
Analog Coding for Delay-Limited Applications

Mahmoud Taherzadeh and Amir. K. Khandani
Coding & Signal Transmission Laboratory(www.cst.uwaterloo.ca)

Dept. of Elec. and Comp. Eng., University of Waterloo, Waterloo, ON, Canada, N2L 3G1
e-mail: {taherzad, khandani}@cst.uwaterloo.ca, Tel: 519-8848552, Fax: 519-8884338

Abstract— In this paper, we consider the problem of sending
an analog source over an additive white Gaussian noise channel.
The traditional analog coding schemes suffer from the threshold
effect. We introduce two robust schemes for analog conding.
Unlike the previous methods, the new methods asymptotically
achieve the optimal scaling of the signal-to-distortion-ratio
(SDR) without being affected by the threshold effect. Also, we
show that approximated versions of these techniques perform
well for the practical applications, with a low complexity in
encoding/decoding.

I. INTRODUCTION

In many applications, delay-limited transmission of analog
sources over an additive white Gaussian channel is needed.
Also, in many cases the exact signal-to-noise ratio is not
known at the transmitter, and may vary over a large range
of values. Two examples of this scenario are transmitting
an analog source over a quasi-static fading channel and/or
multicasting it to different users (with different channel
gains).

Without considering the delay limitations, digital codes
can theoretically achieve the optimal performance. Indeed,
for the ergodic channels, Shannon’s source-channel coding
separation theorem [1] [2] ensures the optimality of sepa-
rately designing source and channel codes. However, for the
case of a limited delay, several articles [3] [4] [5] [6] [7]
have shown that joint source-channel codes have a better
performance, compared to the separately designed source and
channel codes (which are called tandem codes). Also, digital
coding is very sensitive to the mismatch in the estimation of
the channel signal-to-noise-ratio (SNR).

To avoid the saturation effect of digital coding, in [8] and
[9] analog codes, based on dynamical systems are proposed.
Although these codes can provide asymptotic gains (for high
SNR) over the simple repetition code, they suffer from a
threshold effect. Indeed, when the SNR becomes less than a
certain threshold, the performance of these systems degrades
severely. Therefore, the parameters of these methods should
be chosen according to the operating SNR, hence, these
methods are still very sensitive to the errors in the estimation
of SNR. Also, although the performance of the system is
not saturated for the high SNR (unlike digital codes), the
scaling of the end-to-end distortion is far from the theoretical
bounds.

In this paper, we present two analog coding schemes
which have better SNR scalings, and one of them achieves
almost the same scaling as the theoretical bound, with just a
single mapping for different SNR values. We show that these

schemes are not vulnerable to any threshold effect (unlike
the previous techniques [8] [9]). Because a single mapping
achieves the near-optimum SDR scaling for all ranges of
SNR, the proposed technique is robust to the variations of the
channel SNR, unlike the other alternatives. This robustness
is a very important feature for transmission over channels
with unknown SNR.

II. SYSTEM MODEL AND THEORETICAL LIMITS

We consider a memoryless {Xi}∞i=1 uniform source with
zero mean and variance 1

12 , i.e. − 1
2 ≤ xi < 1

2 . For
other sources, such as the Gaussian source, we can use
the standard companding techniques. Also, the samples of
the source sequence are assumed independent with identical
distributions (i.i.d.).

The transmitted signal is sent over an additive white
Gaussian noise (AWGN) channel. The problem is to map the
one-dimensional signal to the N -dimensional channel space,
such that the effect of the noise is minimized. This means
that the data x, − 1

2 ≤ x < 1
2 , is mapped to the transmitted

vector s = (s1, ..., sN ). At the receiver side, the received
signal is y = s + z where z = (z1, ..., zN ) is the additive
white Gaussian noise with variance σ.

