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Abstract—In this paper, we investigate the minimum average
transmit energy that can be obtained in multiple antenna broad-
cast systems with channel inversion technique. The achievable
gain can be significantly higher than the conventional gains
that are mentioned in methods like [1]. In order to obtain this
gain, we introduce a Selective Mapping (SLM) technique (based
on random coding arguments). We propose to implement the
SLM method by using nested lattice codes in a trellis precoding
framework.

I. INTRODUCTION

Recently, there has been a considerable interest in Multi-
Input Multi-Output (MIMO) antenna systems due to achieving
a very high capacity as compared to single-antenna systems.
Multiuser MIMO systems can also exploit most of the advan-
tages of multiple-antenna systems.

In a broadcast system, when an access point with multiple
antennas is used to communicate with many users, the commu-
nication is complicated by the fact that each user must decode
its signal independently from the others. As a simple precoding
scheme, the channel inversion technique can be used at the
transmitter to separate the data for different users. However,
this method is vulnerable to the poor channel conditions.

In this paper, we investigate the optimum gain for average
transmit energy in multiple antenna broadcast systems with
channel inversion technique. By using the fact that the channel
is not orthogonal, the gain that can be achieved is significantly
higher than the regular shaping gains that can be achieved in
methods like [1].

In a broadcast system with the channel inversion tech-
nique (given a fixed channel matrix), we find the optimal
probability distribution for the data vectors to minimize the
average transmit energy. Then, we introduce a theoretical
Selective Mapping (SLM) technique (based on random coding
arguments) to obtain the optimal average transmit energy. In
order to implement the SLM method effectively, we propose
using nested lattice codes in a trellis precoding framework

The rest of the paper is organized as follows. In Section II,
the system model is introduced. Section III finds the optimal
probability distribution for transmit data in channel inversion
techniques. Section IV is devoted to introducing the SLM
technique and its analysis and implementation issues.
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II. SYSTEM MODEL

A multiple antenna broadcast system can be modeled by [2]

y = Hx + n, (1)

where y is the M̃×1 received vector, x is the Ñ×1 normalized
transmitted data,n is additive white Gaussian noise, and H
represents the M̃ × Ñ channel matrix in real space.

In broadcast systems, the receivers should decode their
respective data independently and without any cooperation
with each other. The simplest method is using the channel
inversion technique as a precoding method at the transmitter
to separate the data for different users s = H+u, where
H+ = H∗(HH∗)−1, H∗ is the Hermitian of H, u is the
data vector, i.e. ui is the data for the i’th user, and s is
the transmitted signal before the normalization. When the
number of transmit antennas equals with the number of users,
M̄ = N̄ := M , the transmitted signal is

s = H−1u. (2)

As in [1], the normalized transmitted signal would be x =
s√

E{γ} , where γ = ‖s‖2. The problem arises when H is

poorly conditioned and γ becomes very large, resulting in a
high power consumption.

In a multiple antenna system, it is assumed that the data
vector u is selected from a constellation with discrete points.
However, through this paper we investigate the probabilis-
tic behavior of the transmitted signal s. Assuming a large
constellation, continuous approximation provides a probability
distribution for each constellation, resulting in different E{γ}.
The challenge is finding the best probability distribution with
minimum E{γ}. Note that the expectation in E{γ} is over u
and the channel is assumed constant.

III. OPTIMUM PROBABILISTIC CONSTELLATION

Channel inversion technique removes the need for complex
decoding algorithms in the receiver side; however, it leads to a
high energy consumption as the average energy of the resulting
constellation points is high. We are looking for a constellation
shaping method for the input constellation, such that using the
channel inversion technique, the resulting constellation has a
smaller value for the average transmit energy.
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A proper input constellation should be designed such that
two conditions are satisfied: (i) data can be decoded indepen-
dently at the receivers, and (ii) the average transmitting energy
is as low as possible. The design of the constellation is known
as the shaping. By using a conventional block constellation,
any point in the constellation is equally likely. However,
by shaping, a nonuniform distribution is achieved over each
dimension.

A common constellation shaping technique is to choose a
finite set of points from an M dimensional lattice Λ that lies
within a finite region R ⊂ RM . This constellation is known
as a lattice code. If C is a lattice code of reasonably large size,
then the distribution of its points in M dimensional space is
well approximated by a uniform continuous distribution over
the region R (the continuous approximation) [3].

