
Diversity-Multiplexing Trade-off in Z-channel
Mehdi Ansari, Alireza Bayesteh, and Amir K. Khandani

Dept. of Elec. and Comp. Eng., University of Waterloo
Waterloo, ON, Canada, N2L 3G1

Tel: 519-884-8552, Fax: 519-888-4338
e-mail: {mehdi, alireza, khandani}@cst.uwaterloo.ca

Abstract—We consider a simple structure of Z-Channel
and derive the diversity-multiplexing trade-off assuming dif-
ferent scenarios for the signal-to-noise ratio of the links. The
diversity-multiplexing trade-off is determined assuming having
known/unknown interference channel at the receiver.

I. INTRODUCTION

The fundamental trade-off between the diversity and multi-
plexing gain has been characterized for MIMO systems in [1]
and is extended for MIMO multiple-access channel in [2].
This approach has been applied for other wireless channels and
networks [3]–[5]; In [3], the trade-off between the rate and the
reliability is studied for different strategies in a wireless relay
network. In [5], diversity-multiplexing trade-off upper bounds
are obtained for cooperative diversity protocols in a wireless
network.

In this paper, we consider a Z-Channel in which the trans-
mitters and receivers are equipped with single antennas. The
received signal at the first receiver can be written as

y1 = H1x1 + H0x2 + n1, (1)

and the second link will be an ordinary point to point link as

y2 = H2x2 + n2, (2)

where xi ∈ C1×1 is the transmitted signal from the ith
transmitter with the power constraint E{‖xi‖2} ≤ ρi, and
ni ∼ CN (0, 1) is the AWGN at ith receiver for i = 1, 2.
All the channels in this model are assumed to be quasi-static
Rayleigh fading, i.e. the channel coefficients H0, H1 and
H2 have complex Gaussian distribution with zero mean and
unit variance. It is assumed that H0 and H1 are perfectly
known at the first receiver and perfectly unknown at the first
transmitter. The channel coefficients H2 is assumed to be
perfectly known at the second receiver, while unknown at the
second transmitter.

Investigating the diversity-multiplexing trade-off curves for
this setup requires the assumption of ρ1, ρ2 → ∞. Hence,
using the definition of the diversity and multiplexing in [1],
for each link, we have

ri = lim
ρi→∞

Ri(ρi)
log ρi

,

di = lim
ρi→∞− log Pi(ρi)

log ρi
, i = 1, 2, (3)
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where Ri(ρi) denotes the transmission rate, and Pi(ρi) repre-
sents the average error probability of link i. Assuming large
enough block lengths, from [1] it is realized that the average
error probability is equal to the outage probability, defined as

Pi(ρi) � Pr{C(ρi) < Ri}, (4)

where C(ρi) denotes the capacity of link i, almost surely.
We focus on characterizing the diversity-multiplexing trade-
off curve for the first link, since the second link is an ordinary
point-to-point link. For this purpose, we derive the outage
probability for this link, for any given multiplexing gain vector
(r1, r2).

II. ANALYSIS OF DIVERSITY-MULTIPLEXING TRADE-OFF

From the first receiver’s point of view, the channel is
a multiple-access channel (MAC). However, since the first
receiver is not interested in the data of the second transmitter,
the outage event is different from that of MAC. In fact, the
outage event in this case can be written as the intersection of
the following events:

B1 � {(R1,R2) /∈ CMAC},
B2 � {R1 > I(x1;y1)}, (5)

where CMAC denotes the capacity region of the MAC. The
first event corresponds to the case that the first receiver can
not decode both x1 and x2. The second event describes the
situation when the first receiver can not decode x1, considering
x2 as noise. In terms of the channel matrices H0 and H1, the
above events can be written as follows:

B1 =




log(1 + ρ1h1) < R1

⋃
log(1 + ρ2h0) < R2

⋃
log(1 + ρ2h0 + ρ1h1) < R1 + R2


 ,

B2 =
{

log(1 +
ρ1h1

1 + ρ2h0
) < R1

}
, (6)

where hi � ‖Hi‖2, i = 0, 1. The intersection of these two
events is depicted in Fig. 1. As can be observed, the outage
event can be expressed as the union of the events A1 and A2.
A1 is the outage event as if the second user does not exist.
The effect of interference from the second user is captured in
A2.

