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Abstract— In this paper, the problem of maximizing the num-
ber of active users satisfying a required quality of service (QoS)
in n-user interference channels is investigated. This problem is
known as an NP-complete problem. We introduce an efficient
suboptimal algorithm, relying on the results for the boundary of
the rate region we derived in [1]. The algorithm is developed for
different sorts of constraints on the transmit powers, including
constraint on the power of the individual transmitters and
constraint on the total power of the transmitters. Simulation
results show that the performance of the proposed algorithm is
very close to the optimum solution, and outperforms alternative
algorithms.

I. INTRODUCTION

Sharing the same wireless channel can greatly increase the
spectral efficiency of wireless systems. While such a scheme
increases the capacity and the coverage area of communication
systems, it suffers from the interference of the concurrent links
over each other, known as the co-channel interference. Conse-
quently, the signal-to-interference-plus-noise-ratio (SINR) of
the links are upper-bounded, even if the transmit powers are
unbounded.

There have been some efforts to evaluate the maximum
achievable SINR in the interference channels. In [2], the
maximum achievable SINR in a satellite network with no
power constraint is presented in terms of the Perron-Frobenius
(PF) eigenvalue of a non-negative matrix. This result was
deployed in many other applications by [3]–[6] afterwards.

Recently, the authors have extended this result to the case
that the power of the transmitters are subject to some con-
straints, including the constraints on power of the individual
transmitters, and the constraint on the total transmit power [1].

In practical scenarios, it is desired that the active users
satisfy a required quality of service (QoS) . On the other
hand, due to the deteriorative effect of the co-channel in-
terference, it is not possible for all users to satisfy such a
requirement. Therefore, some of the users should be removed
to the advantage of the others. Finding a feasible subset of
users (i.e., a subset of users which satisfy the required QoS)
with maximum cardinality is claimed to be an NP-complete
problem [7]. In the literature, some heuristic algorithms are
presented for this problem. In [4], a stepwise removal algo-
rithm (SRA) has been proposed for the case that the transmit

1This work is financially supported by Nortel and by matching funds from
the federal government of Canada (NSERC) and province of Ontario (OCE).

power is unbounded. In [8], another algorithm named as
stepwise-maximum-interference-removal-algorithm (SMIRA)
is proposed, and it is shown that this algorithm outperforms
SRA. For the systems with constraint on the power of the indi-
vidual transmitters, an algorithm known as gradually-removal-
distributed-constrained-power-control (GRX-DCPC) is pro-
posed in [7]. This algorithm is presented in the different forms
of centralized, distributed, restricted, and non-restricted user
selection. The simulation results show that GRN-DCPC (cen-
tralized non-restricted algorithm) outperforms other mentioned
schemes in [7].

In this paper, we exploit the relationship between the max-
imum achievable SINR and the PF-eigenvalue of some non-
negative matrices, presented in [1], to develop an algorithm
for the problem of user removal. The algorithm is proposed
for different sorts of power constraints. Simulation results
show that the proposed algorithm outperforms the alternative
schemes in all cases in terms of the number of active users.

Notation: All boldface letters indicate column vectors
(lower case) or matrices (upper case). xij represents the entry
(i, j) of matrix X. xi denotes the column i of matrix X,
i.e., Xn×m = [xi]n×m. A matrix X is called non-negative if
xij ≥ 0, for all i and j [9]. det(X), Tr(X), and X′ denote
the determinant, the trace, and the transpose of the matrix X,
respectively. ψ(X,y,S) is a matrix defined as a function of
three parameters, which are respectively a matrix, a vector and
a set of indices. It is defined as

ψ(X,y,S) = Z = [zj ], zj =
{

xj + y j ∈ S
xj otherwise

In addition, Xi− is the matrix X whose ith column and row
is removed. We use a similar notation for a vector whose ith

element is removed.