As an upper bound on the performance of the system,
we can consider the case of delay-unlimited. In this case,
we can use Shannon’s theorem on the separation of source
and channel coding. By combining the lower bound on the
distortion of the quantized signal (using the rate-distortion
formula) and the capacity of N parallel Gaussian channels
with the noise variance σ2, we have [9]

D ≥ cσ2N (1)

where c is a constant number and D is the average distortion.

III. CODES BASED ON DYNAMICAL SYSTEMS AND
HYBRID DIGITAL-ANALOG CODING

Previously, two related schemes, based on dynamical sys-
tems, have been proposed for the scenario of delay-limited
analog coding:

1) Shift-map dynamical system [8]
2) Spherical shift-map dynamical system [9]

A. Shift-map dynamical system
In [8], an analog transmission scheme based on shift-map

dynamical systems is presented. In this method, every analog
data x is mapped to the modulated vector (s1, ..., sN ) where
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Fig. 1. The shift-map modulated signal set for N = 3 dimensions and
a = 2.

s1 = x mod 1 (2)

si+1 = bisi mod 1, for 1 ≤ i ≤ N − 1 (3)

where bi is an integer number, bi ≥ 2. The set of modulated
signals generated by the shift map consists of b = b1...bN−1

parallel segments inside an N -dimensional unit hypercube.
In [9], the authors have shown that by appropriately choosing
the parameters {bi} for different SNR values, one can
achieve the SDR scaling (versus the channel SNR) with the
slope N − ε, for any positive number ε. Indeed, we can have
these bounds on the end-to-end distortion:

Theorem 1 Consider the the shift-map analog coding sys-
tem which maps the modulating signals to N -dimensional
modulated vectors,

i) For any noise variance σ2, we can find a number a such
that for the shift-map scheme with the parameters bi = ai,
the distortion of the decoded signal D is bounded as

D ≤ cσ2N (− log σ)N−1

where c is some constant number (depending on only N ).
ii) For any shift-map scheme, the output distortion is lower

bounded as
D ≥ c′σ2N (− logσ)N−1

where c′ is a constant number.

B. Spherical shift-map dynamical system
In [9], a spherical code based on the linear system

ṡT = AsT is introduced, where sT is the 2N -dimensional
modulated signal and A is a skew-symmetric matrix, i.e.
AT = −A.

This scheme is very similar to the shift-map scheme.
Indeed, with an appropriate change of coordinates, the above
modulated signal can be represented as

sT =
1√
N

(
cos 2πx, cos 2aπx, ..., cos 2aN−1πx, (4)

sin 2πx, sin 2aπx, ..., sin 2aN−1πx
)

(5)

for some parameter a.

If we consider ssm as the modulated signal generated by
the shift-map scheme with parameters bi = ai, in (3), then,
(3) can be written in the vector form as

sT =
(
Re
{
eπissm

}
, Im

{
eπissm

})
.

The relation between the spherical code and the linear
shift-map code is very similar to the relation between PSK
and PAM modulations. Indeed, the spherical shift-map code
and PSK modulation are, respectively, the linear shift-map
and PAM modulations which are transformed from the unit
interval, [−1

2 , 1
2 ), to the unit circle.

For the performance of the spherical codes, the same result
as Theorem 1 is valid. Indeed, for any parameters a and
N , the spherical code asymptotically has a saving of (2π)2

12
or 5.17 dB in the power. This asymptotic gain results from
transforming the unit-interval signal set (with length 1 and
power 1

12 ) to the unit-circle signal set (with length 2π and
power 1) . However, the spherical code uses 2N dimensions
(compared to N dimensions for the linear shift-map scheme).