Having a uniform distribution over region R induces a
nonuniform distribution on each dimension. In other words,
if u is selected uniformly over R, each element of u has
a nonuniform distribution. Through this paper, the probability
distribution of the elements of u is called marginal probability
distribution of u. We assume that the region R has a fixed
volume Vol(R) = V, resulting in the entropy of (log V). In
the case of independent variables, we assume that the entropy
per real dimension is H = 1

M log V.
Let Q :=

(
H−1

)T
H−1 = UΛUT, where U is the unitary

matrix of eigenvectors of Q and Λ is the diagonal matrix of
the corresponding eigenvalues, λi, i = 1, · · · ,M . Assume
u ∈ R be a random vector with mean E{u} = µ and the
correlation matrix E{uuT } = Σ > 0. The energy of the
transmitted signal, called transmit energy, is defined as γ =
uT Qu = uT UΛUT u = vT v, where v =

√
ΛUT u. When u

is selected uniformly in R, the vector v is selected uniformly
over a region R′, where R′ = {v|v =

√
ΛUTu,∀u ∈ R}. It

is more convenient to explain some behaviors of γ based on
v. The average transmit energy can be written as [2]

E{γ} = tr(QΣ) + µT Qµ (3)

If we ignore that users are supposed to decode their data
independent of each other, the optimum region for the input
constellation can be found using the following lemma:

Theorem 1: Let u = [u1, u2, · · · , uM ] ∈ RM be a random
vector with probability distribution f(u1, u2, · · · , uM ), mean
E{u} = µ, and the correlation matrix E{uuT } = Σ > 0,
in a broadcast system introduced in (1). Let H(u) denote the
entropy of the data vector u. Then, a multivariate Gaussian
random vector u with µ = 0 and the covariance matrix

Σ = M
√

Πλiσ
2HHT (4)

will minimize the energy of the transmit signal given a fixed
entropy H(u) = log(V), where σ2 is the variance of a
Gaussian random variable with entropy H = 1

M log(V).
Proof: See [2]

This choice of Σ suggests that the minimum value of the av-
erage energy among transmit signals with different probability
distributions is [2]

Eopt = E{γ} = M M
√

Πλiσ
2 (5)

Consider the auxiliary vector v =
√

ΛUu. It can be
easily shown that each element of this vector has a Gaussian
distribution with zero mean with variance R2

eq. Therefore,
in the limit of M −→ ∞, this vector is uniformly selected
over an M -dimensional sphere centered at the origin with
radius

√
MReq, i.e. BM (0,

√
MReq) (corresponding to the

minimum average transmit energy in (5).
Roughly speaking, we can assume that the region R′ is

BM (0,
√

MReq). On the other hand, the vector u, a Gaussian
random vector with zero mean and covariance matrix in (4),
is uniformly selected over the region R which is an oval. The
main diameters of this oval are along the eigenvectors U and

the radii of the oval in each direction are
√

M
λi
Req for i =

1, · · · ,M , in other words R = OM (0,
√

M
λi
Req) . (see [2]).

By using this region, an additional channel gain of [2]

GH =
Arithmetic Mean(λ1, · · · , λN )
Geometric Mean(λ1, · · · , λN )

(6)

can be achieved (in addition to the conventional shaping gain).
The geometric mean of a data set is always smaller than or

equal to the set’s arithmetic mean (the two means are equal if
and only if all members of the data set are equal). On the other
hand, without the channel matrix, we have the conventional
shaping gain. However, the presence of H−1 will affect the
shaping gain by the Channel Gain, GH, defined in (6). Without
the channel effect the optimum region R is a spherical region
(corresponding to independent Gaussian variables), while with
the channel effect the optimum region R is an M -dimensional
oval.

From another point of view, this gain can be seen as the
effect of rate (or power) allocation for Gaussian distribution
which has been considered in multi-carrier transmission and
point to point multiple antenna systems, e.g. [4]. However,
this concept ignores the independency condition required for
a broadcast system. Here, the challenging problem is how
the region R or R′ can be achieved, while considering the
independency condition.

IV. SELECTIVE MAPPING

The idea of Selective Mapping (SLM) is to generate a large
set of data vectors that represent the same information, where
the data vector resulting in the lowest energy is selected for
transmission. This idea has been used in OFDM systems, e.g.
[5], to reduce the average transmit energy.

In the optimum case, the vector u is selected uniformly
over an M -dimensional oval and the transmit vector is selected
uniformly over a hypersphere. However, due to the indepen-
dency condition, implementing this oval shape region is not
possible. The receivers can not co-operate with each other to
locate a point inside this oval. We propose an SLM method
that can theoretically achieve the optimum gain for average
transmit energy. The region for vector u is not oval; however,
the resulting region for the transmit vector in the limit is a
hypersphere.

