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Abstract— This paper considers the setup of a parallel
MIMO relay network in which K relays, each equipped with
N antennas, assist the transmitter and the receiver, each
equipped with M antennas, in the half-duplex mode, under
the assumption that N ≥ M . This setup has been studied in
the literature like in [1], [2], and [3]. In this paper, a simp le
scheme, the so-called Incremental Cooperative Beamforming,
is introduced and shown to achieve the capacity of the network
in the asymptotic case ofK → ∞ with a gap no more than
O

“

1
log(K)

”

. This result is shown to hold, as long as the power

of the relays scales asω
“

log9(K)
K

”

. Finally, the asymptotic SNR
behavior is studied and it is proved that the proposed scheme
achieves the full multiplexing gain, regardless of the number
of relays.1

I. I NTRODUCTION

The relay channel, which was first introduced by Van-der
Meulen in 1971 [4], has been reconsidered a lot in recent
years. The main idea is to employ some extra nodes in the
network to aid the transmitter/receiver in sending/receiving
the signal to/from the other end. In this way, the supplemen-
tary nodes act as (spatially) distributed antennas assisting
the signal transmission and reception. Up to now, some
promising results have been published on MIMO Multiple-
Access and Broadcast channels in [5], [6], [7], [8], and [9].
However, there are still only a few results known concerning
the MIMO relay networks. Moreover, no capacity-achieving
strategy is known for the Gaussian relay channel.

Recently, several extensions of the relay channel have
been considered, e.g. in [10]–[13]. Some of these extensions
consider a multiple-relay scenario in which several nodes
relay the message. The parallel relay channel is a special case
of the multiple relay channel in which the relays transmit
their data directly to the receiver. Besides studying the well-
known “compress-and-forward” and “decode-and-forward”
strategies, the authors in [10], [11] have also studied the
“amplify-and-forward” strategy where the relays simply am-
plify and transmit their received data to the receiver. Despite
its simplicity, the AF strategy achieves a good performance.
In fact, [10] shows that AF outperforms other strategies in
many scenarios. Moreover, [11] proves that AF achieves
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the capacity of the Gaussian (single antenna) parallel relay
network as the number of relays increases.

References [1], [2] extend the work of [11] to the MIMO
Rayleigh fading parallel relay network. Unlike the single
antenna parallel relay scenario, in this case the AF multipliers
are matrices rather than scalars. Hence, finding the optimum
AF matrices becomes challenging. Reference [1] has pro-
posed a coherent AF scheme, called “matched filtering”, and
proves that this scheme follows the capacity of the channel
with a constant gap in terms of the number of relays in the
asymptotic case ofK → ∞.

In this paper, we consider the AF strategy in the parallel
MIMO relay network. We propose a new AF protocol called
“Cooperative Beamforming Scheme” (CBS). Considering the
uplink channel (from the transmitter to the relays) as a point-
to-point channel, in CBS the relays cooperatively multiply
the channel matrix with its left eigenvector matrix. The
interesting point is that to perform such an operation, each
relay only needs to know its corresponding sub-matrix of the
beamforming matrix. For the outputs to be coherently added
at the receiver end, each relay has to apply zero forcing
beamforming to its corresponding downlink channel (the
channel from each relay to the receiver). Here, the interesting
result is that the overall channel from the transmitter to the
receiver becomes diagonal and the overall Gaussian noise
has independent components.

We show that the proposed scheme is optimum in the
case of having negligible noise in the downlink channel.
To enhance the performance of CBS in general scenarios,
this work introduces a variant of CBS called “Incremental
Cooperative Beamforming Scheme” (ICBS). In ICBS, the
relays with ill-conditioned downlink channels are turned off.
This strategy improves the overall point-to-point channel
from the transmitter to the receiver. However, an interference
term due to turning some of the relays off will be included
in the equivalent point-to-point channel.

