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Abstract— The problem of channel code design for the M -ary
input AWGN channel with additive discrete interference where
the sequence of i.i.d. interference symbols is known causally at
the encoder is considered. The code design criterion at high SNR
is derived by defining a new distance measure between the input
symbols of the Shannon’s associated channel. For the case of
binary-input channel, it is shown that it is sufficient to use only
two symbols of the associated channel in the encoding as long
as the distance spectrum of the code is concerned. This reduces
the problem of code design for the binary-input AWGN channel
with known interference to the design of binary codes for the
AWGN channel with maximum Hamming distance.

I. INTRODUCTION

Information transmission over channels with known inter-
ference at the transmitter has recently found applications in
various communication problems such as digital watermark-
ing [1] and broadcast schemes [2]. A remarkable result on
such channels was obtained by Costa who showed that the
capacity of additive white Gaussian noise (AWGN) channel
with additive Gaussian i.i.d. interference, where the sequence
of interference symbols is known non-causally at the trans-
mitter, is the same as the capacity of AWGN channel [3].
Therefore, the interference does not incur any loss in the
capacity. This result was extended to arbitrary (random or
deterministic) interference in [4] by using a scheme based
on multi-dimensional lattice quantization. The result obtained
by Costa does not hold for the case that the sequence of
interference symbols is known causally at the transmitter.

Following Costa’s “Writing on Dirty Paper” famous title [3],
when the interference is known non-causally at the transmitter,
the channel is refereed to as “dirty paper” channel.

Recently, dirty paper coding has emerged as a building
block in multiuser communication. In particular, there has
been considerable research studying the application of dirty
paper coding to broadcast over multiple-input multiple-output
(MIMO) channels [2].

These developments motivate finding realizable dirty paper
coding techniques. Building upon [4], Erez and ten Brink [5]
proposed a practical code design based on vector quantization
via trellis shaping and using powerful channel codes. Due to
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complexity of implementation, their scheme uses the knowl-
edge of interference up to six future symbols rather than the
whole interference sequence. Bennatan et al. [6] gave another
design based on superposition coding and successive cancela-
tion decoding. Their design uses a trellis coded quantizer with
memory nine and LDPC as channel code.

The schemes that use the interference (or the host signal in
watermarking applications) sequence up to the current symbol
can be used as a low-complexity solutions for the dirty paper
problem. For example, in [1], scalar lattice quantization is
proposed for data-hiding even though in that context, the host
signal in clearly known non-causally.

In this paper, we consider the problem of code design for
the M -ary input AWGN channel with additive causally-known
discrete interference. The discrete model for interference is
more appropriate in many applications. For example, in the
MIMO broadcast channel, the interference caused by the other
users is discrete rather than continuous.

Our design does not rely on the suboptimal (in terms of
capacity) scheme of scalar lattice quantization for the causally
known interference. Instead, we consider code design for
the Shannon’s associated channel with all possible mappings
from the interference alphabet to the channel input alphabet.
Another distinction between our work and the related research
in the field is that we consider a finite channel input alphabet
rather than a continuous one.

This paper is organized as follows. In the next section,
we summarize Shannon’s work on channels with causal side
information at the transmitter. In section III, we introduce
the channel model. In section IV, we derive the code design
criterion for AWGN channel with causally-known discrete
interference at the encoder. In section V, we consider channels
with binary input for which we show that the design criterion
derived in section IV reduces to maximizing the Hamming
distance. We conclude this paper in section VI.

II. CHANNELS WITH SIDE INFORMATION AT THE

TRANSMITTER

Channels with known interference at the transmitter are
special case of channels with side information at the trans-
mitter which were considered by Shannon [7] in the causal
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Fig. 1. SD-DMC with state information at the encoder.

State

Channel

Generator

DecoderEncoder Precoder
x

s

p(y|x, s)

s
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Fig. 2. The associated regular DMC.

knowledge setting and by Gel’fand and Pinsker [8] in the non-
causal knowledge setting.

Shannon considered a discrete memoryless channel (DMC)
whose transition matrix depends on the channel state. A state-
dependent discrete memoryless channel (SD-DMC) is defined
by a finite input alphabet X , a finite output alphabet Y , and
transition probabilities p(y|x, s), where the state s takes on
values in a finite alphabet S. The block diagram of a state-
dependent channel with state information at the encoder is
shown in fig. 1.

