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Abstract—In a multiple antenna system with two
transmitters and two receivers, a scenario of data com-
munication, known as the X channel, is studied in which
each receiver receives data from both transmitters.
In this scenario, it is assumed that each transmit-
ter is unaware of the other transmitter’s data (non-
cooperative scenario). This system can be considered
as a combination of two broadcast channels (from
the transmitters’ point of view) and two multi-access
channels (from the receivers’ point of view). Taking
advantage of both perspectives, two signaling schemes
for such a scenario are developed. In these schemes,
some linear filters are employed at the transmitters
and at the receivers which decompose the system
into either two non-interfering multi-antenna broad-
cast sub-channels or two non-interfering multi-antenna
multi-access sub-channels. In addition, these filters are
designed such that the maximum multiplexing gain
(MG) of the system is attained by exploiting the null
spaces of the direct and cross channels. It is shown that
the proposed scenario outperforms other known non-
cooperative schemes in terms of the achievable MG.
In particular, it is shown that for some specific cases,
the achieved MG is the same as the MG of the system
if the full cooperation is provided either between the
transmitters or between the receivers.

I. Introduction

It is well-known that using multiple antennas at both
sides of a wireless channel results in a multiplicative
increase in the overall throughput. This multiplicative
increase in the rate is measured by a metric known as
the multiplexing gain (MG), ρ, defined as the ratio of the
sum-rate of the system, R, over the logarithm of the total
power PT in the high power regime, i.e.

ρ = lim
PT →∞

R

log2(PT )
. (1)

In a point to point multiple-antenna system, with m
transmit and n receive antennas, the achievable MG is
min(m, n). In multi-antenna multi-user systems, when the
full cooperation is provided at least at one side of the links
(either among the transmitters or among the receivers),
the system still enjoys a multiplicative increase in the
throughput with the smaller value of the following two
quantities: (i) The total number of transmit antennas, and
(ii) The total number of receive antennas [1]. However, for
the case that cooperation is not available, the performance

1This work is financially supported by Nortel Networks and by
matching funds from the federal government of Canada (NSERC)
and province of Ontario.

of the system will be deteriorated due to the interference
of the links over each other. For example, in a multiple-
antenna interference channel with two transmitters and
two receivers, each equipped with n antennas, the MG of
the system is n [1].

Extensive research efforts have been devoted to the
multiple-antenna interference channels. In [2], the capac-
ity region of the multiple-input single-output (MISO)
interference channels with strong interference and the
capacity region of the single-input multiple-output (SIMO)
interference channels with very strong interference are
characterized. In [3], the superposition coding technique
is utilized to derive an inner-bound for the capacity of
the multiple-input multiple-output (MIMO) interference
channels. In [1], the MG of the MIMO interference chan-
nels with general configuration for the number of transmit
and receive antennas is derived. In [4], the performance
of the single-antenna interference channels is evaluated,
where the transmitters or receivers rely on the same
channel, used for transmission, to provide cooperation. It
is shown that the resulting MG is still one, i.e., this type
of cooperation is not helpful in terms of MG. In [1], a
cooperation scheme in the shared communication medium
for the MIMO interference channels is proposed and shown
that such scheme does not increase the MG.

In [5], we proposed a new signaling scheme for multiple-
antenna systems with two transmitters and two receivers.
In this scheme, each receiver receives data from both
transmitters. It is assumed that neither the transmitters
nor the receivers cooperate in signaling. In other words,
each transmitter is unaware of the data of the other trans-
mitter. Similarly, each receiver is unaware of the signal
received by the other receiver. This signaling scenario
has several applications. For example, (i) in a wireless
system where two relay nodes are utilized to extend the
coverage area or (ii) in a system where two base stations
provide different services to the users. In [5], we proposed a
signaling scheme over such channels and showed that such
a scheme outperforms the interference channels in terms
of the MG of the system. In [6], we extended the scheme
proposed in [5] to more general configurations for the
number of transmit and receive antennas, and developed
two signaling schemes based on: (i) linear operations at the
receivers and the dirty paper coding at the transmitters,
and (ii) linear operations at the transmitters and the
successive decoding at the receivers. In [7], the idea of
overlapping the interference terms proposed in [6] has been
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adopted to show that the zero-forcing scheme can achieve
the MG of the X channels for some special configurations
of the number of transmit and receive antennas.

