
sum-rate of the network in terms of M and under the shadow-
fading effect with probability α. It is demonstrated that for
M ∼ o(K) and 0 < α ≤ 1, where α is a fixed parameter,
the average sum-rate of the network scales as W

α
logK. For

M ∼ Θ(K), we present an upper bound for the average sum-rate.
It is proved that the maximum average sum-rate of the network
for every value of 0 < α ≤ 1 is achieved at M = 1. In fact,
in the proposed model, partitioning the bandwidth W into M
subchannels has no gain in terms of enhancing the throughput.

I. INTRODUCTION

The main challenge in multi-user wireless networks origi-
nates from the sharing of a common transmission bandwidth
by users such that the throughput of the network is max-
imized. Since the throughput of the network is limited by
the interference, several techniques are proposed to mitigate
the interference. Effective spectral usage and power control
in transmitters have long been regarded as efficient tools
to reduce the interference and improve the throughput of
the network with limited bandwidth. In recent years, various
power control and spectrum sharing schemes have been ex-
tensively studied in cellular and multihop wireless networks
[2]–[5]. Much of these works rely on centralized and coop-
erative algorithms. Due to significant challenges in using the
centralized approaches, the attention of the researchers have
drawn to the decentralized resource allocation schemes [6]–
[10]. Etkin and Tse [7] develop power and spectrum allocation
strategies in multiple wireless systems. Under assumptions of
the omniscient nodes and strong interference, they show that
frequency division multiplexing (FDM) is the optimal scheme
in the throughput maximization.

In this paper, we study the performance of a single-hop
wireless network, in which K links are partitioned into M
clusters, each operating in a subchannel with bandwidth W

M .
The users utilize the decentralized on-off power allocation

1Financial support provided by Nortel and the corresponding matching
funds by the Natural Sciences and Engineering Research Council of Canada
(NSERC), and Ontario Centres of Excellence (OCE) are gratefully acknowl-
edged.

scheme proposed in [1]. In [1], the authors study the per-
formance of the network only for M = 1 and under a
Rayleigh-fading channel model. It is well-known, however,
that the wireless channel can be modeled in a more realistic
manner. Here, we consider the shadow-fading effect that are
caused by obstacles. The main contribution of this work is to
determine the maximum throughput of the network in terms
of different values of M and the probability of the shadowing
effect, α. Our strategy differs from the model studied in
[8] and [11]; primarily we use a decentralized on-off power
allocation scheme for a single-hop wireless network with M
subchannels, while [8] and [11] present a model with random
connections for M = 1 and using relay nodes.

Under the assumption of Rayleigh fading, an asymptotic
analysis is carried out to show that for M ∼ o(K) and 0 <
α ≤ 1, where α is a fixed value, the average sum-rate of the
network is of order W

α logK. It is shown that the maximum
average sum-rate of the network for every value of M and
0 < α ≤ 1 is achieved at M = 1.

The rest of the paper is organized as follows. In Section II,
the network model and objectives are described. We analyze
the average sum-rate of the network in Section III. Finally, in
Section IV, an overview of the results is presented.

Knuth’s notation [12]: For any functions f(n) and g(n):
• f(n) = O(g(n)) means that limn→∞ |f(n)/g(n)| <∞.
• f(n) = o(g(n)) means that limn→∞ |f(n)/g(n)| = 0.
• f(n) = Θ(g(n)) means that limn→∞ |f(n)/g(n)| = c,

where 0 < c <∞.
Also, log(.) is the natural logarithm function and N =

{1, 2, ..., n}.
II. NETWORK MODEL AND OBJECTIVES

In this work, we consider a single-hop wireless network
consisting of K pairs of nodes, operating in a bandwidth
W . The links are assumed to be partitioned into M clusters
such that the number of links in each cluster is the same.
Also, the users are randomly divided among the clusters. The
bandwidth W is divided into M disjoint subchannels, each
with bandwidth W

M . Letting Cj denote cluster j, the links in
Cj operate in subchannel j. In this work, we assume that
M is a variable parameter in the range of 1 to K. We also
assume the number of links in each cluster, n = K

M , is a
known information for the users. The link between transmitter
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k and receiver i in Cj is represented by the random variable
L(j)
ki . Under a Rayleigh fading channel model, L(j)

ki = h
(j)
ii ,

for k = i. Also for k 6= i, the cross-channel gains are defined
based on the shadow-fading model as follows1

L(j)
ki =

{
h

(j)
ki , with probability α

0, with probability 1− α. (1)

We consider a quasi-static block fading channel model,
where the channel strength h(j)

ki remains constant while trans-
mitting one block and changes independently from block to
block. Under a Rayleigh fading channel, h(j)

ki = |g(j)
ki |2’s are

exponentially distributed with unit mean. We also assume that
the channel is flat fading. In other words, all the channels
are assumed to be constant over the whole bandwidth W . We
also assume that each receiver knows only its direct channel
gain. This channel-state information (CSI) is fed back to the
corresponding transmitter without any error.