Theorem 1 Assuming ρ1 = ρ and ρ2 = ρβ , the diversity-
multiplexing trade-off for the first user of Z-channel is

d∗Z(r1, r2) =
{

min(1 − r1, (1 + β) − 2(r1 + βr2)) F1

µ − r1 − βr2 F2
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R1 = log(1 + h1ρ1)

h11 h1

R1 + R2 = log(1 + h1ρ1 + h0ρ2)

h12
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h01
R1 = log

(
1 + h1ρ1

1+h0ρ2

)

A1
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h0

Fig. 1. Outage region

where F1 ≡ r1 + βr2 < η, F2 ≡ η < r1 + βr2 < µ, η �
min(1, β), and µ � max(1, β).

Proof: Defining the total outage event as B, we have

Pr{B} = Pr{A1} + Pr{A2}. (7)

From Fig. 1, the probability of A1 and A2 can be written as

Pr{A1} =
∫ h11

0

f(h1)dh1, (8)

Pr{A2} =
∫ h12

h11

∫ h02+m2(h11−h1)

m1(h1−h11)

f(h1)f(h0)dh0dh1, (9)

where h11 � eR1−1
ρ1

, h01 � eR2−1
ρ2

, h12 � eR2 (eR1−1)
ρ1

, h02 �
eR1 (eR2−1)

ρ2
, m1 � h01

h12−h11
, m2 � h02−h01

h12−h11
, and f(h0) and

f(h1) are the pdf of h0 and h1, respectively. Having the fact
that f(h0) = e−h0 and f(h1) = e−h1 , (8) and (9) can be
written as follows:

Pr{A1} = 1 − e−h11 , (10)

Pr{A2}=
∫ h12

h11

∫ h02+m2(h11−h1)

m1(h1−h11)

e−h0e−h1dh0dh1

=




1
m1+1

[
e−h11 − e−(h12+h01)

]
− 1

1−m2

[
e−(h02+h11) − e−(h12+h01)

]
m2 �= 1

1
m1+1

[
e−h11 − e−(h12+h01)

]
−(h12 − h11)e−(h02+h11) m2 = 1.

(11)

Setting ρ1 = ρ and ρ2 = ρβ , where β is an arbitrary constant
and using (3), we have

h11 = ρr1−1
(
1 − ρ−r1

)
,

h12 = ρr1+βr2−1
(
1 − ρ−r1

)
,

h01 = ρβ(r2−1)
(
1 − ρ−βr2

)
,

h02 = ρr1+βr2−β
(
1 − ρ−βr2

)
,

m1 = ρ1−β−r1
(
1 − ρ−r1

)−1
,

m2 = ρ1−β . (12)

Noting (10) and (12), we can write

Pr{A1} .= ρr1−1, r1 < 1 (13)

where b
.= ρa is equivalent to limρ→∞ log b

log ρ = a. We consider
3 scenarios to derive Pr{A2}:

1) Weak interference (β < 1): From (12), it follows that
m2 → ∞ as ρ → ∞. Moreover, for the region r1 < 1−β we
have m1 → ∞. Hence, (11) can be written as

Pr{A2} =
1

m1 + 1
e−h11

(
1 − e−(1+m1)(h12−h11)

)
−

1
m2 − 1

e−(h12+h01)
(
1 − e−(m2−1)(h12−h11)

)
(a)
� e−h11(h12 − h11) −

1
m2 − 1

e−(h12+h01)
(
1 − e−(m2−1)(h12−h11)

)
,

(14)

where (a) comes from applying the approximation 1 −
e−(1+m1)(h12−h11) � (1 + m1)(h12 − h11), since (1 +
m1)(h12−h11)

.= ρ1−βρr1+βr2−1 = ρβ(r2−1), and as a result
(1 + m1)(h12 − h11) → 0 for r2 < 1. For the case that
r1 + βr2 > β, noting that (m2 − 1)(h12 − h11) → ∞, the
second term in the above equation can be approximated with

1
m2−1 � ρβ−1. Consequently, we have

Pr{A2} � ρr1+βr2−1 − ρβ−1

.= ρr1+βr2−1. (15)

Indeed, for the case r1 + βr2 < β, rewriting (14) as

Pr{A2}� e−h11(h12 − h11) −
1

m2 − 1
e−(h11+h02)

(
e(m2−1)(h12−h11) − 1

)
,

(16)

and noting that (m2 − 1)(h12 − h11) → 0, we have
e(m2−1)(h12−h11)−1

m2−1 � (h12 − h11). Substituting in the above
equation yields,

Pr{A2} � e−h11
(
1 − e−h02

)
(h12 − h11)