It is shown that for asymptotically large number of relays,
one can simultaneously mitigate the downlink noise and the
interference term due to the turned-off relays. As a result,the
achievable rate of ICBS converges to the capacity of parallel
MIMO relay network with a gap which scales asO

(
1

log(K)

)

.
This result is stronger than the result of [1] and [2] in which
they show that their scheme can asymptotically (K → ∞)



achieve the capacity up toO(1). Also, our numerical results
show that the achievable rate of ICBS converges rapidly
to the capacity, even for moderate number of relays. We
also show that the same result can be achieved by ICBS, as
long as the power of the relays scales asω

(
P
K

log9 (K)
)

2. Finally, by analyzing the asymptotic SNR behavior of
the proposed scheme, it is proved that, unlike the matched
filtering scheme of Bcskei-Nabar-Oyman-Paulraj (BNOP)
which results in a zero multiplexing gain, our proposed
scheme achieves the full multiplexing gain, regardless of the
number of relays.

The rest of the paper is organized as follows. In section II,
the system model is introduced. In section III, the proposed
AF scheme is described. Section IV is dedicated to the
asymptotic analysis of the proposed scheme. Simulation re-
sults are presented in section V. Finally, section VI concludes
the paper.

A. Notation

Throughout the paper, the superscriptsT ,H and∗ stand for
matrix operations of transposition, conjugate transposition,
and element-wise conjugation, respectively. Capital bold
letters represent matrices, while lowercase bold letters and
regular letters represent vectors and scalars, respectively.
‖v‖ denotes the norm of the vectorv while ‖A‖ rep-
resents the frobenius norm of the matrixA. |A| denotes
the determinant of the matrixA while ‖A‖⋆ represents
the maximum absolute value among the entries ofA. The
notation A† stands for the pseudo inverse of the matrix
A. The notationA 4 B is equivalent toB − A is a
positive semi-definite matrix. For any functionsf(n) and

g(n), f(n) = O(g(n)) is equivalent tolimn→∞

∣
∣
∣
f(n)
g(n)

∣
∣
∣ < ∞,

f(n) = o(g(n)) is equivalent tolimn→∞

∣
∣
∣
f(n)
g(n)

∣
∣
∣ = 0, f(n) =

Ω(g(n)) is equivalent tolimn→∞
f(n)
g(n) > 0, f(n) & g(n)

is equivalent tolimn→∞
f(n)
g(n) ≥ 1, f(n) = ω(g(n)) is

equivalent tolimn→∞
f(n)
g(n) = ∞, f(n) ∼ g(n) is equivalent

to limn→∞
f(n)
g(n) = 1 and f(n) = Θ(g(n)) is equivalent to

limn→∞
f(n)
g(n) = c, where0 < c < ∞.

II. SYSTEM MODEL

The system model, as in [1], [2], and [3], is a paral-
lel MIMO relay network with two-hop relaying and half-
dulplexing between the uplink and downlink channels. In
other words, the data transmission is performed in two time
slots; in the first time slot, the signal is transmitted from
the transmitter to the relays, and in the second time slot,
the relays transmit data to the receiver. Note that there is
no direct link between the transmitter and the receiver in
this model. The transmitter and the receiver are equipped
with M antennas and each of the relays is equipped withN

antennas. Throughout the paper, we assume thatN ≥ M .
The channel between the transmitter and the relays and the
channel between the relays and the receiver are assumed to

2f(n) = ω(g(n)) is equivalent tolimn→∞

f(n)
g(n)

= ∞

be frequency flat block Rayleigh fading. The channel from
the transmitter to thekth relay,1 ≤ k ≤ K, is modeled as

rk = Hkx + nk, (1)

and the downlink channel is modeled as

y =

K∑

k=1

Gktk + z, (2)

where the channel matricesHk and Gk are i.i.d. complex
Gaussian matrices with zero mean and unit variance.nk ∼
CN (0, IN ) and z ∼ CN (0, IM ) are Additive White Gaus-
sian Noise (AWGN) vectors,rk and tk are thekth relay’s
received and transmitted signal, respectively, andx and y

are the transmitter’s and the receiver’s signal, respectively.
Hk andGk are of the sizesN×M andM×N , respectively.