In this work, we assume that all the links utilize the on-off
power allocation strategy. Based on this scheme, the average
transmit power of user i is assumed to be pi ∈ {0, 1}. The
power of additive white Gaussian noise (AWGN) at each
receiver is assumed to be N0W

M . Since the maximum transmit
power is one, N0W

M is equivalent to 1
SNR , where SNR is the

signal to noise ratio. Assuming Gaussian signal transmission,
the interference term will be Gaussian with power

I
(j)
i =

n∑

k 6=i
k=1

L(j)
ki pk, i, k ∈ Cj .

Due to the orthogonality of the allocated subchannels, no
interference is imposed from links in Ck on links in Cj , k 6= j.
Under these assumptions, the achievable data rate of each link
is expressed as

R
(j)
i =

W

M
log

(
1 +

h
(j)
ii pi

I
(j)
i + N0W

M

)
, i ∈ N . (2)

We consider a homogeneous network in the sense that all the
links have the same configurations and use the same protocols.
Thus, the transmission strategy for all the nodes are agreed
in advance. Next, we summarize the on-off power allocation
strategy in a single-hop wireless network proposed in [1] and
[6].

On-Off Power Allocation Strategy: In each cluster, all
users perform the following steps during each block:

1- Based on the direct channel gain, the transmission policy
is

pi =
{

1, if h
(j)
ii > τn

0, Otherwise,

for all i ∈ N , where τn is a prespecified threshold level.
2- After adjusting the powers, each active user in Cj

transmits a pilot signal with full power. The receivers measure

1It is worth to mention that the superscript j means that the channel gains
belong to cluster j, and it does not mean that the fading model is frequency-
selective fading.

the interference and compute the rate using (2). Then, each
receiver feedbacks the rate to its corresponding transmitter.

3- The active user transmits data with the computed rate
and with full power.

In order to analyze the performance of the network, we
define the network throughput as the average sum-rate. Letting
R̄sum denote the average sum-rate of the network, we have

R̄sum =
M∑

j=1

R̄(j)
sum, (3)

where R̄(j)
sum is the average sum-rate of cluster Cj and is given

by

R̄(j)
sum = E

[
n∑

i=1

R
(j)
i

]

=
n∑

i=1

E

[
W

M
log

(
1 +

h
(j)
ii pi

I
(j)
i + N0W

M

)]
,

where the expectation is computed with respect to h
(j)
ii and

I
(j)
i . Also, the probability of the link activation in each cluster

is defined as qn , Pr
{
h

(j)
ii > τn

}
.

Following the same approach as in [1] and [6] with M = 1
and α = 1, we can easily prove the following lemmas.

Lemma 1: Let M ∼ o(K) and 0 < α ≤ 1 is a fixed
parameter. Then, for large values of K, the optimum threshold
level that maximizes the average sum-rate of each cluster is
obtained as

τ∗n = logαn− 2 log logαn+O(1). (4)
Proof: See [13] for the proof.

Lemma 2: Under the assumptions in Lemma 1, the proba-
bility of the link activation in each cluster is given by

qn = c
(logαn)2

αn
, (5)

where c is a constant.
Proof: Under a Rayleigh fading channel condition, we

have
qn = Pr

{
h

(j)
ii > τn

}
= e−τn .

Using (4), it is concluded

qn =
(logαn)2

αn
× e−O(1).

Setting c = e−O(1), we obtain (5).
Lemma 3: Under the assumptions in Lemma 1, the average

sum-rate of the network is given by

R̄sum ≈ W

α
(1− log qn) (6)

=
W

α
(logK + o(logK)) . (7)

Proof: See [13] for the proof.
Lemma 3 implies that the average sum-rate of the network

for M ∼ o(K) depends on the value of 0 < α ≤ 1 and scales
as W

α logK.
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R̄sum =
M∑

j=1

m∑

i=1

W

M
E

[
log

(
1 +

h
(j)
ii∑m

k 6=i υkh
(j)
ki + N0W

M

)]
, k ∈ Cj (15)

= W

m∑

i=1

m∑

l=0

(
m

l

)
αl(1− α)m−lE

[
log

(
1 +

h
(j)
ii

Υl + N0W
M

)]

= W

m∑

i=1

(1− α)mE

[
log

(
1 +

h
(j)
ii

N0W
M

)]
+W

m∑

i=1

m∑

l=1

(
m

l

)
αl(1− α)m−lE

[
log

(
1 +

h
(j)
ii

Υl + N0W
M

)]
,

III. NETWORK ANALYSIS WITH ON-OFF POWER
ALLOCATION STRATEGY

In this section, we analyze the average sum-rate in terms of
M , 1 ≤ M ≤ K. We prove that the maximum average sum-
rate of the network for every value of 0 < α ≤ 1 is obtained
at M = 1.

