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Abstract— Recently, several quasi-maximum likelihood decod-
ing methods have been introduced to solve the decoding problem
in multiple antenna systems. Mobasher et al. [1] proposed a
general method with a near optimal performance for M-ary QAM
or PSK constellation. However, it is more complex compared to
some other methods specialized for a limited scenario. In this
paper, we introduce a new general algorithm based on matrix-
lifting Semi-Definite Programming (SDP). The new relaxation
exploits the matrix structure of the system and introduces a
degradation in the performance; however, the reduction in the
complexity is significant. The number of variables is decreased
from O(N2K2) to O((N + K)2). Moreover, this method can be
implemented for any constellation and labeling method.

I. INTRODUCTION

Recently, there has been a considerable interest in Multi-
Input Multi-Output (MIMO) antenna systems due to achieving
a very high capacity as compared to single-antenna systems
[2]. It is known that decoding is one of the important problems
in MIMO systems. Decoding concerns the operation of recov-
ering the transmitted vector from the received signal, which is
known to be an NP-hard problem.

To overcome the complexity issue, a variety of sub-optimum
polynomial time decoding algorithms based on Semi-Definite
Programming (SDP) are suggested in the literature [1], [3]–[6].

In [3], a quasi-maximum likelihood method for decoding
is introduced. Each signal constellation is expressed by its
binary representation and the decoding is transformed into
a quadratic minimization problem [3]. Then, the resulting
problem is solved using a relaxation for rank-one matrices
in SDP context. It is shown that this method has a near
optimum performance and a polynomial time worst case
complexity. However, the method proposed in [3] is limited
to scenarios that the constellation points are expressed as a
linear combination of bit labels. A typical example is the
case of natural labeling in conjunction with PSK constellation
[4]. Another quasi-maximum likelihood decoding method is
introduced in [5] for larger PSK constellations with near ML
performance and low complexity.

Another quasi-maximum likelihood decoding method in
introduced in [6] for the MIMO systems employing 16-
QAM. They replace any finite constellation by a polynomial
constraint, e.g. if x ∈ {a, b, c}, then (x−a)(x−b)(x−c) = 0.
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Then, by introducing some slack variables, the constraints are
expressed in terms of quadratic polynomials. The work in [6]
is restricted to MIMO systems employing 16-QAM.

In [1], an efficient approximate ML decoder for MIMO
systems is developed based on SDP. The transmitted vector is
expanded as a linear combination (with zero-one coefficients)
of all the possible constellation points in each dimension.
Using this formulation, the distance minimization in Euclidean
space is expressed in terms of a binary quadratic minimization
problem. The minimization of this problem is over the set of
all binary rank-one matrices with column sums equal to one.
In order to solve this minimization problem, two relaxation
models is presented, providing a trade-off between the compu-
tational complexity and the performance (both models can be
solved with polynomial-time complexity). Simulation results
show that the performance of the last model is near optimal
for M-ary QAM or PSK constellation (with an arbitrary binary
labeling, say Gray labeling). Therefore, the decoding algorithm
built on the proposed model in [1] has a near-ML performance
with polynomial computational complexity.

The general method proposed in [1] has a near optimal
performance for M-ary QAM or PSK constellation. However,
it is more complex compared to some other methods that
specialized their algorithm for a limited scenarios [1], [3]–
[6]. In this paper, we introduce a new general algorithm
based on matrix-lifting Semi-Definite Programming (SDP) [7],
[8]. The new relaxation introduces a small degradation in
the performance; however, the reduction in the complexity
is significant. The number of variables is decreased from
O(N2K2) to O((N +K)2). Moreover, it can be implemented
for any constellation and labeling method.