In the sequel, first, we use a random coding argument
to explain the SLM method, its analysis, and the maximum

133



theoretical gain that can be achieved. In this part, again we
ignore the independency condition. In continue, we implement
the SLM technique considering the independency condition by
using a trellis precoding.

In the system model (1), the volume of the region is fixed,
V. In order to provide multiple choices for the SLM method,
the volume is increased to V̄ such that for each data vector

there are N points, where N =
V̄

V
.

In other words, N i.i.d. samples of u are generated,
{u1,u2, · · · ,uN}, and sl with the lowest transmit en-
ergy is selected for transmission. In other words, γl =
min{γ1, γ2, · · · , γN}. We are looking for the probabilistic
behavior of γl.

A. Asymptotic Analysis

In this section, we analysis the effect of an SLM method
for broadcast systems. In the proposed method, N i.i.d.
samples of u are generated, {u1,u2, · · · ,uN}, and among
the corresponding transmit vectors si = H−1ui, the vector sl

with the lowest transmit energy is selected for transmission.
In other words, in the SLM method, we are looking for

min
1≤i≤N

‖si‖2, (7)

where ‖.‖ represents the regular norm.
The expression in (7) is similar to minimization of distor-

tion in quantization and random quantizers. The tremendous
research on random quantization [6, and ref. therein] can help
us to evaluate the expression in (7) in our SLM method.

Let s1, s2, · · · , sN , be i.i.d. RM -valued random variables
with distribution Q, i.e.

Q(v) = P{si1 ≤ v1, · · · , siM
≤ vM} i = 1, · · · , N, (8)

where
v = (v1, · · · , vM ) ∈ RM .

For any region R, the probability Q(R) is the probability that
there is at least one code point in the region R, i.e.

Q(R) =
∫
R

Q(dy).

Define the rth order transmit energy as

γQ
r,N = min

1≤i≤N
‖si‖r, (9)

where based on our previous notation γl = γQ
2,N . In this

section, the asymptotic probabilistic behavior of γQ
2,N , when

N −→ ∞, is investigated. Specifically, we calculate the
average transmit energy in the SLM technique. Note that,
in the following, we frequently use λ which is the M -
dimensional Lebesgue measure. Here, we define it as the M -
dimensional volume of a region.

Theorem 2: Let s1, s2, · · · , sN , be i.i.d. RM -valued ran-
dom variables with distribution Q. Then,

lim
N→∞

E
{

N
r

M γQ
r,N

}
= B

− r
M

M Γ(1 +
r

M
)g−

r
M

ρ (10)

where B1 = 2, BM = λ (BM (0, 1)) = πM/2/Γ(1+M/2) for
M = 2, · · · , and gρ is defined for any ρ > 0 as

gρ := inf
δ∈(0,ρ]

Q (BM (0, δ))
λ (BM (0, δ))

.

Proof: See [2].
Now, consider the special case of uniform distribution.

When we have a large lattice code, we can assume we have a
uniform distribution over the region where the lattice code is
defined. Applying SLM technique, over a region with uniform
distribution results in the following average for the rth order
transmit energy.

Theorem 3: Let R ⊂ RM be a compact set with λ(R) > 0
and let s1, · · · , sN be i.i.d. random variables with uniform
distribution over R. Then,

lim
N→∞

E
{

N
r

M γQ
r,N

}
= B

− r
M

M Γ(1 +
r

M
)λ(R)

r
M . (11)

Proof: Let Q be a uniform distribution over R, i.e. Q =
U(R). Therefore,

Q

(
BM (0,

v
1
r

N
1

M

)

)
=

λ

(
BM (0,

v
1
r

N
1

M

)

)

λ(R)
, (12)

and

gρ = inf
δ∈(0,ρ]

Q (BM (0, δ))
λ (BM (0, δ))

=
1

λ(R)
. (13)

Substituting (13) in (10) completes the proof.
Note that we are interested in cases that the i.i.d random

variables u1, · · · ,uN are selected uniformly over a region R′.
According to s = H−1u, for the probability distribution of s,
we have

fs(s) = |H−1| fu(Hs). (14)

Therefore, if u has a uniform distribution over R′, s has also
a uniform distribution over R, where R = H−1R′.

In order to find the asymptotic average transmit energy of
SLM technique, we should replace r = 2 and Q = U(R),
where R is the region for the transmit vector s. Therefore,
according to the expression in (11), the average transmit
energy for large N can be approximated by [2]

ESLM = Γ(1 +
2
M

)MR2
eq. (15)

Comparing (5) and (15), we can see that using SLM technique
with any lattice code of reasonably large size the optimum
transmit energy can be achieved since for large M , Γ(1 +
2
M ) −→ Γ(1) = 1.