In this paper, it is shown that by using some linear filters
at the transmitters and the receivers, the system is decom-
posed to either two non-interfering multi-antenna broad-
cast sub-channels or two non-interfering multi-antenna
multi-access sub-channels. In this scheme, the null spaces
of the direct and cross links are exploited to attain the
maximum MG. The scheme is general and is applicable
for all the configurations of the number of transmit and
receive antennas.

Notation: All boldface letters indicate vectors (lower
case) or matrices (upper case). (.)† denotes transpose-
conjugate operation, and C represents the set of complex
numbers. OCm×n represents the set of all m × n complex
matrices with mutually orthogonal and normal columns.
A⊥B means that every column of the matrix A is or-
thogonal to all columns of the matrix B. The sub-space
spanned by columns of A is represented by Ω(A). The null
space of the matrix A is denoted by N(A). The identity
matrix is represented by I.

II. Channel Model

We consider a MIMO system with two transmitters
and two receivers. Transmitter t, t = 1, 2, is equipped
with mt antennas and receiver r, r = 1, 2, is equipped
with nr antennas. This configuration of antennas is shown
by (m1, m2, n1, n2). For simplicity and without loss of
generality, it is assumed that m1 ≥ m2 and n1 ≥ n2.

Assuming flat fading environment, the channel between
transmitter t and receiver r is represented by the channel
matrix Hrt, where Hrt ∈ Cnr×mt . The received vector
yr ∈ Cnr×1 by receiver r, r = 1, 2, is given by,

y1 = H11s1 + H12s2 + w1, (2)
y2 = H21s1 + H22s2 + w2,

where st ∈ Cmt×1 represents the transmitted vector by
transmitter t. The vector wr ∈ Cnr×1 is a white Gaussian
noise with zero mean and identity covariance matrix. The
power of st is subject to the constraint Tr(E[sts

†
t ]) ≤ Pt,

t = 1, 2. PT denotes the total transmit power, i.e. PT =
P1 + P2.

In the proposed scenario, each transmitter sends two
sets of data streams. The transmitter t sends µ1t data
streams to receiver 1 and µ2t data streams to receiver 2.

III. Decomposition Schemes

In what follows, we propose two signaling schemes. In
the first scheme, by using linear transformations at the
transmitters and the receivers, the system is decomposed
into two non-interfering broadcast sub-channels. Then, we
can use the known signaling schemes over the resulting
broadcast sub-channels.

As a dual of the first scheme, in the second scheme, lin-
ear transformations are utilized to decompose the system
into two non-interfering multi-access sub-channels.

It is assumed that m1 < n1 + n2 and n1 < m1 + m2.
Otherwise, if m1 ≥ n1 + n2, the maximum MG of n1 +
n2 is achievable by a simple broadcast channel including
the first transmitter and the two receivers. Similarly, if
n1 ≥ m1 + m2, then the maximum MG of m1 + m2 is
achievable by a simple multi-access channel including the
two transmitters and the first receiver.

A. Decomposition of the System into Two Broadcast Sub-
Channels

As depicted in Fig. 1, in this scheme, the transmit filter
Qt ∈ OCMt×(µ1t+µ2t) is employed at transmitter t, t = 1, 2.
Therefore, the transmitted vectors st, t = 1, 2, are equal
to

st = Qts̃t, (3)

where s̃t ∈ C(µ1t+µ2t)×1 contains µ1t data streams for
receiver one and µ2t data streams for receiver two. The
transmit filters Qt, t = 1, 2, have two functionalities:
(i) Confining the transmit signal from transmitter t to
a (µ1t + µ2t)-dimensional sub-space, which provides the
possibility of decomposing the system into two broadcast
sub-channels by using linear filters at the receivers, (ii)
Exploiting the null spaces of the channel matrices to
achieve the highest MG.

At each receiver, two parallel receive filters are em-
ployed. The received vector y1 is passed through the filter
Ψ†

11, which is used to null out the signal coming from
the second transmitter. The µ11 data streams, sent by
transmitter one intended to receiver one, can be decoded
from y11, the output of Ψ†

11. Similarly, to decode µ12

data streams, sent by transmitter two to receiver one,
the received vector y1 is passed through the receive filter
Ψ†

12, which is used to null out the signal coming from
transmitter one. Receiver two has a similar structure with
parallel receive filters Ψ†

21 and Ψ†
22. Later, it is shown that

if the numbers of data streams µrt, r, t = 1, 2, satisfy a set
of inequalities, then it is possible to deign Qt and Ψrt to
meet the desired features explained earlier. It means that
the system is decomposed into two non-interfering MIMO
broadcast sub-channels (see Fig. 2).