For both these methods, for any fixed parameter a, the
output SDR asymptotically has linear scaling with the chan-
nel SNR. The asymptotic gain (over the simple repetition
code) is proportional to a2(N−1) (because the modulated
signal is stretched approximately aN−1 times)1. Therefore,
larger scaling parameters a results in higher asymptotic
gains. However, by increasing a, the distance between the
parallel segments of the modulated signal set decreases. This
distance is approximately 1

a
and for the low SNRs (when the

noise variance is larger than or comparable to 1
a

), jumping
from one segment of the modulated signal set to another
one becomes the dominant factor in the distortion of the
decoded signal which results in a poor performance in this
SNR region. Thus, there is a trade-off between the gain in the
high-SNR region and the critical noise level which is fatal
for the system. By increasing the scaling parameter a, the
asymptotic gain increases, but at the same time, a higher SNR
threshold is needed to achieve that gain. In [10], the authors
have combined the dynamical-system schemes with LDPC
and iterative decoding to slightly reduce the critical SNR
threshold. However, overall behavior of the output distortion
is the same for all these methods.

The shift-map analog coding system can be seen as a
slight variation of a Hybrid Digital-Analog (HDA) joint
source-channel code. Various types of these hybrid schemes
are investigated in [11] and [12]. Indeed, for the shift-map
system, we can rotate the modulated signal set such that all
the parallel segments of it become aligned in the direction
of one of the dimensions. In this case, by slightly changing
the support region of the modulated set (which is a rotated
N -dimensional cube) to the standard cube, we obtain a new
similar modulation with almost the same performance. In
the new modulation, the information signal is quantized by

1The exact asymptotic gain is equal to the scaling factor of the sig-
nal set, i.e. a2(N−1)

“

1 + 1
a2 + ... + 1

aN−1

”

for the shift map and
(2π)2

12
a2(N−1)

“

1 + 1
a2 + ... + 1

aN−1

”

for the spherical shift map.



aN−1 points in an (N − 1)-dimensional sub-space and the
quantization error is sent over the remaining dimension.

Regarding the scaling of the output distorsion, the per-
formance of the shift-map scheme, with appropriate choice
of parameters for each SNR, is very close to the the-
oretical limit. In fact, the output distortion scales as
σ2N (− log σ)N−1, instead of being proportional to σ2N .
However, for any fixed set of parameters, the output SNR
(versus the input SNR) is saturated by the unit slope (instead
of N ). This shortcoming is an inherent drawback of schemes
like the shift-map code or spherical code (which are based
on dynamical systems). Indeed, in [13], it is shown that
no single differentiable mapping can achieve an asymptotic
slope better than 1. This article addresses this shortcoming.

IV. A NEW APPROACH

We propose two schemes for analog coding using a
bandwidth expansion factor of N . In both these techniques,
the mapping is not differentiable and they can achieve slopes
grater than 1 (for the curve of the output SNR). Especially, in
the second scheme, a single modulation scheme achieves the
optimal slope of N . However, in certain ranges of SNR, first
scheme can provide a better performance. Although these
methods use the infinite binary expansion of real numbers,
we will see that practical approximations of these methods
still perform well.

A. Scheme I
For the modulating signal x, − 1

2 ≤ x < 1
2 , we consider

the binary expansion of x + 1
2 :

x +
1

2
=
(
0 · b1b2b3...

)

2
(6)

Now, we construct s1, s2, ..., sN as

s1 =
(
0 · b1bN+1b2N+1...

)

α
(7)

s2 =
(
0 · b2bN+2b2N+2...

)

α
(8)

...

sN =
(
0 · bNb2Nb3N ...

)

α
(9)

where
(
0 · b1b2b3...

)

α
is the base-α expansion2.

Theorem 2 In the proposed scheme, for any α > 2, the
output distortion D is upper bounded by

D ≤ cσ2β(− log σ)N (10)

where c is independent of σ and β = N log 2
log α

.

Proof: Consider wi, as the Gaussian noise on the ith
dimension:

2In this article, we define the base-α expansion, for any real number
α > 2 and any binary sequence (b1b2b3...), as

“

0 · b1b2b3...

”

α

,
P

∞

i=1 aiα
−i.