Corollary 1: In a broadcast system, applying SLM method
to lattice codes of reasonably large size, with a fixed volume,
will result in equal values for the average transmit energy when
N is large enough in the SLM method.

We must emphasis that in our random coding argument the
probability of the event that two different code words have
the same transmit data vector is negligible. In the case of this
event, we have an error in our broadcast system. However,
since the probability of this event is small, the average transmit
energy would not change.
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B. Implementation Issues

In any practical SLM method, the lattice code C (constella-
tion) should be expanded such that the number of constellation
points are multiplied by N , resulting in a new lattice code
C

′. This new set of constellation points are grouped in |C|
sets containing N points. Transmitting any of these N points
transfer the same information. These sets (and the expanded
constellation) should be selected such that the users at the
receive side can decode their data independent of each other.

The method proposed in [1] can be considered as an SLM
technique with this idea. In this method the region for the
transmit vector s is expanded by repetition of the constellation
by multiples of τ in each direction. In other words, for any
vector s = H−1u, we find H−1(u+τ l) for 	−b/2
+1 ≤ li ≤
	b/2
. In each direction we repeat the constellation b times,
so we have N = bM in the SLM method. In this method, the
transmit vector s is selected in the original constellation and
N − 1 other points are calculated by adding integer vector
offsets, resulting in N points in the expanded lattice code C

′.
A modulo operation in the transmitter and receivers guarantees
and satisfies the independency condition.

For large enough M and N , this method can not achieve the
optimum average energy. The equivalent region for vector s is
the Voronoi region of τH−1, not a hypersphere [2]. This leads
to an improvement over the Gaussian marginal probability
distribution; however, this is not the best that we can achieve.
The more this Voronoi region looks like a sphere, the less the
average transmit energy is. The problem in the SLM method in
[1] is that the vector s is not uniformly distributed over lattice
code C

′. In order to preserve the independency condition, a
vector is uniformly distributed over C and N − 1 other points
are calculated deterministically in C

′ based on this point. This
results in a region with Voronoi region shape not a sphere.

In [7], a sign-bit shaping algorithm is proposed for pre-
coding in broadcast systems. Sign-bit shaping is implemented
by using a trellis code. This technique is actually an SLM
method since it gives the transmitter many different options
when determining which symbol to transmit.

Trellis shaping systems are composed of a rate (ks, ns)
binary convolutional shaping code C and a signal set A
partitioned into 2ns shaping subsets [8]. The signal set A is
typically a lattice code with shaping region R, and the shaping
subsets are the points of this region that fall within subregions
Ri for i = 1, · · · , 2ns . It is important that the code C and the
signal set A is selected such that the the equivalent points are
selected uniformly over R.

Conventional precoding schemes in broadcast systems, such
as [1], treat multiple antennas of different users as different
users. By using trellis shaping for each virtual user, in each
2-dimensional space, there is a modulo operation with respect
to the Voronoi region of the shaping trellis code. In other
words, in the space of each user, there is a modulo operation
with respect to the Cartesian product of these Voronoi Regions.
However, we can use the shaping concept in each user’s space.

The idea in [7] can be extended to include the multi-antenna
case. We can use a trellis shaping for each user, and not for
each antenna.

Nested lattice codes can be implemented such that both
these improvements are met. The idea of nested lattice codes
has already been used for interference cancelation in de-
generated broadcast systems [9]. There, it is assumed that,
in an ordered set of users, each user has the ability that
it can decode the message for the previous users. In other
words, it is assumed that each user has the code-book for
the previous users. This technique can be implemented in our
scheme to provide us with shaping, without any need for these
assumptions. We can achieve the same gain as that reported
in [9] for broadcast systems with precoding, without any extra
assumption.

Assume that in a broadcast system with K users, each
user has nu antenna in (1), i.e. M = 2Knu. One way
of implementing this idea is implementing a large trellis
consisting of K sub-trellises with a lattice partition, Λ/Λ′,
in a 2nu dimensional space. In each sub-trellis, the lattice
code is divided into |Λ/Λ′| partitions, i.e. for transmitting any
information vector, one of |Λ/Λ′|K equivalent points, in M
dimensional space, with the lowest transmit energy is selected.
In other words, the vector u resulting in the lowest energy for
H−1u would be selected for transmission. Now, in each 2nu

dimensional space, the modulo operation is with respect to the
Voronoi region of this trellis code. The Cartesian product of
these regions should be as close as possible to the sphere in
order to generate the optimum shaping region.
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