Next, we explain how to select the design parameters
including the number of data streams µrt, r, t = 1, 2 and
the transmit/receive filters. The primary objective is to
prevent the saturation of the rate of each stream in the
high SNR regime. In other words, the MG of the system
is µ11 + µ12 + µ21 + µ22.

The integer variables ζ11, ζ21, ζ12, and ζ22 are defined as
the dimensions of Ω(H12Q2), Ω(H22Q2), Ω(H11Q1), and
Ω(H21Q1), respectively.

The design scheme varies depending on (m1, m2, n1, n2).
In the sequel, we categorize the design scheme into the four
general cases depending on (m1, m2, n1, n2). To facilitate
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the derivations, we use the auxiliary variables m′
t, n′

r, and
µ′

rt, for r, t = 1, 2. As will be explained later, for each case,
m′

t and n′
r are computed directly as a function of mt and

nr for r, t = 1, 2. Then, µ′
rt, r, t = 1, 2, are selected such

that the following constraints are satisfied,

µ′
11 : µ′

11 + µ′
12 + µ′

22 ≤ n′
1, (4)

µ′
12 : µ′

12 + µ′
11 + µ′

21 ≤ n′
1, (5)

µ′
22 : µ′

22 + µ′
21 + µ′

11 ≤ n′
2, (6)

µ′
21 : µ′

21 + µ′
22 + µ′

12 ≤ n′
2, (7)

µ′
11 + µ′

21 ≤ m′
1, (8)

µ′
22 + µ′

12 ≤ m′
2. (9)

Each of the first four inequalities corresponds to one of
the parameters µ′

rt, r, t = 1, 2, in the sense that if µ′
rt,

r, t = 1, 2, is zero, the corresponding inequality is removed
from the set of constraints. After choosing µ′

rt, r, t = 1, 2,
for each case, µrt, r, t = 1, 2, are computed as function of
µ′

rt, r, t = 1, 2, as will be explained later.
Note that we have many options to choose µ′

rt, r, t =
1, 2. It is shown that as long as the integers µ′

rt, r, t = 1, 2,
satisfy (4) to (9), the system achieves the MG of µ11 +
µ12 + µ21 + µ22. However, it turns out that to achieve the
highest MG, µ′

rt, r, t = 1, 2, should be selected such that
µ′

11 + µ′
12 + µ′

21 + µ′
22 is maximum.

In what follows, for each of the four cases, we explain:
(i) How to compute the auxiliary variables m′

t and n′
r as

a function of mt and nr, r, t = 1, 2, (ii) After choosing the
auxiliary variables µ′

rt, r, t = 1, 2, satisfying (4) to (9), how
to compute µrt, r, t = 1, 2, (iii) How to choose the transmit
filters Qt, t = 1, 2, and finally, (iv) How to compute ζrt,
r, t = 1, 2.

Having completed these steps, the procedure of com-
puting the receive filters Ψ†

rt, r, t = 1, 2, is similar for all
cases. Later, we will show that this scheme decomposes the
system into two non-interfering broadcast sub-channels.

Scheme I – Case I: n1 ≥ n2 ≥ m1 ≥ m2

In this case, n′
r = nr, r = 1, 2, and m′

t = mt, t =
1, 2. Using the above parameters, we choose µ′

rt, r, t =
1, 2, subject to (4)-(9) constraints. In this case, µrt, the
number of data streams sent from transmitter t to receiver
r, is obtained by µrt = µ′

rt, r, t = 1, 2. In addition, Q1

and Q2 are randomly chosen from OCm1×(µ11+µ21) and
OCm2×(µ12+µ22), respectively. Regarding the definition of
ζrt, r, t = 1, 2, it is easy to see that ζ11 = µ12 + µ22,
ζ12 = µ11 + µ21, ζ21 = µ12 + µ22, and ζ22 = µ11 + µ21.