The task of amplify and forward (AF) relaying is to
find the matrix Fk for each relay to be multiplied by
its received signal to produce the relay’s output astk =
Fkrk. In addition, the power constraintsE[xHx] ≤ Ps and
Ex,nk

[tH
k tk] ≤ Pr must be satisfied for the transmitted

signals of the transmitter and the relays, respectively. We
assumePr = Ps = P throughout the paper, except in
Theorem 2, where we study the casePr < Ps = P .

III. PROPOSEDMETHOD

A. Cooperative Beamforming Scheme

The equivalent uplink channel can be represented as
HT =

[
HT

1 |HT
2 |· · ·|HT

K

]T
. By applying Singular Value

Decomposition (SVD) toH, we haveH = UΛ
1

2 VH .
Therefore, the diagonal matrixΛ has at mostM nonzero
diagonal entries corresponding to the nonzero singular values
of H. Consequently, we can rearrange the SVD such that
U is of size NK × M while V and Λ are M × M

matrices.U can be partitioned toM × N sub-matrices as
U =

[
UT

1 |UT
2 |· · ·|UT

K

]T
. Suppose thekth relay multiplies

its received signal byFk = αG
†
kU

H
k . At the receiver side,

we have (figure 1(a))

y = α

K∑

k=1

GkG
†
kU

H
k rk + z

= αUHr + z

= αUH (Hx + n) + z

= α
(

Λ
1

2 VHx + nu

)

+ z, (3)

wheren =
[
nT

1 |nT
2 |· · ·|nT

K

]T
, r =

[
rT
1 |rT

2 |· · ·|rT
K

]T
, and

nu = UHn ∼ CN (0, IM ). If the transmitter beamforms its
data vector asx = Vx′, the end-to-end channel becomes

y = α
(

Λ
1

2 x′ + nu

)

+ z. (4)

Equation (4) shows that the end-to-end channel is diagonal
and the noise vector is white Gaussian. Note that the com-
plexity of the decoder in such a channel is linear in terms
of the number of transmitter’s antennas,M , and also there
is no interference among different data streams. Moreover,
as it is shown in section IV, forα → ∞, the achievable rate



of such a scheme converges to the ergodic capacity of the
Parallel MIMO relay network. The problem is that the value
of α is dominated by

α =

√
√
√
√
√

P

maxk Ex,nk

[∥
∥
∥G

†
kU

H
k rk

∥
∥
∥

2
] . (5)

This guarantees that the output power of all relays is less
than or equal toP . However, the value ofα could be small
in the cases where the downlink channel of any of the relays
is ill conditioned. This means that while the output power of
the worst relay (according to (5)) is equal to the maximum
possible value, i.e.P , there may be many relays with the
output power far less thanP . This phenomenon degrades the
performance, as in this case the downlink noise,z, would be
the dominant noise in (4).
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Fig. 1. Cooperative Beamforming Scheme and Incremental Cooperative
Beamforming Schemes Schematics

B. Incremental Cooperative Beamforming Scheme (ICBS)

In this variant of CBS, we select a subset of relays
which results in a high value ofα. Defining βk ,

Ex,nk

[∥
∥
∥G

†
kU

H
k rk

∥
∥
∥

2
]

, we activate the relays which satisfy

βk ≤ β, whereβ is a predefined threshold. In this manner, it

is guaranteed thatα ≥
√

P
β

. This improvement in the value
of α is realized at the expense of turning off some of the
relays, creating interference in the equivalent point-to-point
channel. More precisely, by definingA = {k|βk > β}, we

have (figure 1(b))

y = α

((

Λ
1

2 −
∑

k∈A

UH
k HkV

)

x′ +
∑

k∈Ac

UH
k nk

)

+ z.