II. SYSTEM MODEL AND PREVIOUS RESULTS

The Gaussian interference channel with n links (users), is
represented by the gain matrix G = [gij ]n×n where gij is
the power coefficient from transmitter j to receiver i. This
coefficient can be the result of fading, shadowing, or the
processing gain of the CDMA system. A white Gaussian noise
with zero mean and variance σ2

i is added to the received signal
at the receiver i terminal. The SINR of each user, denoted by
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γi, is obtained by

γi =
giipi

σ2
i +

n∑
j=1
j �=i

gijpj

, ∀i ∈ {1, . . . , n},

where pi is the power of transmitter i. The users are required
to attain a minimum SINR denoted by γ i.e., γi ≥ γ. In
the sequel, we obtain the maximum possible γ for which this
condition is satisfied for all users. We define the normalized
gain matrix, A, as

A = [aij ]n×n, aij =

{ gij

gii
i �= j

0 i = j
(1)

Based on this definition, the QoS constraint is presented as,
pi

ηi +
n∑

j=1

aijpj

≥ γ, ∀i ∈ {1, . . . , n}, (2)

where ηi =
σ2

i

gii
. By defining η = [ηi]n×1, the inequalities in

(2) can be reformulated in a matrix form as

(
1
γ
I−A)p ≥ η. (3)

When there is no constraint on the power vector (rather than
the trivial constraint of p ≥ 0), the maximum achievable γ in
(3), denoted by γ∗, is characterized as

γ∗ =
1

λ∗(A)
, (4)

where λ∗(A) is the PF-eigenvalue of A. Based on the Perron-
Frobenius theorem, any irreducible matrix has an eigenvalue
which is real and positive and takes the largest norm among
all the eigenvalues. This eigenvalue is called Perron-Frobenius
eigenvalue (PF-eigenvalue) of the matrix. For more details see
[9, Chapters 1 and 2].

For the case that the total power of a subset of users is
constrained, the authors showed that the maximum achievable
SINR for a system is obtained according to the following
theorem [1].

Theorem 1 The maximum achievable γ in an interference
channel with n links and normalized gain matrix A, with
power constraints p ≥ 0 and

∑
i∈Ω

pi ≤ pΩ is equal to

γ∗ =
1

λ∗
(
ψ(A,

η

pΩ

,Ω)
) ,

where Ω ⊆ {1, 2, . . . , n} is an arbitrary subset of the users.

As a result of this theorem, when the total power of all users

is constrained as
n∑

i=1

pi ≤ pt, the maximum achievable SINR

is
γ∗ =

1

λ∗
(
ψ(A,

η

pt

, {1, . . . , n})) . (5)

According to [1], Theorem 1 can be used to show that if pi ≤
pi, ∀i ∈ {1, . . . , n}, the maximum achievable SINR is

γ∗ = min
i
{ 1

λ∗
(
ψ(A,

η

pi

, {i}))}. (6)

In a congested system, all the users can not satisfy the QoS
requirement. Therefore, some of the users should be removed
in order to reduce effective interference on the active users and
consequently ameliorate the achievable SINR. In what follows,
we use (4), (5), and (6) to develop a suboptimum algorithm
for obtaining a subset of the users with maximum cardinality
satisfying the rate requirement (2).

III. REMOVAL ALGORITHM

To find the optimum set of active users, satisfying the QoS
requirement, we have to examine all the combinations of the
users and select a feasible subset with the maximum cardinal-
ity. Clearly, this scheme is computationally exponential. As a
suboptimum alternative scheme, we propose a greedy removal
algorithm. The main idea behind the presented algorithm is
as follows. At each step, if the active users do not satisfy
the required SINR, one user is removed. This user is the
one which provides the highest increase in the maximum
achievable SINR if it is removed. We call this user the worst
user. The proposed algorithm is presented for different sorts
of power constraints.