Following notations are used in the sequel. The space of
N × K (resp. N × N ) real matrices is denoted by MN×K

(resp. MN ), and the space of N × N symmetric matrices is
denoted by SN . For a N ×K matrix X ∈ MN×K the (i, j)th
element is represented by xij , where 1 ≤ i ≤ N, 1 ≤ j ≤ K,
i.e. X = [xij ]. We use trace(A) to denote the trace of a square
matrix A. The space of symmetric matrices is considered with
the trace inner product 〈A,B〉 = trace(AB). For A,B ∈ SN ,
A � 0 (resp. A � 0) denotes positive semi-definiteness (resp.
positive definiteness), and A � B denotes A−B � 0. For two
matrices A,B ∈ MN , A ≥ B, (A > B) means aij ≥ bij ,
(aij > bij) for all i, j. The Kronecker product of two matrices
A and B is denoted by A ⊗ B.
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For X ∈ MN×K , vec(X) denotes the vector in R
NK (real

NK-dimensional space) that is formed from the columns of
the matrix X. For X ∈ MN , diag(X) is a vector of the
diagonal elements of X. We use eN ∈ R

N (resp. 0N ∈ R
N ) to

denote the N ×1 vector of all ones (resp. all zeros), EN×K ∈
MN×K to denote the matrix of all ones, and IN to denote
the N × N Identity matrix. For X ∈ MN×K , the notation
X(1 : i, 1 : j), i < K and j < N denotes the sub-matrix of
X containing the first i rows and the first j columns.

The rest of the paper is organized as follows. The problem
formulation is introduced in Section II. Section III is the re-
view of the vector-lifting semi-definite programming presented
in [1]. In Section IV, we propose our new algorithm based on
matrix-lifting semi-definite programming. we use the geometry
of the relaxation to find a projected relaxation which has
a better performance. Section V is devoted to the methods
that can be used to solve the SDP problem. An augmented
lagrangian method is proposed for the special structure of the
problem. In Section VI, we present an optimization method,
based on matrix nearness, on how we can find the integer
solution of the original decoding problem from the solution
of the relaxed optimization problem.

II. PROBLEM FORMULATION

A MIMO system can be modeled by [1]

y = Hx + n, (1)

where y is the M×1 received vector, H is M×N real channel
matrix, n is N × 1 additive white gaussian noise vector, and
x is N × 1 data vector whose components are selected from
the set {s1, · · · , sK}.

Noting xi ∈ {s1, · · · , sK}, for i = 1, · · · , N , we have

xi = ui,1s1 + ui,2s2 + · · · + ui,KsK , (2)

where

ui,j ∈ {0, 1} and
K∑

j=1

ui,j = 1, ∀ i = 1, · · · , N. (3)

Let

U =




u1,1 · · · u1,K

u2,1 · · · u2,K

...
. . .

...
uN,1 · · · uN,K


 and s =




s1

...
sK


 .

Therefore, the transmitted vector is x = Us and UeK = eN .
At the receiver, the Maximum-Likelihood (ML) decoding

rule is given by

x̂ = arg min
xi∈{s1,··· ,sK}

‖ŷ − Hx‖2, (4)

where x̂ is the most likely input vector and ŷ is the received
vector. Noting x = Us, this problem is equivalent to

min
Ue=e

‖ŷ − HUs‖2 ≡
min
Ue=e

sT UT HT HUs − 2ŷT HUs. (5)

Therefore, the decoding problem can be formulated as

min sT UT HT HUs − 2ŷT HUs

s.t. UeK = eN

ui,j ∈ {0, 1}. (6)

Let Q = HT H, S = ssT , C = −sŷT H, and let EN×K

denote the set of all binary matrices in MN×K with row sums
equal to one, i.e.

EN×K ={U∈MN×K : UeK = eN , uij ∈ {0, 1}} . (7)

Therefore, the minimization problem (6) is

min trace
(
SUT QU + 2CU

)
s.t. U ∈ EN×K (8)

III. VECTOR-LIFTING SEMI-DEFINITE PROGRAMMING

In order to solve the optimization problem (8), the authors in
[1] proposed a quadratic vector optimization solution by defin-
ing u = vec(UT ),U ∈ EN×K . By using this notation, the
objective function is replaced by uT (Q⊗S)u+2vec(CT )T u.
To solve this vector quadratic problem, the quadratic form is
linearized using

Zu =
[

1
u

] [
1 uT

]
=

[
1 uT

u uuT

]
=
[

1 uT

u Y

]
, (9)

where Y = uuT and it is relaxed to Y � uuT , or
equivalently, by the Schur complement, to the lifted constraint[

1 uT

u Y

]
� 0,

which is selected from the set

F := conv
{
Zu : u = vec(UT ), U ∈ EN×K

}
. (10)

Therefore, the decoding problem using vector lifting semi-
definite programming can be represented by

trace
[

0 vec(CT )T

vec(CT ) Q

] [
1 uT

u Y

]

s.t.