(6)
As (6) shows, by decreasing the value ofβ, one can
guarantee a large value ofα while increasing the gap of
the equivalent channel matrix toΛ

1

2 . It will be shown in the
next section that for large number of relays, it is possible
to guarantee both having a large value ofα and a small
deviation fromΛ

1

2 . Moreover, we show that by appropriately
choosing the value ofβ, the rate of such a scheme would be
at mostO

(
1

log(K)

)

below the corresponding capacity.

C. A Note on CSI Assumption

In the BNOP scheme, it is assumed that each relay knows
its corresponding forward and backward channels, i.e.Hk

andGk, and at the receiver side, the effective signal power
and the effective interference plus noise power are known for
each antenna. However, in CBS and ICBS, it is assumed that
the transmitter knows the uplink channel, i.e.H1, · · · ,HK ,
and sends theN × M matrix Uk to the k’th relay, k =
1, · · · , K. This assumption is reasonable when the uplink
channel is slow-fading; for example, in the case that the
transmitter and all the relay nodes are fixed. Furthermore,
similar to the BNOP scheme, we assume that each relay
knows its forward channel, i.e.Gk. In addition, in CBS,
it is assumed that the value ofα is set by negotiating
between the relays through sending their correspondingβk

to the transmitter. This assumption is not required in ICBS,

as the value ofα can be set asα =
√

P
β

, whereβ is a
predefined threshold. Finally, in both CBS and ICBS, it is
assumed that the receiver has the perfect knowledge about the
equivalent point-to-point channel from the transmitter tothe
receiver. This information can be obtained through sending
pilot signals by the transmitter, amplified and forwarded
at the relay nodes in the same manner as the information
signal. In CBS, this assumption is equivalent to knowing the
equivalent signal to noise ratio at each antenna.

IV. A SYMPTOTIC ANALYSIS

In this section, we consider the asymptotic behavior (K →
∞) of the achievable rate of ICBS. We show that by
properly choosing the value ofβ, the achievable rate of ICBS
converges rapidly to the capacity (the difference approaches
zero asO

(
1

log(K)

)

). The sequence of proof is as follows.

In Lemma 1, we relateP [v > ξ] (the probability that the
norm of interference term defined in equation (6) exceeds
a certain threshold) toP[k ∈ A] (the probability of turning
off a relay) andP[‖Uk‖2 > γ] (the probability of having a
sub-matrix with a large norm in the unitary matrix obtained
from the SVD ofH). In Lemma 2, we boundP[‖Uk‖2 > γ].
In Lemma 3, we boundP[k ∈ A]. As a result, in Lemma
4, we show that by properly choosing the value ofβ, with
high probability, one can simultaneously reduce the effectof
the interference too(K) and maintain a large value ofα. In



Lemma 5, we show that with high probability, the minimum
singular value ofH scales asO(K). Finally, in Theorem 1,
we prove the main result by showing that the achievable rate
of ICBS converges to the capacity of the uplink channel. As a
consequence stated in corollary 1, the difference of the rates
scales asO( 1

log(K)). As another consequence, the probability
of outageO( 1

log(K) ) below the ergodic capacity approaches
zero as the number of relays increases. Using the proof of
Lemma 4 and Theorem 1, Theorem 2 shows that as long as
the power of relays behaves asPr(K) = ω

(
P
K

log9 (K)
)
,

the same rate is achievable by ICBS. Finally, in Theorem
3, we study the asymptotic SNR behavior of CBS and
ICBS, and show that, unlike the matched filtering scheme
of BNOP, CBS and its variant achieve the full multiplexing
gain, regardless of the number of relays.

Lemma 1 Consider a parallel MIMO relay network withK
relays using ICBS. We have

P [v > ξ] ≤ MNK2

ξ
(P[Bk] + γP[Ak]) , (7)

wherev =
∥
∥
∑

k∈A UH
k Hk

∥
∥

2
, Ak ≡ (k ∈ A), and Bk ≡

(‖Uk‖2 > γ).

