
Throughput and Fairness maximization in Wireless
Networks

Alireza Bayesteh, Mehdi Ansari Sadrabadi, and Amir K. Khandani
Coding and Signal Transmission (CST) Lab. (www.cst.uwaterloo.ca)

Dept. of Elec. and Comp. Eng., University of Waterloo
Waterloo, ON, Canada, N2L 3G1

e-mail: {alireza, mehdi, khandani}@cst.uwaterloo.ca

Abstract— In this paper, a single-antenna broadcast channel
with large (K) number of users is considered. It is assumed
that all users have a hard delay constraint D. We propose
a scheduling algorithm for maximizing the throughput of the
system, while satisfying the delay constraint for all users. It is
proved that by using the proposed algorithm, it is possible to
achieve the maximum throughput and minimum delay in the
network, simultaneously, in the asymptotic case of K → ∞.
We introduce a new notion of fairness in the network, called
“Minimum Average Throughput”, and prove that the proposed
algorithm maximizes the minimum average throughput in a
broadcast channel. Finally, the proposed algorithm is generalized
for MIMO Broadcast Channels (MIMO-BC).

I. INTRODUCTION

With the development of personal communication services,
one of the major concerns in supporting data applications is
providing quality of service (QoS) for all subscribers. In most
real-time applications, high data rates and small transmission
delays are desired. Most data-scheduling schemes proposed for
current systems have concentrated on the system throughput
by exploiting multiuser diversity [1]–[5]. In cellular networks,
by applying multiuser diversity, the time-varying nature of the
fading channel is exploited to increase the spectral efficiency
of the system. It is shown that transmitting to the user with
the highest signal to noise ratio (SNR) at a time provides the
system with maximum sum-rate throughput [6]. The oppor-
tunistic transmission is proposed in Qualcomm’s High Data
Rate (HDR) system [2].

Although applying multiuser diversity through the scheme
in [6] achieves the maximum system throughput, QoS de-
mands, including fairness and delay constraints, provoke de-
signing more appropriate scheduling schemes. The schemes
that consider delay constraints have been studied extensively in
[1], [7]–[13]. In [10], the authors propose an algorithm which
keeps a balance between the capacity maximization, delay, and
outage probability in a multiple access fading channel. The
tradeoff between the average delay and the average transmit
power in fading environments is analyzed in [7]. In [8], [11],
authors propose scheduling metrics that combine multiuser
diversity gain with the delay constraints. In [9], the scheduling
scheme is designed based on maximizing the effective capacity
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[14] which is characterized by data rate, delay bound, and
delay-bound violation probability triplet. The throughput-delay
tradeoff of the multicast channel is analyzed for different
schemes in a single cell system [13]. In [12], the delay is
defined as the minimum number of channel uses that guaran-
tees all the users successfully receive m packets. Reference
[12] studies the statistical properties of the underlaying delay
function. However, the delay constraint is assumed to be soft,
meaning that this scheme aims to minimize the total average
network delay and there is not any delay constraints for the
individual users.

In this work, we consider a hard delay constraint D for
each user. We define a dropping event as the event that there
exists a user who does not meet the desired delay constraint.
This delay constraint can be enforced by the application, or
the physical limitations (e.g., buffer size). In this paper, we
propose a scheduling scheme for maximizing the throughput of
the system, while satisfying the delay constraint for all users. It
is proved that by using the proposed algorithm, it is possible
to achieve the maximum throughput and minimum delay in
the network, simultaneously, in the asymptotic case of K →
∞. We introduce a new notion of fairness in the network,
called “Minimum Average Throughput”, and prove that the
proposed algorithm is capable of maximizing the Minimum
Average Throughput in a broadcast channel.

The rest of the paper is organized as follows. In section II,
the system model is introduced and the proposed algorithm
is described. Section III is devoted to the asymptotic analysis
of the proposed algorithm. Section IV described the general-
ization of the proposed algorithm for MIMO-BC, and finally,
section V concludes the paper.

Throughout this paper, for any functions f(n) and g(n),
f(n) = o(g(n)) is equivalent to limn→∞

∣∣∣ f(n)
g(n)

∣∣∣ = 0, f(n) =

O(g(n)) is equivalent to limn→∞

∣∣∣ f(n)
g(n)

∣∣∣ < ∞, and f(n) =

ω(g(n)) is equivalent to limn→∞
f(n)
g(n) = ∞.