Pr
{

|wi| > 2
√

Nσ
√

− logσ
}

= (11)

Q
(

2
√

N
√

− logσ
)

≤ e−
4N(− log σ)

2 = e−2N(− log σ) = σ2N

(12)
Now, we bound the distortion, conditioned on |wi| ≤

2
√

Nσ
√
− log σ for 1 ≤ i ≤ N :

If the kth digit of si and s′i are different,

|si − s′i| ≥ (13)


0 · 0...0
︸︷︷︸

k−1

1000..





α

−



0 · 0...0
︸︷︷︸

k−1

0111...





α

(14)

> (α − 2)α−(k+1) (15)

Therefore, if |si − s′i| ≤ δ for any δ > 0, the first k digits
of si and s′i are the same, where k ≥

⌊

− logα

(
δ

α−2

)⌋

− 1.
Now, by considering δ = 4

√
Nσ

√
− log σ,

|si − s′i| ≤ 2|wi| ≤ 4
√

Nσ
√

− log σ (16)

=⇒ k ≥
⌊

− logα

(

4
√

Nσ
√
− logσ

α − 2

)⌋

− 1 (17)

Therefore, for 1 ≤ i ≤ N , the first
⌊

− logα

(

4
√

Nσ
√
− logσ

α − 2

)⌋

− 1

digits of s1, s2, ..., sN can be decoded without any error,
hence, the first

N

(⌊

− logα

(

4
√

Nσ
√
− logσ

α − 2

)⌋

− 1

)

bits of the binary expansion of x can be reconstructed
perfectly. In this case, the output distortion is bounded by

√
D ≤ 2

−N
“j

− logα

“

4
√

Nσ
√

− log σ

α−2

”k

−1
”

(18)

≤ c1σ
β(− log σ)

N
2 (19)

where c1 depends only on α and N .
By combining the upper bounds for the two cases,

D ≤ Pr
{

|wi| > 2
√

Nσ
√

− log σ
}

+ c1σ
β(− logσ)

N
2

(20)
≤ cσ2β(− logσ)N . (21)

�

According to the theorem 2, for any ε > 0, we can
construct a modulation scheme that achieves the asymp-
totic slope of N − ε (for the curve of output SNR). As
expected (according to the result by Ziv [13]), none of these
mappings are differentiable. Indeed, these mappings have



fractal structures, where the parameter β, which determines
the asymptotic slope of the curve, is the dimension of the
fractal. Intuitively, this means that among the N available
dimensions, only β dimensions are effectively used.

By decreasing α, we can increase the asymptotic slope β.
However, it also degrades the low-SNR performance of the
system. This phenomenon is observed in figure 1.

B. Scheme II
Although by Scheme I we can construct mappings that

achieve near-optimum slope for the curve of SDR (versus
the channel SNR), none of these mappings can achieve the
optimum slope N . To achieve the optimum slope with a
single mapping, we slightly modify the scheme I:

For the modulating signal x, consider x + 1
2 =

(
0.b1b2b3...

)

2
. We construct s1, s2, ..., sN as

s1 =
(

0.b10bN(N+1)
2 +1

...bN(N+1)
2 +N+1

0b (2N)(2N+1)
2 +1

...
)

2

s2 =
(

0.b2b30b (N+1)(N+2)
2 +1

...b (N+1)(N+2)
2 +N+2

0...
)

2

...
...

sN =
(

0.bN(N−1)
2 +1

...bN(N+1)
2

0...
)

2
(22)

The difference between this scheme and Scheme I is that
instead of assigning the kN + ith bit to the signal si, the
bits of the binary expansion of x + 1

2 are grouped such that
the lth group (l = kN + i) consists of l bits and is assigned
to the ith user.

Theorem 3 Using the mapping constructed by Scheme II,
the output distortion D is upper bounded by

D ≤ c1σ
2N2c2

√
− log σ (23)

where c1 and c2 are constant.