(a)
� h02(h12 − h11)
.= ρ2(r1+βr2)−(1+β), (17)

where (a) comes from the fact that since h11, h02 → 0,
e−h11 � 1, e−h02 � 1−h02. With a similar argument, we can
obtain Pr{A2} for the case β < r1 +βr2 and in summary, we
have

Pr{A2} .=
{

ρ2(r1+βr2)−(1+β) r1 + βr2 < β
ρr1+βr2−1 β < r1 + βr2 < 1

.(18)

2) Moderate interference (β = 1): Noting that m2 = 1 in
this scenario, from (11), we can write

Pr{A2}=
1

m1 + 1
e−h11

(
1 − e−(1+m1)(h12−h11)

)

− (h12 − h11)e−(h11+h02). (19)
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Having the fact that m1 → 0, the necessary condition to have
Pr{A2} → 0 is h12 → 0, which incurs r1 + r2 < 1. Using
(19) and the approximation 1

m1+1

(
1 − e−(1+m11)(h12−h11)

)
�

(h12 − h11), we have

Pr{A2} � e−h11
(
1 − e−h02

)
(h12 − h11)

� h02(h12 − h11)
.= ρ2(r1+r2−1). (20)

3) Strong interference (β > 1): From (12), it follows that
m1, m2 → 0, and as a result, (11) can be written as

Pr{A2}=
1

m1 + 1
e−h11

(
1 − e−(1+m1)(h12−h11)

)
−

1
1 − m2

e−(h11+h02)
(
1 − e−(1−m2)(h12−h11)

)
.(21)

Here, we consider two cases: i) r1 + βr2 < 1: In this case,
it is easy to show that the first term behaves as (h12 − h11),
and the second term as e−h02(h12 − h11). Since β > 1, this
condition also incurs that h02 ∼ ρr1+βr2−β → 0, and as a
result,

Pr{A2} �
(
1 − e−h02

)
(h12 − h11)

� h02(h12 − h11)
.= ρ2(r1+βr2)−(1+β). (22)

ii) 1 < r1 + βr2 < β: In this case, it is easy to see that
h12 − h11 → ∞, and hence,

Pr{A2} � 1
1 + m1

− 1
1 − m2

e−h02

(a)
� (1 − m1) − (1 + m2)e−h02

(b)
� h02 − (m1 + m2e

−h02)
(c).= ρr1+βr2−β , (23)

where (a) comes from using the approximation 1
1−x � 1 + x

for x 	 1, (b) results from the assumption of r1 + βr2 < β
which incurs h02 → 0, and finally, (c) results from the fact
that since r1 + βr2 > 1, h02 ∼ ρr1+βr2−β dominates m1 and
m2. Unifying the expression of Pr{A2} from (18), (20), (22),
and (23), we obtain

Pr{A2} .=
{

ρ2(r1+βr2)−(1+β) r1 + βr2 < η
ρr1+βr2−µ η < r1 + βr2 < µ

(24)

where η � min(1, β), µ � max(1, β). Using (7), (13) and
(24), the result of the theorem is obtained.
Fig. 2 depicts the optimal diversity-multiplexing trade-off
curve for β = 0.5, β = 1 and β = 1.3. As can be observed,
the curve corresponding to β = 1.3, outperforms the other
curves. Moreover, comparing the two curves corresponding to
β = 0.5 and β = 1, it is realized that for moderate values
of multiplexing gain, the curve corresponding to β = 1 yields
the higher diversity gain, while for the high multiplexing gain
values β = 0.5 is preferable. Fig. 3 shows the maximum
diversity gain versus β, for the fixed multiplexing gain values
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Fig. 2. Diversity-Multiplexing trade-off for various values of β, r2 = 0.3.
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Fig. 3. Diversity vs. β for various values of multiplexing gains, r1 = r2 = r.

of 0.3, 0.4, and 0.5, assuming r1 = r2. As can be observed,
all the curves have a global minimum, depending on the value
of the multiplexing gain.