Proof: See [14].

Lemma 2 Consider aKN × M Unitary matrix U, where
its columnsUi, i = 1, · · · , M , are isotropically distributed
unit vectors inCNK×1. Let W be an arbitraryN ×M sub-
matrix of U. Then, forγ = ω

(
1
K

)
, asK → ∞, we have

P
[
‖W‖2 ≥ γ

]
= O

(

(Kγ)
(N−1)

e−
γ
M

NK
)

(8)

Proof: See Appendix A of [14].

Lemma 3 For a small enough value ofδ, we have

P[Ak] ≤ P[Bk] + c1

√
δ + c2e

− d
√

δ , (9)

where δ = γ
β

, and c1, c2 and d are positive constant
parameters independent ofK, β, andγ.

Proof: See [14].

Lemma 4 By assigningβ = 1
log(K) andγ = 2 log(K)

K
, ICBS

simultaneously achieves

α = Ω
(√

log(K)
)

, (10)

P

[

v >
K

log2(K)

]

= O

(
log4 (K)√

K

)

, (11)

wherev is defined in Lemma 1.

Proof: See [14].

Lemma 5 Let A be anr × s matrix whose entries are i.i.d
complex Gaussian random variables with zero mean and unit

variance. Assume thatr is fixed ands tends to infinity. Then,
with probability oneλmin(A) ∼ s, or more precisely,

P

[

λmin(A) ∼ s

(

1 + O

(

4

√

log(s)

s

))]

&

1 − O

(

1

s
√

log (s)

)

, (12)

where λmin(A) denotes the minimum singular value of
AAH .

Proof: See Appendix B of [14].
Now, we prove the main theorem of this section.

Theorem 1 By setting the threshold asβ = 1
log(K) , the

achievable rate of the proposed ICBS converges to the
upper-bound capacity defined for the uplink channel. More
precisely,

lim
K→∞

Cu(K) − RICBS(K) = 0, (13)

where

Cu(K) =
1

2
EH

[

max
Q,Tr{Q}≤P

log
(∣
∣IKN + HQHH

∣
∣
)
]

is the point to point ergodic capacity of the uplink channel
and RICBS(K) is the achievable rate of ICBS.

Proof: By applying the cut-set bound theorem [15] on
the broadcast uplink channel, it can be easily verified [1],
[2] that the point-to-point capacity of the uplink channel,
Cu(K), is an upper-bound on the capacity of the parallel
MIMO relay network. Note that the factor12 in the expres-
sion of Cu(K) is due to the half-duplex relaying. Define

Cu⋆(K) = M
2 log

(
KNP

M

)
+ O

(√
log(K)

K

)

. We first show

that Cu⋆(K) is an upper-bound forCu(K), and then prove
that a lower-bound forRICBS(K) converges toCu⋆(K).

Cu(K)
(a)
=

1

2
EH




 max

Q

Tr{Q}≤P

log
(∣
∣IM + HHHQ

∣
∣
)






(b)

≤ 1

2
EH

[

max
Q

Tr{Q}≤P

M log

(

1 +
Tr
{
HHHQ

}

M

)





(c)

≤ M

2
max
Q

Tr{Q}≤P

log

(

1 + EH

[

Tr
{
HHHQ

}

M

])

(14)

Here, (a) follows from the matrix determinant equality3 ,
(b) results from the fact that for any positive semidefinite

3AssumingA andB to beM × N andN × M matrices respectively,
we have|IM + AB| = |IN + BA| [16].



matrix A, we have|A| ≤
(

Tr{A}
M

)M

, and(c) follows from
the concavity of the logarithm function.