[
1 uT

u Y

]
∈ F , (11)

which can be solved by usual SDP techniques. For more
details, we refer the reader to [1].

Note that the optimization variable is a matrix in SNK+1.
This leads to NK + 1 by NK + 1 matrix variables, which
has O(N2K2) variables and it is prohibitively large for
computations. However, the best approach is to keep and
exploit the structure of the original optimization problem (8).
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IV. MATRIX-LIFTING SEMI-DEFINITE PROGRAMMING

In order to keep the matrix U in its original form in (8),
the idea is to use the constraint Y = UT U instead of Y =
uuT . Now the relaxation is Y � UT U, or equivalently, by

the Schur complement,

[
IN U
UT Y

]
� 0. This is known as

matrix-lifting semi-definite programming.
Define the new variable V = US. Since the matrix S is

symmetric, the objective function in (8) can be represented as
the Quadratic Matrix Program [8]

trace
([

UT VT
] [ 0 1

2Q
1
2Q 0

] [
U
V

]
+ 2CU

)

= trace
([

0 1
2Q

1
2Q 0

] [
U
V

] [
UT VT

]
+ 2CU

)
= trace (LQWU) , (12)

where

L =


 0 C 0

CT 0 1
2Q

0 1
2Q 0


 , WU =


 I UT VT

U UUT UVT

V VUT VVT


 .

In order to linearize WU, we relax this matrix with [9]

W �


 I UT VT

U X Y
V Y Z


 � 0. (13)

On the other hand, the feasible set in (8) is the set of binary
matrices in MN×K with row sum equal to one, the set EN×K

in (7). By relaxing the rank-one constraint for the matrix
variable in (12), we have a tractable SDP problem. The feasible
set for the objective function in (12) is approximated by

FM = conv {WU | U ∈ MN×K : UeK = eN ,

uij ∈ {0, 1},∀i, j;V = US} (14)

Therefore, the decoding problem can be represented by

min trace (LW)
s.t. W ∈ FM (15)

Note that the size of matrix W is (2N + K) × (2N + K),
compared to (NK + 1) × (NK + 1) in [1], which is a huge
reduction in the size of the problem.

Although the constraint in (13) is relaxed, we still can
add/consider some linear constraints that have been re-
moved. These constraints are valid for the non-convex rank-
constrained decoding problem. However, we force the SDP
problem to satisfy these constraints. Consider the auxiliary
matrix V and the symmetric matrices X,Y and Z in matrix
W.

Since U ∈ EN×K and
∑N

j=1 u2
ij = 1, it is clear that

diag(X) = eN . Also, Y represents USUT and Z represents
US2UT

. In each row of U, there is only one 1 and the rest
are zero. Therefore, we have

diag(Y) = Udiag(S) and diag(Z) = Udiag(S2).(16)

Moreover, S = ssT (rank-one matrix) and S2 = (
∑K

1=i s2
i )S,

we have a stronger results for Z, i.e. Z = (
∑K

1=i s2
i )Y.

Therefore, we have

min trace


L


 I UT VT

U X Y
V Y Z






s.t. UeK = eN ; U ≥ 0
V = US

diag(X) = eN

diag(Y) = Udiag(S)

Z = (
K∑

1=i

s2
i )Y

 I UT VT

U X Y
V Y Z


 � 0

U,V ∈ MN×K ,X,Y,Z ∈ SN (17)

A. Geometry of the Relaxation

In this section, we eliminate the constraints defining UeK =
eN by providing a tractable representation of the linear mani-
fold spanned by this constraint. This method is called gradient
projection or reduced gradient method [10]. The following
lemma is on the representation of matrices having sum of the
elements in each row equal to one. This lemma is used in our
reduced gradient method.