III. COMPARISON WITH MULTIPLE-ACCESS CHANNEL

AND NO-CSIR

In this section, we compare the diversity-multiplexing trade-
off curve, derived in the previous section, with two other
scenarios; i) Multiple-Access channel (MAC), where the first
receiver decodes the transmitted data from both senders, and
ii) No-CSIR scenario, where the receiver does not have any
information about the interference channel H0. The former is
studied in [2], for the case that the signal-to-noise ratio (SNR)
of all links are the same. In the following, we will briefly go
over this scenario, assuming that ρ1 = ρ and ρ2 = ρβ .
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A. Multiple-Access channel

The probability of the outage event, denoted as BMAC can
be written as

Pr{BMAC}=
∫ h11

0

e−h1dh1

+
∫ h12

h11

∫ h02+m2(h11−h1)

0

e−h0e−h1dh0dh1

+
∫ ∞

h12

∫ h01

0

e−h0e−h1dh0dh1

= 1 − e−h11 + χ + (1 − e−h01)e−h12 , (25)

where

χ =




(
e−h11 − e−h12

)
− 1

m2−1

[
e−(h01+h12) − e−(h02+h11)

]
m �= 1(

e−h11 − e−h12
)

−e−(h01+h12) (h12 − h11) m = 1

(26)

Following similar arguments in the proof of Theorem 1, we
can easily show that

χ
.=

{
ρ2(r1+βr2)−(1+β) r1 + βr2 < η
ρr1+βr2−µ η < r1 + βr2 < µ

, (27)

where η = min(1, β) and µ = max(1, β). We interpret
diversity-multiplexing gain of MAC in terms of that of Z-
channel as follows:

d∗MAC(r1, r2) =
{

d∗Z(r1, r2) 1 < r1 + βr2 < β
min(d∗Z(r1, r2), β(1 − r2)) Otherwise

B. No-CSIR

In this scenario, the first receiver only knows its own chan-
nel and does not have any information about the interference
channel (H0). Denoting the outage event as BNCSIR, we have

Pr{BL
NCSIR} ≤ Pr{BNCSIR} ≤ Pr{BU

NCSIR}, (28)

where

BU
NCSIR � {R1 > I(x1;y1|H1)}, (29)

and

BL
NCSIR � {R1 > I(x1;y1|x2,H1)}. (30)

BL
NCSIR denotes the outage event when the first receiver

considers x2 as noise and BU
NCSIR is the multiple-access

upper-bound when the second users’ data is decoded correctly
at the first receiver. We can write

I(x1;y1|H1) = h(y1|H1) − h(y1|H1,x1)
= h(H1x1 + H0x2 + n1|H1)
− h(H0x2 + n1)
(a)

≥ h(H1x1 + n1|H1)
− log (2πeVar(H0x2 + n1))
= log(2πe(ρ1h1 + 1)) − log(2πe(ρ2 + 1))
� log(ρ1−βh1), (31)

where (a) comes from the fact that h(X + Y ) > h(X),
for independent X and Y , and h(X) ≤ log(2πeVar(X)).
Substituting (31) in (29) and assuming r1 < 1− β, we obtain

Pr{BU
NCSIR} � ρ1−β−r1 . (32)

For calculating the lower-bound, we first compute
I(x1;y1|x2,H1) as follows:

I(x1;y1|x2,H1)} = h(y1|H1,x2) − h(y1|H1,x1,x2)
= h(H1x1 + H0x2 + n1|H1,x2)
− h(H0x2 + n1|x2)
(a)
= Ex2

{
log(2πe(h1ρ1 + |x2|2 + 1))

}
− Ex2

{
log(2πe(|x2|2 + 1))

}
(b)

≤ log
(

1 + Ex2

{
ρ1h1

1 + |x2|2

})

� log(1 + h1ρ
1−β), r1 < 1 − β (33)

where (a) results from the fact that conditioned on H1 and
x2, H1x1 and H0x2 are independent Gaussian variables with
variances h1ρ1 = |H1|2ρ1 and |x2|2, respectively and (b) re-
sults from the concavity of log function and Jensen inequality.
As a result, the lower-bound on the outage probability can be
expressed as

BL
NCSIR � ρ1−β−r1 . (34)

From (32) and (34) it is concluded that

Pr{BNCSIR} .= ρ1−β−r1 , r1 < 1 − β, (35)

or equivalently,

d∗NCSIR(r1) = max(1 − β − r1, 0), r1 ≥ 0. (36)

Hence, No-CSIR scenario can be considered as perfect CSIR
scenario with r2 = 1. Note that in No-CSIR scenario, β is
limited to be strictly less than one (otherwise the diversity is
always zero).

IV. CONCLUSION

In this paper, the diversity-multiplexing trade-off curve is
characterized for Z-channel. The diversity-multiplexing gain
of MAC is obtained assuming different scenarios for the SNR
of the links and is interpreted in terms of the diversity-
multiplexing gain of Z-channel. Moreover, the diversity-
multiplexing trade-off curve for No-CSIR scenario is obtained.
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