Let us define D = B
⋂

C , in which B denotes

the event thatλmin(H) ∼ KN

[

1 + O

(

4

√
log(K)

K

)]

and

C represents the event thatKNM

[

1 −
√

2 log(K)
K

]

<

Tr{HHH} < KNM

[

1 +
√

2 log(K)
K

]

. Applying Lemma

5, we haveP[Bc] . O

(

1

K
√

log(K)

)

. Also, observing that

the eventB is defined in the same way as the eventDi in
the proof of Lemma 5 (see [14]), and following the same
steps by using Central Limit Theorem, we haveP[C c] ∼
O

(

1

K
√

log(K)

)

. Defining E , EH

[
Tr
{
HHHQ

}]
, we

boundE as follows

E ≤ EH

[
Tr
{
HHHQ

}∣
∣D
]
+

EH

[
Tr
{
HHHQ

}∣
∣D

c
]
P[Dc]

(a)

≤ EH

[
Tr
{
HHHQ

}∣
∣D
]
+ P

(
EH

[
Tr
{
HHH

}]
− EH

[
Tr
{
HHH

}∣
∣D
]
P [D ]

)

(b)

≤ EH

[
Tr
{
HHHQ

}∣
∣D
]
+

PMNK

(√

2 log(K)

K
+ P[Dc]

)

(c)

. EH

[
Tr
{
HHHQ

}∣
∣D
]
+

+PMNKO

(√

log(K)

K

)

(d)

≤ EH [Tr {λmax (H) IMQ}|D ] +

PMNKO

(√

log(K)

K

)

(e)

≤ PEH

[
Tr
{
HHH

}
− (M − 1)λmin (H)

∣
∣D
]
+

PMNKO

(√

log(K)

K

)

(f)

. PKN

[

1 + O

(√

log(K)

K

)]

. (15)

Here, (a) follows from the generalization of the Cauchy-
Schwarz inequality to the positive semidefinite matri-
ces4, Tr{Q} ≤ P , and also EH

[
Tr
{
HHH

}]
=

EH

[
Tr
{
HHH

}∣
∣D
]
P[D ] + EH

[
Tr
{
HHH

}∣
∣Dc

]
P[Dc],

(b) follows from E
[
Tr
{
HHH

}]
= MNK and the

fact that conditioned onD , we have Tr{HHH} >

MNK

[

1 −
√

2 log(K)
K

]

, (c) follows from the union bound

on the probability and the fact thatP[Bc], P[C c] .

4AssumingA and B to be positive semidefinite matrices respectively,
we have Tr{AB} ≤ Tr {A} Tr {B} [17].

O

(

1

K
√

log(K)

)

, (d) follows from the fact thatHHH 4

λmax (H) IM , (e) results from the fact thatλmax (H) ≤
∑M

i=1 λi (H) − (M − 1)λmin (H) = Tr
{
HHH

}
−

(M − 1)λmin (H), and finally (f) follows from the fact
that conditioned onD , Tr

{
HHH

}
is upper-bounded by

KNM

(

1 +
√

2 log(K)
K

)

and λmin (H) is lower-bounded

by KN

(

1 − O

(

4

√
log(K)

K

))

. Applying (14) and (15), we

have

Cu(K) .
M

2
log

(

1 + KNP

[

1 + O

(√

log(K)

K

)])

∼ M

2
log

(
KNP

M

)

+ O

(√

log(K)

K

)

= Cu⋆(K) (16)

Now, we lower-boundRICBS(K). Rephrasing (6), we have

y = αH⋆x′ + n⋆, (17)

where

H⋆ = Λ
1

2 −
∑

k∈A

UH
k HkV,

n⋆ = α
∑

k∈Ac

UH
k nk + z ∼ CN (0,Pn⋆) ,

where Pn⋆ = α2
(∑

k∈Ac UH
k Uk

)
+ IM . The achievable

rate of such a system is

RICBS(K) =
1

2
EH

[

log

(∣
∣
∣
∣
IM + α2 P

M
H⋆H⋆HP−1

n⋆

∣
∣
∣
∣

)]

(a)