According to (4) and Theorem 1, in general, the maximum
γ is equal to the inverse of the PF-eigenvalue of a matrix X,

i.e., γ∗ =
1

λ∗(X)
. In a system with a large number of users,

computing the PF-eigenvalue is computationally extensive. In
this case, it is beneficial to use an approximation of the PF-
eigenvalue as follows. When a matrix is raised to a power, its
eigenvalues are raised to the same power as well [10], i.e.,
λ(Xq) = λq(X). On the other hand, the trace of a matrix
is equal to the summation of the eigenvalues of that matrix
[10]; therefore, Tr(Xq) =

∑
i

λq
i . Since the PF-eigenvalue

of an irreducible matrix has the largest norm among all the
eigenvalues of that matrix [10], we can approximate λ∗q(X)
with the Tr(Xq), i.e., λ∗q(X) ≈ Tr(Xq). This approximation
is stronger if the power q is larger. However, the simulation
results show that q = 2 yields a very good approximation of
the exact value in our problem. Therefore, we use

γ∗ ≈ (
Tr(X2)

)− 1
2 (7)

as an approximate value for γ∗. In what follows, we investigate
the problem of user removal for various power constraint
scenarios and give an efficient algorithm for each case.

Case One: No Power Constraint

Based on the previous discussions on the worst link de-
termination and according to (4), when there is no power
constraint, the index of the user to be removed, î, is obtained

as î = arg max
i
{ 1
λ∗(Ai−)

}. If this link is removed and still
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the maximum achievable SINR computed through (4) does
not meet the required SINR, additional links are removed in
a recursive manner till the remaining users become feasible.
This algorithm is called the Removal Algorithm I-A throughout
this paper.

To avoid the complexity of computing PF-eigenvalues in
each iteration, we present the following algorithm which is an
approximate version of algorithm I-A. According to (4) and
(7), for the unconstrained power scenario, we have

γ∗ =
1

λ∗(A)
≈ 1√

Tr(A2)
=

( n∑
i=1

n∑
j=1

aijaji

)− 1
2 . (8)

We define the vector w as w = [wi]n×1, wi =
n∑

j=1

aijaji.

Then we have γ∗ ≈ (
n∑

i=1

wi)−
1
2 . It is easy to show that by

removing user i, 2wi is subtracted from the trace of A2. An
immediate conclusion is that if we want to remove one link to
obtain the largest increase in the maximum achievable SINR,
the best choice (worst link) is to remove the one with the
largest wi. Therefore, î = arg max

i
wi. Based on this result,

an efficient algorithm for gradually removing the users is
presented as follows.

Removal Algorithm I-B

1) Set A as in (1), m = n, R = ∅, and v = [1, 2, . . . , n]′.

2) Find the maximum achievable SINR as γ∗ =
1

λ∗(A)
.

3) If γ∗ ≥ γth, v is the set of active users, stop.

4) Update the vector wm×1 as wi =
m∑

j=1

aijaji.

5) Determine the worst link as î = arg max
i
wi.

6) Set R ← R∪ {vî}, A← Aî− , v← vî− , m← m− 1,
and go to step 2.

Case Two: Constraints on the Power of Individual Transmitters

Assume there is a constraint on the power of individual
transmitters. Based on (6), we design an efficient suboptimal
algorithm to find the maximum cardinality subset of the
users satisfying a minimum SINR requirement. We define the
matrix ψi−(A,

η

pj

, {j}) as the matrix ψ(A,
η

pj

, {j}) whose

ith column and row are removed. Therefore, the worst link is

î = arg max
i

min
j

j �=i

1

λ∗
(
ψi−(A,

η

pj

, {j})) . (9)

The users are removed one by one based on (9) until all of the
active users satisfy the rate requirement. We call this algorithm
the Removal Algorithm II-A.

To reduce the complexity of this algorithm,
we use the following approximation scheme.
According to (6) and (7), we have γ∗ ≈
min

j

(
Tr

(
ψ2(A,

η

pj

, {j})))− 1
2
, which can be rewritten

as γ∗ ≈ min
j

(
(
ηj

pj

)
2

+
n∑

k=1

n∑
l=1

aklalk + 2
n∑

k=1

ηk

pk

ajk

)− 1
2

. We

define the matrix W as W = [wij ]n×n,

wij =




(
ηj

pj

)
2

+
n∑

k=1
k �=i

n∑
l=1
l �=i

aklalk + 2
n∑

k=1
k �=i

ηk

pk

ajk j �= i

0 j = i

According to [11], equation (9) can be simplified to î =
arg min

i
max

j
wij . Based on this result, the following algorithm

is developed.
Removal Algorithm II-B

1) Set A as in (1), p = [pi], m = n, R = ∅, and v =
[1, 2, . . . , n]′.