Proof: Consider wi as the Gaussian noise on the ith
channel and assume that n is selected such that

n∑

k=1

kN + i ≤ − log2 σ <

n+1∑

k=1

kN + i (24)

The probability that |wi| ≥ 2−

Pn−1
k=1

kN+i

2 is negligible.
Indeed,

Pr

{

|wi| ≥ 2
−

Pn−1
k=1

kN+i

2

∣
∣
∣
∣
∣
− log2 σ ≥

n∑

k=1

kN + i

}

≤

Q
(
2nN−1

)
. (25)

On the other hand, when |wi| < 2
−

Pn−1
k=1

kN+i

2 , the first
∑n−1

k=1 kN + i bits of si can be decoded error-freely. The
same is true for all 1 ≤ i′ ≤ i, and for i < i′ ≤ N , the first

∑n−2
k=1 kN + i′ can be decoded error-freely. Thus, the first

∑(n−1)N+i

j=1 j bits of x can be decoded error-freely. Now,

(n−1)N+i
∑

j=1

j ≥ (26)

N
n−2∑

k=1

kN + i ≥ (27)

N

n+1∑

k=1

kN + i − N (nN + i + (n + 1)N + i) ≥ (28)

N
n+1∑

k=1

kN + i − N2 (2n + 3) ≥ (29)

N

n+1∑

k=1

kN + i − c2

√
√
√
√

n+1∑

k=1

kN + i (30)

where c2 depends only on N . Therefore, by using the
assumption (24),

(n−1)N+i
∑

j=1

j ≥ (31)

−N log2 σ − c2

√

− log2 σ (32)

Therefore the output distortion is bounded by

D ≤ 2−2
P(n−1)N+i

j=1 j (33)

≤ 22N log2 σ+2c2

√
− log2 σ (34)

=⇒ D ≤ c1σ
2N2c2

√
− log σ. (35)

�

V. EXTENSIONS FOR LARGER DELAYS

In the digital transmission systems, coding over a long
block of data can provide a coding gain and improve the
performance of the system. Similar improvements can be
obtained in analog coding by coding over longer blocks.
For example, for a bandwidth expansion of 2, instead of
mapping the information signal x to a 2-dimensional vector,
we can map a block of length 3 to a 6-dimensional vector.
This approach increases the delay of the system; however, it
results in a coding gain. Also, in schemes similar to hybrid
digital-analog coding (such as shift-map coding scheme),
this approach can reduce the required SNR threshold of the
system. Therefore, this approach can be usefull when there
are only moderate delay constraints.

To elaborate this approach, at first we consider the simple
case of the hybrid digital-analog coding with a bandwidth
expansion of 2. In the simple version of this scheme (which
is very similar to the shift-map scheme with N = 2),
each information signal x is quantized by a points (as the



transmitted signal s1) and the the scaled version of the
quantization noise is sent over the next dimension (as the
transmitted signal s2). As a natural extention of this scheme
for larger blocks of data, we can quantize a block of the
information signals (of length M ) by using points from a
dense M -dimensional lattice. If we use the same number
of quantization points, this solution reduces the required
SNR threshold by γL where γL is the coding gain of the
lattice. Also, it translates the shaping gain of the lattice
to the asymptotic performance of the system (in terms of
reduction in the output distortion). For example, if we map
3-tuple blocks of data to 6-dimensional vectors by using
the quantization based on the lattice D3 [14], compared to
the simple 1-to-2 scheme, we can reduce the required SNR
threshold by about 1 dB (the coding gain of D3) and also
increase the asymptotic gain of the scheme.