≥ 1

2
EH

[

log

(∣
∣
∣
∣

α2

1 + α2

P

M
H⋆H⋆H

∣
∣
∣
∣

)]

=
M

2
log

(
α2

1 + α2

)

+

1

2
EH

[

log

(∣
∣
∣
∣

P

M
H⋆H⋆H

∣
∣
∣
∣

)]

, (18)

where(a) follows from the fact thatPn⋆ = (α2 + 1)IM −
α2
(∑

k∈A UH
k Uk

)
which results inP−1

n⋆ < 1
α2+1IM . For

convenience, letRL(K) = 1
2EH

[
log
(∣
∣ P
M

H⋆H⋆H
∣
∣
)]

. Since
α is lower-bounded by the inverse of the threshold asα ≥√

P
β

, we havelimK→∞
M
2 log

(
α2

1+α2

)

= 0, or equivalently

lim
K→∞

RICBS(K) − RL(K) ≥ 0. (19)

Define the events EK and FK as EK ≡(

λmin (H) & KN

[

1 + O

(

4

√
log K

K

)])

and FK ≡
(∥
∥UH

AHA

∥
∥

2 ≤ K
log2(K)

)

. Consequently, we have

P [EK , FK ]
(a)

≥ 1 − P[Ec
K ] − P[F c

K ]
(b)

& 1 + O

(
log4(K)√

K

)

.

(20)



Here, (a) follows from union bound inequality and(b)
follows from Lemmas 4 and 5. Assume the diagonal entries
of Λ are ordered asλ1(H) ≥ λ2(H) ≥ · · · ≥ λM (H). Thus,
RL(K) can be lower bounded as

RL(K) ≥ P [EK , FK ] EH

[

log

(∣
∣
∣
∣
∣

√

P

M

(

Λ
1

2 − UH
AHAV

)
∣
∣
∣
∣
∣

) ∣
∣
∣
∣
∣
EK , FK

]

(a)

≥ P [EK , FK ] EH

[

log

((
P

M

)M
2

(
M∏

i=1

λ
1

2

i (H)

−
M∑

i=1

i!

(
M

i

)
∥
∥UH

AHAV
∥
∥

i

⋆

M−i∏

j=1

λ
1

2

j (H)









∣
∣
∣
∣
∣
EK , FK

]

(b)

≥ P [EK , FK ] EH

[

log

((
P

M

)M
2

M∏

i=1

λ
1

2

i (H)



1 −
M∑

i=1

i!

(
M

i

)(∥
∥UH

AHA

∥
∥

2

λmin (H)

) i
2









∣
∣
∣
∣
∣
EK , FK

]

(c)

& P [EK , FK ] EH

[

log

((
P

M

)M
2

M∏

i=1

λ
1

2

i (H) ·

·
(

1 −
M∑

i=1

i!

(
M

i

)
(
N log2(K) [1+

+O

(

4

√

log K

K

)])−i
2









∣
∣
∣
∣
∣
EK , FK





(d)

&

{
M

2
log

(
KNP

M

)

+ O

(
1

log(K)

)}

P [EK , FK ]
(e)

&
M

2
log

(
KNP

M

)

+ O

(
1

log(K)

)

. (21)

Here, (a) follows from an upper-bound on the determi-
nant expansion5 of Λ

1

2 − UH
AHAV, expanded over all

possible set entries betweenΛ and UH
AHAV, (b) follows

from the fact that the Frobenius norm of a matrix is
an upper-bound on the square of the maximum absolute
value among its entries and also∀i : λi(H) ≥ λmin(H),
(c) follows from the fact that the expectation is derived
conditioned on the eventsEK and FK , (d) holds due
to the fact that conditioned onEK , we haveλi (H) &

KN

[

1 + O

(

4

√
log K

K

)]

and log

(

1 + O

(

4

√
log(K)

K

))

∼

5det (A) =
P

π (−1)σ(π) a1π1
a2π2

· · ·anπn ≤
P

π |a1π1
a2π2

· · ·anπn |, whereσ is the parity function of permutation.