Lemma 1: Let

G =
[

IK−1 −eK−1

] ∈ M(K−1)×K (18)

and

F =
1
K

(
EN×K − EN×(K−1)G

) ∈ MN×K . (19)

A matrix U ∈ MN×K with the property that the summation
of its elements in each row is equal to one, i.e. UeK = eN ,
can be written as

U = F + ÛG, (20)

where Û = U(1 : N,1 : (K − 1)).
Proof: see [1].

Corollary 1: ∀U ∈ EN×K , ∃Û ∈ MN×(K−1), ûij ∈
{0, 1} s.t. U = F + ÛG, where Û = U(1 : N,1 : (K− 1)).
Note that the summation of each row of Û is 0 or 1.

Consider the minimization problem (8). By substituting
(20), we can show that the decoding problem is equivalent
to the following reduced matrix-lifting semi-definite program-
ming problem:
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min trace


L̂


 I ÛT V̂T

Û X̂ Ŷ
V̂ Ŷ Ẑ






s.t. ÛeK−1 ≤ eN ; Û ≥ 0

V̂ = Û
(
GSGT

)
diag(X̂) = ÛeK−1

diag(Ŷ) = Ûdiag
(
GSGT

)

Ẑ =

(
K−1∑
1=i

(si − sK)2
)

Ŷ


 I ÛT V̂T

Û X̂ Ŷ
V̂ Ŷ Ẑ


 � 0

Û, V̂ ∈ MN×(K−1), X̂, Ŷ, Ẑ ∈ SN (21)

where

L̂ =


 0 GSFT Q + GC 0

QFSGT + CT GT 0 1
2Q

0 1
2Q 0


 .

V. SOLVING THE SDP PROBLEM

The relaxed decoding problems (17) and (21) can be solved
using common interior-point methods such as SeDuMi. Using
the special structure of the problem an augmented Lagrangian
method based on [11] is proposed. Due to limited space it is
omitted. The reader is referred to [9].

VI. INTEGER SOLUTION - MATRIX NEARNESS PROBLEM

By solving the relaxed decoding problems, we can find a
solution for (17), say the matrix Ũ. In general, this matrix is
not in EN×K . The condition ŨeK = eN is satisfied. However,
the elements are between 0 and 1. This matrix has to be
converted to a 0-1 matrix by finding a nearest matrix in EN×K .

A recurring problem in matrix theory is to find a structured
matrix that best approximates a given matrix with respect
to some distance measure. For example, it may be known a
priori that a certain constraint ought to hold, and yet it fails
on account of measurement errors or numerical roundoff. An
attractive remedy is to replace the tainted matrix by the nearest
matrix that does satisfy the constraint. Matrix approximation
problems typically measure the distance between matrices
with a norm. The Frobenius and spectral norms are pervasive
choices because they are so analytically tractable.

In order to find the nearest solution in EN×K to Ũ,
the solution of the relaxed problem, we solve the following
minimization problem

min
U∈ EN×K

‖U − Ũ‖2F, (22)

where ‖A‖2
F is the Frobenius norm of the matrix A and is

defined as ‖A‖2
F = trace(AAT ). Therefore, the objective

function can be reformulated as

‖U − Ũ‖2F
= trace

(
(U − Ũ)(U − Ũ)T

)
= trace

(
UUT

)
− 2trace(ŨUT) + trace(ŨŨT)

= N − 2trace(ŨUT) + trace(ŨŨT). (23)

The last equality is due to the fact that for any U ∈ EN×K we
have diag(UUT ) = eN , see (17). Therefore, after removing
the constants, finding the integer solution is the answer to

max
U∈ EN×K

trace(ŨUT) (24)

Consider the maximization problem

max trace(ŨUT)
s.t. UeK = eN

0 ≤ U ≤ 1, (25)

where ≤ in the last constraint is element-wise. This problem is
a linear programming problem with linear constraints and the
optimum solution is a corner point meaning that constraint are
satisfied with equality art the optimum point. In other words,
at the optimum point, U ∈ EN×K . Therefore, in order to find
the solution for (24), we can simply solve the linear problem
(25), which is strongly polynomial time.
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