A similar idea can be applied for the schemes proposed
in the previous section. Consider L as a binary lattice such
that 2K

Z
M ⊂ L ⊂ Z

M and |L/2k
Z

M | = 2l. Every vector
x = [x1, x2, ..., xM ] can be represented as

x = −1

2
+

1

2k
Q +

1

2k+M
R1 +

1

2k+M
R2 (36)

+... +
1

2k+jM
Rj + ... (37)

where Q ∈ L/2k
Z

M and Rj ∈ L/2ML.
Now, we can construct the lattice version of Scheme I

of the previous section. For the data block x = [x1x2...xM ]
(− 1

2 ≤ xi < 1
2 ), we consider the binary labeling correspond-

ing to x (as the concatenation of the binary labellings for Q,
R1, R2, ...):

x ≡ b1b2...bNlbNl+1...bNl+NkbNl+Nk+1...bNl+2Nk...
(38)

Now, we construct the M -dimensional transmitted signals
s1, s2, ..., sN as

si = −1

2
+

1

2k
Qi +

1

2kαM
Ri1 +

1

2kα2M
Ri2 (39)

+... +
1

2k+jM
Rij + ... (40)

where Qi is a member of L/2k
Z

M (corresponding
to label bibN+i..b(l−1)N+i, for 1 ≤ i ≤ N ) and
Rij is a member of L/2ML (corresponding to label
blN+(j−1)MN+i...blN+(j−1)MN+(M−1)N+i , for 1 ≤ i ≤ N
and j = 1, 2, ...).

VI. PRACTICAL CONSIDERATIONS AND SIMULATION
RESULTS

Although Scheme II deals with the infinite binary expan-
sion of x+ 1

2 (which is not practically feasible), approximated
versions of this mapping can be implemented by low-
complexity encoders and decoders. A simple approximation
of these methods is to split x + 1

2 as

x +
1

2
= 0.b1b2...bn + r (41)
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Fig. 2. The output SNR (or SDR) for the first proposed scheme (with
α = 4 and 3) and the shift-map scheme with a = 3. The bandwidth
expansion is N = 4.

and applying the proposed methods on 0.b1b2...bn and send r
by a linear mapping over one of the dimensions. For this ap-
proximation, the asymptotic slope of the signal to distortion
ratio (versus the channel SNR) is 1 (similar to the shift-
map scheme). Indeed, compared to the traditional analog
schemes like the shift-map scheme, the new scheme has a
gracefull degradation for the low SNR region. At the receiver,
decoding can be split among different dimensions without
any loss in the performance. Therefore, the complexity of
decoding is similar to decoding of scalar quantized data.

In figure 1, for a bandwidth expansion factor of 4, the
performance of Scheme I (with parameters α = 4 and
3) is compared with the shift-map scheme with a = 3.
As we expect, for the shift-map scheme, the signal-to-
distortion-ratio (SDR) curve saturates at slope 1, while the
new scheme offers asymptotic slopes higher than one. For
the new scheme, with parameters α1 = 4 and α2 = 3,
the asymptotic slope is respectively β1 = 4 log 2

log 4 = 2 and
β2 = 4 log 2

log 3 (as expected from Theorem 2). Also, we see
that the new scheme provides a gracefull degradation in the
low SNR region.

In figure 2, performance of the approximated version of
Scheme II (with 5 bits) is compared to the performance of
the shift-map scheme for the same setting. Compared to the
old method, the new scheme offers a better performance for
low SNRs, by using a much simpler decoder.

VII. CONCLUSIONS

To avoid the mild saturation effect in analog transmission
systems and achieving the optimum scaling of the output
distortion, we need to use nondifferentiable mappings (more
precisely, mappings which are not differentiable on any
interval). Two nondifferentiable schemes are introduced in
this paper. Both these schemes outperform the traditional
analog schemes, in terms of scaling of the output SDR, and
one of them almost achieves the optimum SDR scaling with
a simple mapping (it asymptotically achieves slope N for
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Fig. 3. The output SNR (or SDR) for the approximated version of the
proposed scheme II and the shift-map scheme with a = 3. The bandwidth
expansion is N = 4.

the SDR curve). Also, simulation results show that Piece-
wise differentiable approximations of these methods offers
an acceptable performance (with a low encoding/decoding
complexity) for a wide range of channel SNRs.
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