In the causal knowledge setting, the encoder maps a mes-
sage w into Xn using functions

xi = fi (w, s1, . . . , si) , 1 ≤ i ≤ n. (1)

Shannon showed that it is sufficient to consider the coding
schemes that use only the current state symbol in the encoding
process to achieve the capacity of an SD-DMC with i.i.d. state
sequence known causally at the encoder [7].

The SD-DMC can be used in the way shown in fig. 2
to transmit information. A precoder is added in front of the
SD-DMC. A message w is mapped into T n, where T is
a new alphabet. The output of the precoder ranges over X
and depends on the current interference symbol. The regular
(without state) channel from T to Y is defined by the transition
probabilities

p(y|t) =
∑
s∈S

p(s)p(y|x = t(s), s), (2)

where p(s) is the probability of the state s. The DMC defined
in (2) is called the associated channel. The codes for the
associated channel describe the codes for the SD-DMC that
use only the current state symbols in the encoding operation.
In order to describe all coding schemes for the SD-DMC that
use only the current state symbol in the encoding process, T
must include all functions from the state alphabet to the input
alphabet of the state-dependent channel. There are a total of
|X ||S| of such functions, where |.| denotes the cardinality of
a set. Any of the functions can be represented by a |S|-tuple
(x1, x2, . . . , x|S|) composed of elements of X , implying that
the value of the function at state s is xs, s = 1, 2, . . . , |S|.

III. THE CHANNEL MODEL

We consider data transmission over the channel

Y = X + S + N, (3)

where X is the channel input, which takes on values in a fixed
real constellation X , Y is the channel output, N is additive
white Gaussian noise with power σ2, and the interference S is
a discrete random variable that takes on values in a real finite
set S. The sequence of i.i.d. interference symbols is known
causally at the encoder.

The above channel can be considered as a special case
of the state-dependent channel considered by Shannon with
one exception, that the channel output alphabet is continuous.
In our case, the likelihood function fY |X,S(y|x, s) is used
instead of the transition probabilities. We denote the input to
the associated channel by T , which can be considered as a
function from S to X . We denote the cardinality of X and S
by M and Q, respectively. Then the cardinality of T will be
MQ, which is the number all possible functions from S to X .

The likelihood function for the associated channel is given
by

fY |T (y|t) =
∑
s∈S

p(s)fY |X,S(y|t(s), s)

=
∑
s∈S

p(s)fN (y − t(s) − s), (4)

where p(s) is the probability of the interference symbol s and
fN denotes the pdf of the Gaussian noise N .

IV. THE CODE DESIGN CRITERION

Any coding scheme for the associated channel defined by
(4) translates to a coding scheme for the actual channel defined
by fY |X,S(y|x, s). We use the pairwise error probability (PEP)
approach to derive the code design criterion at high SNR.
Suppose that the messages w1 and w2 are encoded to tn1 ≡
t1t2 . . . tn and rn

1 ≡ r1r2 . . . rn, respectively, where ti’s and
ri’s belong to the alphabet T . Using maximum likelihood
decoding, the probability of the event that message w2 is
decoded given message w1 was sent is given by

Pr{e|w1}=
∑
sn
1

p(sn
1 )Pr{e|w1, s

n
1}

=
∑
sn
1

p(sn
1 )Pr {f(yn

1 |tn1 ) < f(yn
1 |rn

1 )|w1, s
n
1} ,

=
∑
sn
1

p(sn
1 )Pr

{
n∏

i=1

f(yi|ti) <

n∏
i=1

f(yi|ri)|w1, s
n
1

}

=
∑
sn
1

p(sn
1 )Pr

{
n∏

i=1

∑
s∈S

p(s)fN (yi − ti(s) − s) <

n∏
i=1

∑
s∈S

p(s)fN (yi − ri(s) − s)|w1, s
n
1

}
. (5)

where sn
1 ≡ s1 · · · sn denotes the interference sequence during

the transmission. It can be shown that the value of PEP at high
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SNR is given by