II. SYSTEM MODEL AND PROPOSED ALGORITHM

In this paper, a downlink environment in which a single-
antenna Base Station (BS) communicates with a large number
(K) single-antenna users, is considered. We assume a ho-
mogeneous network, where the channel between each user
and the BS is modelled as a zero-mean complex Gaussian
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random variable (Rayleigh fading). The received signal at the
kth terminal can be written as

yk = hkx + nk, (1)

where x denotes the transmitted signal by the BS, which is
assumed to be Gaussian with the power constraint P , i.e.,
E{|x|2} ≤ P , hk ∼ CN (0, 1) denotes the channel coefficient
between the BS and the kth terminal, and nk ∼ CN (0, 1) is
AWGN. The BS serves one user during each frame. The size
of the frames is assumed to be fixed. The channel coefficients
are assumed to be constant for the duration of a frame (block
fading model). The frame itself is assumed to be long enough
to allow communication at rates close to the capacity.

It is assumed that the users have delay constraint D. In other
words, the delay between two consequetive received packets
should not be greater than the duration of D frames. Oth-
erwise, the transmitted packet will be dropped. The network
dropping event, denoted by B, is defined as the event that
dropping occurs for any user in the network. We define a
parameter ν for each user, which denotes the expiry countdown
of that user’s packet, i.e., the remaining time to the expiration
of the packet. ν is expressed in terms of an integer multiple
of the frame length. At the end of each frame, the expiry
countdown of each user is decremented by one, except the
user who is served during that frame. For this user, the expiry
countdown is set to D at the start of the next frame. Therefore,
for all users ν ≤ D.

The proposed algorithm is described as follows:
Algorithm 1:

1) The BS chooses a threshold Θ, and sends it to all users.
2) Let us define

S , {k| |hk|2 ≥ Θ}. (2)

All users in S send a confirmation message to the BS.
3) Among the users in S, the BS serves the one with the

minimum ν (expiry countdown).
In the proposed algorithm, the threshold Θ is set to trade-off
the average throughput vs. the fairness in the system. If Θ is
chosen very large, then the scheduling tends to maximize the
throughput. If Θ is chosen very small, the algorithm tends to
the Round-Robin scheduling.

III. ASYMPTOTIC ANALYSIS

In this section, we analyze the network dropping probability,
denoted as Pr{B}, in terms of the number of users K, and the
delay constraint D, for the proposed scheduling. We consider
the asymptotic case of K → ∞ and derive the condition for
D such that Pr{B} → 0. To this end, the probability mass
function (pmf) of ν, denoted as fν(ν), is characterized in terms
of D, K, and Θ. First, we consider two special cases of the
proposed algorithm:

A. Special Case I; Θ = 0:

In this case, the user with the minimum expiry countdown
is served. In other words, the quality of channel does not play

any role in the scheduling. The set S which is defined in (2)
is simply the set of all users.

Theorem 1 For Θ = 0, fν(ν) can be obtained as follows:

fν(ν) =
{

1
K D −K + 1 ≤ ν ≤ D
0 ν ≤ D −K

. (3)

Proof - Refer to [15].
The above theorem implies that the pmf of ν is a step function
which is only non-zero in the interval [D−K+1, D]. Since the
probability of dropping for any given user can be expressed
as

∑0
l=−∞ fν(l), it follows from the above equation that for

D ≥ K, the dropping probability for each user is zero and as
a result, the network dropping probability is zero.

This scheduling is exactly the Round-Robin scheduling,
when the users are served based on a pre-determined order.
One can observe that this scheduling is the most fair schedul-
ing, as all the users have the same opportunity for being
served, regardless of their channel quality. However, due to
disregarding the effect of channel quality in the scheduling,
the achievable throughput is not good.

B. Special case II; Θ = maxk |hk|2:

In this scheduling, |S| = 1. In other words, the user with
the best channel quality is served during each frame. This
results in the conventional scheduling to exploit the multiuser
diversity and achieves the maximum sum-rate throughput in
the system [16].

Theorem 2 For the Special Case II, fν(ν) is equal to

fν(ν) =
1
K

(
1− 1

K

)D−ν

u(D − ν), (4)

where u(.) denotes the unit step function.

Proof - Refer to [15].