2) Find the maximum achievable SINR as

γ∗ = min
j

1

λ∗
(
ψ(A,

η

pj

, {j})) .
3) If γ∗ ≥ γth, v is the set of active users, stop.
4) Update Wm×m as

wij =




(
ηj

pj

)
2

+
m∑

k=1
k �=i

m∑
l=1
l �=i

aklalk + 2
m∑

k=1
k �=i

ηk

pk

ajk j �= i

0 j = i

.

5) Determine the worst link as î = arg min
i

max
j
wij .

6) Set R ← R ∪ {vî}, A ← Aî− , v ← vî− , p ← pî− ,
η ← ηî− , and m← m− 1, and go to step 2.

Case Three: Total Transmit Power Constraint

When the total power is constrained by pt, the maximum
achievable SINR is computed through (5). In this case, the
worst user is determined as

î = arg max
i
{ 1

λ∗
(
ψi−(A,

η

pt

, {1, 2, . . . , n}))}. (10)

We call this algorithm the Removal Algorithm III-A. Similar
to the previous discussions, we propose the following low-
complexity algorithm for the user removal with total power
constraint (see [11] for details) .

Removal Algorithm III-B

1) Set A as in (1), m = n, R = ∅, and v = [1, 2, . . . , n]′.
2) Find the maximum achievable SINR as

γ∗ =
1

λ∗
(
ψ(A,

η

pt

, {1, . . . ,m})) .
3) If γ∗ ≥ γth, v is the set of active users, stop.

4) Update the vector wm×1 as wi = (
ηi

pt

)2 +2
m∑

j=1

aijaji +

2
ηi

pt

m∑
j=1

aji + 2
m∑

j=1

ηj

pt

aij + 2
ηi

pt

m∑
j=1
j �=i

ηj

pt

.
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Fig. 1. No Power Constraints, σi
2 = 10−16 ∀i

5) Determine the worst link as î = arg max
i
wi.

6) Set R ← R ∪ {vî}, A ← Aî− , v ← vî− , η ← ηî− ,
m← m− 1, and go to step 2.

IV. NUMERICAL RESULTS

The simulation results are presented for a Rayleigh fading
channel with n = 8. For the results in a cellular network see
[11]. The parameters gij follow an exponential distribution
with mean and variance one for the forward gains, and mean
10−2 and variance 10−4 for the cross gains.

We define Outage Probability as the ratio between the
number of the inactive users to the total number of the users.
This probability shows the percentage of the users that fail to
attain the required QoS. We use this function as a metric to
compare different algorithms, as it is used in [4], [5].

For the case that there is no constraint on the users’ power,
the curves of the outage probability for different user removal
algorithms are depicted in Fig. 1. Since in SMIRA and SRA
algorithms the noise power is considered zero, we assigned
a very small value to the noise power to be able to compare
all algorithms. As shown in Fig. 1, algorithms I-A and I-B
outperform SMIRA and SRA algorithm. Another observation
is that the performance of algorithm I-B is very close to that
of algorithm I-A, while it enjoys much less computational
complexity. In [7], a number of removal algorithms when
the power of transmitters are individually constrained are
proposed. We selected centralized GRN-DCPC to compare
it with our results since according to [7], it outperforms
the other presented algorithms in that work. The simulation
results in Fig. 2 show a significant improvement in the outage
probability of the algorithms II-A and II-B compared to GRN-
DCPC. As depicted in Fig. 3, when the total power is bounded,
the performance of algorithms III-A and III-B is very close
to the optimal result. To the best of our knowledge, there is
no alternative algorithms for the case that the total power is
upper-bounded.
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