PEP ∝ Q

(√∑n
i=1 d2

SI(ti, ri)
2σ

)
, (6)

where dSI(t, r), the distance between two input symbols of
the associated channel t and r, is defined as

dSI(t, r) = min
s1,s2∈S

|t(s1) + s1 − r(s2) − s2|. (7)

It is worth mentioning that the distance measure defined
in (7) does not satisfy the triangle inequality. For example,
consider a channel with X = S = {−1, +1}. Then the
four symbols of the associated channel can be represented as
t = (−1,−1), u = (−1, +1), v = (+1,−1), w = (−1,−1).
It is easy to check that the distances between all pairs of the
symbols are zero except for dSI(u, v) which is 2. Therefore,
the triangle inequality does not hold for dSI(t, u), dSI(t, v),
and dSI(u, v).

V. THE BINARY CHANNEL

Any code designed for the regular associated channel trans-
lates to a code for the actual channel with known interference
at the encoder. The alphabet size of the associated channel is
MQ. However, we might not need to use all the symbols of
the alphabet in the encoding scheme as long as the distance
spectrum of the code is concerned.

For example, we consider the case where M = 2, i. e., when
the channel accepts binary input. Then the size of T will be
2Q. Let t and t′ be two symbols in T with the maximum
distance among all pairs of symbols in T . It can be shown
that there exist two symbols in T with nonzero distance [9].
Therefore, dSI(t, t′) > 0. Since dSI(t, t′) > 0, we have t(s) �=
t′(s), ∀s ∈ S, otherwise, from (7), dSI(t, t′) = 0. We choose
an arbitrary interference symbol s0 ∈ S to partition T as
follows. We put r ∈ T in T1 if r(s0) = t(s0), otherwise (i.e.,
r(s0) = t′(s0)) put r in T2. Note that the distance between
any two symbols in Tj is zero, j = 1, 2.

Suppose that a codebook is designed for the binary channel
with codewords composed of elements of T . We construct a
new codebook from the current one by replacing the elements
of the codewords that belong to T1 by t and replacing the
elements of the codewords that belong to T2 by t′. Since the
codewords of the new codebook are composed of just two
elements, we may call the new code a binary code.

Theorem 1: The distance spectrum of the binary code con-
structed by the procedure described above is at least as good
as the distance spectrum of the old code.

Proof: Consider any two codewords (t1, . . . , tn) and
(r1, . . . , rn) from the old codebook, where ti, ri ∈ T . The
squared distance between the two codewords is equal to∑n

i=1 d2
SI(ti, ri). For any i ∈ {1, 2, . . . , n}, we consider two

cases:
Case 1: ti and ri belong to the same partition. Then

dSI(ti, ri) = 0, so the replacement will not change the
distance.

Case 2: ti and ri belong to different partitions. Then since
dSI(ti, ri) ≤ dSI(t, t′), the replacement will not decrease the
distance.

According to theorem 1, as long as the distance spectrum of
the code in concerned, it is sufficient to use just two symbols
of T with maximum distance, namely t and t′, in the encoding
for a binary channel. Naturally, we can define the Hamming
distance between any two codewords, which is the number
of positions at which two codewords are different. Consider
two codewords c1 = (t1, . . . , tn) and c2 = (r1, . . . , rn) with
elements from the binary set {t, t′}. The squared distance
between these codewords is given by

n∑
i=1

d2
SI(ti, ri) = d2

SI(t, t
′)dH(c1, c2), (8)

where dH(c1, c2) is the Hamming distance between c1 and
c2. Therefore, the problem of designing codes for the binary
channel where the interference sequence is known causally at
the encoder reduces to the design of codes for the interference-
free binary-input AWGN channel. The only difference is that
the coding is over the set {t, t′} rather than {0, 1}.

If we were to use a binary code for the interference-free
binary channel with the input alphabet X = {x, x′}, then the
Euclidean distance between any two codewords c1 and c2 of
length n for the interference-free channel would be

d2
E(c1, c2) = (x − x′)2dH(c1, c2), (9)

where dE denotes the Euclidean distance.
Using (8) and (9), we can compare the performance of a

zero-one binary code for the binary channel with causal side
information at the encoder with the same zero-one binary code
for the interference-free binary channel. In the case of channel
with side information, zero and one are mapped to t and t′,
and in the case of the interference-free channel, zero and one
are mapped to x and x′, respectively. Note that t and t′ are
functions from the interference alphabet S to the channel input
alphabet X = {x, x′}.