Scheme I – Case II: n1 ≥ m1 > n2 ≥ m2

In this case, we have, n′
1 = n1 + n2 − m1, n′

2 = n2,
m′

1 = n2, and m′
2 = m2. In addition, µ11 = µ′

11 + m1 −
n2, µ12 = µ′

12, µ21 = µ′
21, and µ22 = µ′

22. Furthermore,
ζ11 = µ12 + µ22, ζ12 = µ11 + µ21, ζ21 = µ12 + µ22, and
ζ22 = µ′

11 + µ21. Q1 is chosen as Q1 = [Σ1,Σ2] where,

Σ1 ∈ OCm1×(n1−m2), Σ1 ∈ N(H21),

Σ2 = OCm1×(µ′
11+µ21), Σ2⊥Σ1.

Q2 is randomly chosen from OCm2×(µ12+µ22).
In this case, we take advantage of m1−n2 dimensions of

N(H21), to exclusively send data from transmitter one to
receiver one, without imposing any interference on receiver
two. Therefore, transmitter one and receiver one effectively
lose m1 − n2 of the available space dimensions. Conse-
quently, the resulting system is equivalent to a system with
effective number of antennas as (m′

1, m
′
2, n

′
1, n

′
2) =

(
m1 −

{m1−n2}, m2, n1−{m1−n2}, n2

)
. The equivalent system

with (m′
1, m

′
2, n

′
1, n

′
2) antennas satisfies the condition of

the first case, i.e. m′
1 ≥ m′

2 ≥ n′
1 ≥ n′

2. Therefore, it is
categorized in the same category as the previous case.

Scheme I – Case III: n1 ≥ m1 > m2 ≥ n2 and n1 +
n2 ≥ m1 + m2

In this case, we have n′
1 = n1 +2n2−m1−m2, n′

2 = n2,
m′

1 = n2, and m′
2 = n2. In addition, µ11 = µ′

11 + m1 − n2,
µ12 = µ′

12+m2−n2, µ21 = µ′
21, and µ22 = µ′

22. It is easy to
see that ζ11 = µ12 + µ22, ζ12 = µ11 + µ21, ζ21 = µ′

12 + µ22,
and ζ22 = µ′

11 +µ21. Q1 is chosen as Q1 = [Σ1,Σ2], where

Σ1 ∈ OCm1×(m1−n2), Σ1 ∈ N(H21),

Σ2 = OCm1×(µ′
11+µ21), Σ2⊥Σ1.

Q2 is chosen as Q2 = [Σ3,Σ4] , where

Σ3 ∈ OCm2×(m2−n2), Σ3 ∈ N(H22),

Σ4 = OCm2×(µ′
12+µ22), Σ4⊥Σ3.

Scheme I – Case IV: m1 ≥ n1 > n2 ≥ m2 and n1 +
n2 ≥ m1 + m2

In this case, we have n′
1 = n1 + n2 − m1, n′

2 = n1 +
n2 − m1, m′

1 = n1 + n2 − m1, and m′
2 = m2. In addition,

µ11 = µ′
11 +m1 −n2, µ12 = µ′

12, µ21 = µ′
21 +m1−n1, and

µ22 = µ′
22. Furthermore, ζ11 = µ12 + µ22, ζ12 = µ11 + µ′

21,
ζ21 = µ12 + µ22, and ζ22 = µ′

11 + µ21. In addition, Q1 is
chosen as Q1 = [Σ1,Σ2] where,

Σ1 ∈ OCm1×(m1−n2+m1−n2), Σ1 ∈ N(H21) ∪ N(H11),

Σ2 = OCm1×(µ′
11+µ′

21), Σ2⊥Σ1.

Q2 is randomly chosen from OCm2×(µ12+µ22).
The next steps of the algorithm are the same for all of

the aforementioned cases. We define

H̃rt = HrtQt, r, t = 1, 2. (10)

Ψrt ∈ OCNt×(Nt−ζrt), r, t = 1, 2, are chosen such that
Ψ11⊥H̃12, Ψ12⊥H̃11, Ψ21⊥H̃22, and Ψ22⊥H̃21. Accord-
ing to the definition of ζrt, one can always choose such
matrices. Clearly, any signal sent by transmitter one does
not pass through the filters Ψ†

12 and Ψ†
22. Similarly, any

signal sent by transmitter two does not pass through the
filters Ψ†

21 and Ψ†
11.