O

(

4

√
log(K)

K

)

∼ o
(

1
log2(K)

)

, and finally,(e) results from

(20). Comparing (16), (19), and (21), completes the proof.

Corollary 1 Achievable rate of ICBS is at mostO
(

1
log(K)

)

below the upper-bound corresponding to the cut-set defined
on the point-to-point uplink channel, i.e.Cu(K).

Proof: See [14].
Apart from increasing the rate, using parallel relays also

increases the reliability of the transmission. As the following
corollary shows, the probability of outage when sending in-
formation at the rateO

(
1

log(K)

)

below the ergodic capacity
approaches zero, asK → ∞.

Corollary 2 Consider the parallel MIMO relay network and
ICBS with the threshold valueβ = 1

log(K) . We have

P

[
1

2
log

(∣
∣
∣
∣
IM + α2 P

M
H⋆H⋆HP−1

n⋆

∣
∣
∣
∣

)

. Cu(K)+

O

(
1

log (K)

)]

∼ O

(
log4 (K)√

K

)

.

Proof: See [14].
Another interesting result is that by increasing the number

of relays, each relay can operate with a much lower power
as compared to the transmitter, while the scheme achieves
the optimum rate. This shows another benefit of using many
parallel relays in the network.

Theorem 2 Up to the point thatPr(K) = ω
(

P
K

log9 (K)
)
,

the achievable rate of ICBS satisfies

lim
K→∞

RICBS(K) − Cu(K) =

lim
K→∞

RICBS(K) − M

2
log

(
KNP

M

)

= 0.

Proof: See [14].

Theorem 3 The proposed Cooperative Beamforming
scheme and its variant achieve the maximum multiplexing
gain of the relay channel. More precisely:

lim
P→∞

RCBS(P )

log(P )
=

M

2
, (22)

and M
2 is the maximum achievable multiplexing gain of

the underlying half duplex system. (HereRCBS(P ) is the
achievable rate of the proposed scheme for the given power
constraintP .)

Proof: See [14].



V. SIMULATION RESULTS

Figure 2 shows the simulation results for the achievable
rate of ICBS, BNOP matched filtering scheme [1], and the
upper-bound of the capacity based on the uplink Cut-Set
for varying number of relays. The number of transmitting
and receiving antennas in the relays, the transmitter, and the
receiver isM = N = 2, and the SNR isPs = Pr = 10dB.
While both of the schemes demonstrate logarithmic scaling
of rate in terms ofK, we observe that there is a significant
gap between the BNOP scheme and our scheme, reflecting
the gap ofO(1) in the achievable rate of [1]. On the other
hand, the gap between ICBS and the upper-bound rapidly
approaches zero due to the termO

(
1

log(K)

)

predicted in
Corollary 2.
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Fig. 2. Upper-bound of the capacity, ICBS, and BNOP matched filtering
Scheme vs. number of relays in parallel MIMO relay network

VI. CONCLUSION

A simple new scheme, Cooperative Beamforming Scheme
(CBS), based on Amplify and Forward (AF) strategy is
introduced in a parallel MIMO relay network. A variant of
CBS, called Incremental Cooperative Beamforming Scheme
(ICBS) is shown to achieve the capacity of parallel MIMO
relay network forK → ∞. The scheme is shown to rapidly
approach the upper-bound of the capacity with a gap no
more thanO

(
1

log(K)

)

. As a result, it is shown that the

capacity of a parallel MIMO relay network isC(K) =
M
2 log

(
1 + KNP

M

)
+ O

(
1

log(K)

)

in terms of the number
of relays,K. Moreover, it is shown that as the number of
relays increases, the relays in ICBS can operate using much
less power without any performance degradation. Finally,
the proposed scheme is shown to achieve the maximum
multiplexing gain regardless of the number of relays. The
simulation results confirm the validity of the theoretical
arguments.
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