It is clear from (7) that

dSI(t, t′) ≤ |x − x′|. (10)

Therefore, using (8) and (9), the distance spectrum of the
code for the interference-free channel is at least as good as
the distance-spectrum of the code for the channel with known
interference at the encoder. Of course, this is not surprising.
However, it is interesting to search for the conditions that (10)
is satisfied with equality.

If (10) is satisfied with equality, the distance spectrum of
the two codes will be the same. In particular, the slope of
error probability curves at high SNR (which corresponds to the
minimum distance of the codebook) with maximum likelihood
decoding will be the same for the two cases. In other words,
if (10) is satisfied with equality, the knowledge of interference
at the encoder enables us to achieve the same performance as
the interference-free case at high SNR.
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Fig. 3. Error probability vs. SNR for the binary input AWGN channel
with/without (known) interference. X = S = {−1, +1}.

Theorem 2: dSI(t, t′) = |x − x′| if and only if

min
s1 �=s2∈S

|s1 − s2| ≥ |x − x′|. (11)

Proof: If min |s1 − s2| ≥ |x − x′|, then we may take
t = (x, x′, x, . . .) and t′ = (x′, x, x′, . . .). Then it is easy to
check that dSI(t, t′) = |x − x′|.

For the other direction, suppose that min |s1−s2| < |x−x′|.
We will show that dSI(t, t′) < |x−x′|. Suppose that s, s′ ∈ S
achieve the minimum of |s1 − s2| and t1 and t2 arbitrary
elements of T . Then, we consider two possibilities:

Case 1: t1(s) = t1(s′) = x and t2(s) = t2(s′) = x′. Then
|t1(s′) + s′ − t2(s) − s| < |x − x′|.

Case 2: t1(s) = x, t1(s′) = x′ and t2(s) = x′, t2(s′) = x.
Then |t1(s) + s − t2(s′) − s′| < |x − x′|.

As an example, consider a binary channel with X = S =
{−1, +1} and with equiprobable interference symbols. The
two symbols with the maximum distance in the input alphabet
of the associated channel are t = (−1, +1), t′ = (+1,−1).
We have simulated the error probability performance of the
above channel without error control coding and with maximum
likelihood decoding. The error probability vs. SNR for the
above channel is plotted in fig. 3. The error probability curve
for the interference-free binary channel with X = {−1, +1}
is plotted for comparison. For the interference-free channel,
Pe = Q( 1

σ ). It is easy to check that for this example,
dSI(t, t′) = |x − x′| = 2. As it can be seen, the curves have
the same slopes as expected at high SNR. Note that the SNR
coordinate in fig. 3 is not in dB. Note that if the interference
were not known at the encoder, the error probability curve
would reach an error floor of 1

4 .
Another example is illustrated in fig. 4. For this example,

X = {−1, +1},S = {−1, 0, +1}. We can find by inspection
two symbols of the associated channel input alphabet with the
maximum distance as t = (−1,−1, +1), t′ = (+1, +1,−1).
Here, we have dSI(t, t′) = 1 < |x − x′| = 2. Therefore, the
error probability curve for the channel with known interference
at the encoder does not decay as fast as the error probability
curve for the interference-free channel.
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Fig. 4. Error probability vs. SNR for the binary input AWGN channel
with/without (known) interference. X = {−1, +1},S = {−1, 0, +1}.

VI. CONCLUSION

In this paper, we derived the code design criterion at high
SNR for the M -ary input AWGN channel with additive Q-
level interference, where the sequence of interference symbols
is known causally at the encoder. The code design is over an
input alphabet T of size MQ. We defined a new distance
measure between the symbols of T . The performance of the
codes at high SNR is governed by the minimum distance
between the codewords with elements from T . We may not
need to use all symbols of T in the encoding. In particular,
we showed that for the case M = 2, as long as the distance
spectrum of the code is concerned, we just need to use two
symbols of T with the maximum distance among all pairs of
symbols. This reduces the code design problem for our channel
to code design for regular binary-input AWGN channels which
has been well researched in the past fifty years.
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