Theorem 3 For K →∞, the necessary and sufficient condi-
tion to have Pr{B} → 0 for the special case II is

D ∼ K log K + ω(K). (5)

Proof - Refer to [15].

The above theorem states that the minimum delay constraint
in order to have small dropping probability in the network
must scale as fast as K log K. Compared to the Round-Robin
scheduling (Case I), we have a factor of log K increase in the
delay, which is due to ingnoring ν in the scheduling.

C. Proposed Algorithm; The general case:

In the previous sections, we have studied our proposed
scheduling algorithm in two extreme cases, where one extreme
focuses on achieving the maximum fairness, and the other
extreme on achieving the maximum sum-rate throughput. In
general, it is possible to have a trade-off between the fairness
and throughput, by adjusting the threshold value. Now, the
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question is, whether or not, it is possible to simultaneously
achieve the maximum throughput and the maximum fairness
of the system. The following theorem shows this is indeed
possible in the asymptotic case of K →∞:

Theorem 4 Consider the proposed algorithm in the asymp-
totic case of K →∞. Then, for the values of Θ satisfying

log K − 2 log log K < Θ < log K − 1.5 log log K, (6)

one can simultaneously achieve:
I- Maximum Throughput:

lim
K→∞

Csum −R = 0, (7)

in which Csum denotes the sum-rate capacity of the broadcast
channel and R denotes the achievable sum-rate of the pro-
posed algorithm,
II- Minimum Network Delay:

lim
K→∞

D

K
= 1, (8)

and III- Zero Network Dropping Probability:

Pr{B} → 0. (9)

Proof - The steps of the proof are as follows: in Lemma 1, we
study the behavior of fν(ν) and derive the difference equation
satisfied by fν(ν). In Lemma 2, we derive an explicit solution
for this difference equation. Based on this solution, in Lemma
3, we give a sufficient condition, such that limK→∞

D
K →

1 and Pr{B} → 0 are satisfied simultaneously. Finally, the
theorem is proved by deriving a lower-bound on the achievable
sum-rate, based on the threshold level given in (6). For the
proof of the lemmas, the reader is referred to [15].

Lemma 1 Defining D0 = D −
√

Kn0(n0 − 1), where n0 =
3(log K)2, for D0 ≤ ν ≤ D, fν(ν) ∼ 1

K [1− o(1/K)], and
for ν < D0, fν(ν) satisfies the following difference equation:

fν(ν)− fν(ν − 1) = ηfν(ν) [1− pFν(ν)]K−1
, (10)

where p = e−Θ, η , p
1−p , and Fν(ν) denotes the CDF of ν.

Lemma 2 The solution to the difference equation (10), in the
asymptotic case of K →∞, is equal to

fν(ν) =
η

(K−1)pe(K−1)peη(ν−D0)

1 + e(K−1)peη(ν−D0)
ν < D0. (11)

Lemma 3 Setting D0 = p
η [K − 1] + log K

η yields Pr{B} →
0, while satisfying limK→∞

D
K = 1.

Conditioned on C , where C denotes the event that |S| > 0,
the gain of the selected user is above Θ. Hence, the achiev-
able sum-rate can be lower-bounded by log(1 + PΘ)Pr{C }.
Noting that Csum ∼ log(1 + P log K + O(log log K)) [17],
Θ > log K − 2 log log K, and Pr{C } & 1 − e−(log K)1.5

[15], we have Csum − R & O
(

log log K
log K

)
, which incurs

limK→∞ Csum − R = 0. Combining this with Lemma 3

completes the proof of Theorem 4.
�

Since D = K is the smallest delay constraint in order not to
have any dropping in the network, the above theorem simply
implies that the proposed algorithm is capable of achieving the
maximum throughput, while guaranteeing the minimum delay
for all users, asymptotically. In other words, this scheme is
capable of achieving the maximum throughput and fairness,
simultaneously.

Corollary 1 Consider a Broadcast system, where all the users
have the buffer size of one and the arrival rate of the packets
for the kth user is rk. Let us define the “average throughput”
of user k as

Tk , rkRk, (12)

where Rk denotes the amount of information per channel use
of each packet for this user. Then, for any scheduling scheme,
any Rk supported by the channel (decoding error approaches
zero), and for any chosen rk, the necessary condition for
Pr{B} → 0 is having

Tmin , min
k
Tk .

log log K

K
, (13)

which is achievable by the proposed algorithm.