Theorem 1: Assuming 0 < α ≤ 1 is fixed, the maximum
average sum-rate of the network is achieved at M = 1.

Proof: We prove the theorem in the following two cases:
Case 1: M ∼ o(K)

From (6), the average sum-rate of the network for M ∼
o(K) is obtained as

R̄sum ≈ W

α
(1− log qn) . (8)

Taking the first-order derivative of (8) with respect to M
yields,

∂R̄sum
∂M

= −W
α

∂qn
∂M

1
qn
.

Using (5) and noting that n = K
M , we have

qn =
c

αK
M

(
log

αK

M

)2

. (9)

Since,

∂qn
∂M

=
c

αK
log

αK

M
× (log

αK

M
− 2) > 0,

it is concluded that (8) is a monotically decreasing function
of M . Thus for M ∼ o(K), the maximum average sum-rate
of the network is obtained at M = 1.

Case 2: M ∼ Θ(K)
Letting m denote the number of active links in each cluster,

it is concluded that m ∈ [1, n] does not grow with K. The
average sum-rate of the network is given by

R̄sum =
M∑

j=1

m∑

i=1

W

M
E

[
log

(
1 +

h
(j)
ii

I
(j)
i + N0W

M

)]
. (10)

For simplicity of derivations, we assume that the number of
active links in all the clusters is the same denoted by m. It
can be shown that this assumption does not affect the validity
of the results [13]. We first evaluate the average sum-rate for

m = 1. In this case, we have I(j)
i = 0. Thus, the maximum

achievable throughput is obtained as

R̄sum = WE
[
log

(
1 +

M

N0W
h(j)
max

)]
, (11)

where h(j)
max = maxi=1,...,n h

(j)
ii is a random variable. Since

log x is a concave function of x, an upper bound of (11) is
obtained through Jensen’s inequality, E [log x] ≤ log(E [x]),
x > 0. Thus,

R̄sum ≤W log
(

1 +
M

N0W
E [Y ]

)
, (12)

where Y , h
(j)
max. Noting that h(j)

ii ’s are i.i.d. over i ∈ N , we
have

FY (y) = Pr{Y ≤ y}, y > 0

=
n∏

i=1

Pr{h(j)
ii ≤ y}

=
(
1− e−y)n ,

where FY (.) is the cumulative distribution function (cdf) of
Y . Hence,

E [Y ] =
∫ ∞

0

nye−y
(
1− e−y)n−1

dy.

Since (1− e−y)n−1 ≤ 1, we have

E [Y ] ≤
∫ ∞

0

nye−ydy = n. (13)

Consequently, the upper bound of R̄sum obtained in (12)
can be simplified as

R̄sum ≤W log
(

1 +
K

N0W

)
. (14)

Hence, the throughput of the network for m = 1 scales at
most as W logK which is less than or equal to W

α logK for
M = 1.

For m > 1, the average sum-rate can be written as (15),
where υk’s are binomial random variables with parameters
(m,α), and Υl is the sum of l i.i.d random variables with
χ2(2) distribution. Noting that M ∼ Θ(K), we ignore the
term N0W

M . Also for m > 1, Υl is greater than the interference
term caused by one interfering link. Thus, an upper bound
for the throughput of the network is given by (16), where
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R̄sum ≤ Wm(1− α)mE

[
log

(
1 +

Y
N0W
M

)]
+W

m∑

i=1

m∑

l=1

(
m

l

)
αl(1− α)m−lE

[
log

(
1 +

Y

Z

)]
(16)

= Wm(1− α)mE

[
log

(
1 +

Y
N0W
M

)]
+Wm(1− (1− α)m)E

[
log

(
1 +

Y

Z

)]
. (17)

Y , h
(j)
max = maxi=1,...,n h

(j)
ii and Z , h

(j)
ki . Letting X =

Y

Z
,

the cdf of X is obtained as

FX(x) = Pr{X ≤ x}, x > 0
= Pr{Y ≤ Zx}
=

∫ ∞
0

Pr{Y ≤ Zx|Z}fZ(z)dz

=
∫ ∞

0

(
1− e−zx)n e−zdz.