We define Hrt = Ψ†
rtH̃rt, wrt = Ψ†

rtwr, and yrt =
Ψ†

rtyr, for r, t = 1, 2. Therefore, the system is decom-
posed into two non-interfering broadcast sub-channels.
The MIMO broadcast sub-channel viewed from transmit-
ter 1 is modeled by y11 = H11s̃1 + w11 and y21 =
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H21s̃1+w21, and the MIMO broadcast sub-channel viewed
from transmitter two is modeled by y12 = H12s̃2+w12 and
y22 = H22s̃2 + w22 (see Fig. 2).

Ψ†
22

H11

H22

H12

H21

Ψ†
12

Ψ†
21

Ψ†
11

y1

y2

w1

Q2

Q1

w2

y21

y22

y12

y11

s̃1

s̃2

Fig. 1. Scheme One: Decomposition of the System into Two
Broadcast Sub-Channels

Ψ†
11

H22 Ψ†
22

Ψ†
12

H21 Ψ†
21

w12

w22

s̃1

s̃2

w11

w21

y21

y12

y22

y11

H12

H11

Q1

Q2

Fig. 2. Scheme One: The Resulting Non-Interfering MIMO Broad-
cast Sub-Channels

B. Scheme 2 - Decomposition of the System into Two
Multi-access Sub-Channels

This scheme is indeed the dual of the scheme one,
detailed in subsection III-A. In this scheme, the system is
decomposed into two non-interfering MIMO multi-access
sub-channels. ,Similar to the scheme one, this scheme is
designed for four cases. Regarding lack of space, we do
not explain the scheme two here. The complete detail of
the scheme two is provided in [8]. The eight cases, listed for
scheme one and two, cover all the possible configurations
of the number of transmit and receive antennas.

IV. Performance Evaluation

In what follows, the MG of the X channel is studied.
In addition, for some special cases, a metric known as
the power offset, is evaluated. For the proof of the results
please refer to [8].

Theorem 1 The MIMO X channel with (m1, m2, n1, n2)
antennas achieves the MG of µ11 + µ21 + µ12 + µ22, if µrt,
r, t = 1, 2, are selected according to the schemes presented
in Section III.

For example, the MGs of a X channels with (3, 3, 3, 3),
(4, 3, 4, 3), (9, 5, 8, 7) antennas are 4, 5, and 11 respec-
tively, while the MGs of the interference channels with the

same number of antennas are respectively 3, 4, and 9. In
addition, in the X channel with (� 1

2� 4n
3 �	, � 1

2� 4n
3 ��, n, n)

or (n, n, � 1
2� 4n

3 �	, � 1
2� 4n

3 ��) antennas, the MG of � 4n
3 � is

achievable, which is the MG of the system where full-
cooperation between transmitters or between receivers is
provided. However, it does not mean that the system does
not gain any improvement by cooperation. The gain of
the cooperation is reflected in a metric known as the
power offset. The power offset is the negative of the zero-
order term in the expansion of the sum-rate, normalized
with MG, with respect to the total power [9], i.e., R =
ρ(log2(PT )−L∞)+o(1), where PT denotes the total power,
and L∞ denotes the power offset in 3dB unit. In this
definition, it is assumed that the noise is normalized as
in the system model (2).

Theorem 2 In an X channel with (m1, m2, n1, n2) =
(2k, 2k, 3k, 3k) antennas, where the entries of channel
matrices have Rayleigh distribution, if the decomposition
scheme is employed, the power offset is equal to,

L∞(m1, m2, n1, n2) = L∞(2k, 2k) − 1
2

log2

(
α(1 − α)

)
,

in 3dB units, where P1 = αPT , P2 = (1−α)PT , 0 ≤ α ≤ 1,
and L∞(m, m) = log2 m + 1

ln(2)

(
0.5772 + 1 − ∑m

i=1 i−1
)
.

According to this theorem, the power offset of an X
channel with (2, 2, 3, 3) and α = .5 is 9.3341 dB, while the
power offset of a MIMO system (see [9]) with 4 transmit
and 6 receive antennas is 3.1666 dB. Therefore, although
cooperation does not increase the MG of the system (both
systems have MG of 4), but it improves the performance
of the system about 6.2 dB in high SNR.
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