Proof - Refer to [15].
In the above corollary, the minimum average throughput,

denoted by Tmin, is defined as the measure of performance.
This measure is suitable for the real-time applications like
transmitting sound and video, where the packets have certain
bit-rates and certain arrival rates. Note that in the above
corollary we have assumed that the users have the buffer size
of one, which is a very restrictive assumption in the wireless
networks. For the realistic scenarios, this constraint is more
relaxed. However, since we have shown the optimality of our
proposed scheduling for this assumption, it easily follows that
this optimality holds for the realistic assumptions as well.

Computing Tmin for the two special cases of the proposed
algorithm, i.e., maximum-throughput scheduling (T MT

min ) and
Round-Robin scheduling (T RR

min ), yields,

T MT
min ∼ log log K

K log K
,

T RR
min ∼ 1

K
. (14)

Therefore, the proposed algorithm outperforms these con-
ventional scheduling algorithms by a factor of log K and
log log K, respectively.

IV. EXTENSION TO THE MIMO-BC

In this section, we assume that the BS has M antennas,
while the receivers have single antennas. The main difference
between this case and the previous case is that for Single-
Input Single-Output Broadcast Channel (SISO-BC), serving
the best user during each frame (TDMA) is optimal in terms of
achieving the maximum throughput of the system [16], while

170



in the MIMO-BC this is not the case. Therefore, we must
apply some modifications in our proposed algorithm, in order
to make it suitable for MIMO-BC.

The channel model for the kth user is assumed to be

yk = hkx + nk, (15)

where x ∈ CM×1 is the transmitted signal with the power
constraint E{xHx} ≤ P , hk ∈ C1×M ∼ CN (0, I) is the
channel vector, nk ∼ CN (0, 1) is AWGN, and yk is the
received signal by the kth user.
The proposed algorithm is as follows:
Algorithm 2:

1) Set the threshold Θ.
2) The BS selects M orthogonal unit vectors, denotes by

Φ1, · · · ,ΦM , randomly, and sends it to all users.
3) Among each of the following sets:

Sm = {k| SINR(m)
k > Υ}, m = 1, · · · ,M, (16)

the BS serves the user with the minimum ex-
piry countdown. In the above equation, SINR(m)

k ,
ρ|hkΦH

m|
2

1+
P

j 6=m ρ|hkΦH
j |2

, in which ρ , P
M , is the received

Signal to Interference plus Noise Ratio (SINR) on the
mth transmitted beam, by the kth user.

As can be observed, this algorithm is a variant of Random-
Beam-Forming scheme proposed in [17], where the expiry
countdown is considered in the scheduling.

Theorem 5 Using Algorithm 2, for the values of Υ satisfying

P

M
[log K − (M + 0.5) log log K] < Υ

<
P

M
[log K − (M + 1) log log K] , (17)

we have limK→∞ Csum − R = 0, and limK→∞
MD
K = 1,

while satisfying Pr{B} → 0.

Proof - Refer to [15].
Noting that dK

M e is the minimum achievable delay in
MIMO-BC (using Round-Robin, assuming that M users are
served during each frame), it follows that the proposed algo-
rithm achieves the maximum sum-rate and minimum network
delay at the same time.

Defining the minimum average throughput as in (13), it is
straightforward to show that for the proposed algorithm,

Tmin ∼
M log log K

K
, (18)

which is asymptotically the maximum achievable value in
MIMO-BC

V. CONCLUSION

In this paper, a single-antenna broadcast channel with large
(K) number of users is considered. It has been assumed that
all users have hard delay constraint D. We have proposed an
scheduling algorithm for maximizing the throughput of the
system, while satisfying the delay constraint for all users. By

characterizing the network dropping probability, in terms of K,
D, and the threshold value in the algorithm, it has been shown
that by using the proposed algorithm, it is possible to achieve
the maximum throughput and minimum delay in the network,
simultaneously, in the asymptotic case of K →∞. Moreover,
We have introduced a new notion of fairness in the network,
called “Minimum Average Throughput”, and proved that the
proposed algorithm maximizes the maximum minimum aver-
age throughput in a broadcast channel. Finally, the proposed
algorithm is generalized for MIMO-BC, and shown to be
optimum in the sense of achieving the maximum throughput
and minimum delay in the network, simultaneously.
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