Thus, the probability distribution function (pdf) of X can
be written as

fX(x) =
dFX(x)
dx

=
∫ ∞

0

nze−z(1+x)
(
1− e−zx)n−1

dz

≤
∫ ∞

0

nze−z(1+x)dz =
n

(1 + x)2
. (18)

Using (11)-(14) and (18), the inequality (17) is simplified
as

R̄sum ≤ Wm(1− α)m log
(

1 +
K

N0W

)

+ Wm(1− (1− α)m)
∫ ∞

0

log (1 + x) fX(x)dx

≤ Wm(1− α)m log
(

1 +
K

N0W

)

+ Wnm(1− (1− α)m)
∫ ∞

0

log (1 + x)
(1 + x)2

dx

= Wm(1− α)m log
(

1 +
K

N0W

)
+ Λn, (19)

where Λn = Wnm(1− (1− α)m). In order to show that the
achievable average sum-rate obtained in (19) is less than that
of M = 1, it is sufficient to prove m(1 − α)m < 1

α . Letting
f(α) = αm(1− α)m, we have

∂f(α)
∂α

= m(1− α)m−1(1− α− αm) = 0.

Thus, the extremum points of f(α) are located at α = 1
and α = 1

m+1 . It is seen that

f(1) = 0 < 1,

and

f(
1

m+ 1
) =

(
m

m+ 1

)m+1

< 1.

Therefore, since Λn does not grows with K and also f(α) <
1, we can conclude that the throughput of the network is less
than that of M = 1.

Corollary 1: Note that although in the proof of Theorem
1, it is assumed that α is fixed, in the case of M ∼ Θ(K),
following the same proof steps , it can be shown that for α→ 0
the throughput of the network is less than that of M = 1.

Proof: See [13] for the proof.
In the case of M ∼ Θ(K), which includes M = K, we

obtained an upper bound for R̄sum. In the next corollary, we
derive the exact achievable throughput of the network for M =
K.

Corollary 2: Assuming M = K, the average sum-rate of
the network is obtained by

R̄sum ≈W (logK − logN0W − γ),

where γ is Euler’s constant.
Proof: Since for M = K, the users transmit with full

power over the orthogonal subchannels, it is concluded that
I

(j)
i = 0 for i = 1, ...,K. Thus, the average sum-rate of the

network is given by

R̄sum = E

[
K∑

i=1

R
(j)
i

]

=
W

K

K∑

i=1

E

[
log

(
1 +

h
(j)
ii

N0W
K

)]
,

where the expectation is computed with respect to h(j)
ii . Under

a Rayleigh fading channel model, we have

R̄sum =
W

K

K∑

i=1

∫ ∞
0

e−x log(1 + λx)dx,

where λ , K
N0W

. Thus,

R̄sum = W

∫ ∞
0

e−x log(1 + λx)dx

= We
1
λ

∫ ∞
1/λ

e−x

x
dx

= We
1
λE1

(
1
λ

)
, (20)

where E1(x) is obtained by the exponential-integral function
defined as [14]

En(x) ,
∫ ∞

1

e−tx

tn
dt.
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Fig. 1. Average sum-rate of the network vs. M for K = 20 and K = 40.

To simplify (20), we use the following series representation
for E1(x),

E1(x) = −γ − log x+
∞∑
s=1

(−1)s+1xs

s.s!
, (21)

where γ is Euler’s constant and is defined by the limit [14]

γ = lim
s→∞

(
s∑

k=1

1
k
− log s

)
= 0.577215665...

Thus, the average sum-rate of the network is obtained as

R̄sum = We
1
λ

(
−γ + log λ+

∞∑
s=1

(−1)s+1

s.s!

(
1
λ

)s)
.

For sufficiently large values of K, we have λ = K
N0W

À 1,
which results in e

1
λ ≈ 1 and
∞∑
s=1

(−1)s+1

s.s!

(
1
λ

)s
≈ 0.

Consequently for M = K, the average sum-rate of the
network is asymptotically obtained by

R̄sum ≈W (logK − logN0W − γ). (22)

Corollary 3: For M = K, the average sum-rate of the
network is of order logK. Through comparing (22) with (7), it
is concluded that the throughput of the network with M = K
is less than or equal to that of M = 1.

We finally evaluate the throughput of the network versus the
number of clusters for finite values of K through simulation
results. Fig. 1 illustrates the maximum average sum-rate of the
network versus M for K = 20, K = 40 and α = 0.1. It is
seen that the average sum-rate is a decreasing function of M .
Also, the maximum value of R̄sum is achieved at M = 1.

IV. CONCLUSION

We have analyzed the average sum-rate of a single-hop
wireless network in terms of M and under the shadowing
effect with probability α. It has been demonstrated that for
M ∼ o(K) and 0 < α ≤ 1, the average sum-rate of the
network is of order W

α logK. Also, it has been proved that the
maximum average sum-rate of the network for every value of
0 < α ≤ 1 and 1 ≤ M ≤ K is achieved at M = 1. In fact,
in the proposed model, partitioning the bandwidth W into M
subchannels has no gain in terms of enhancing the throughput.
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