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Abstract— Uniform M-PAM signal transmission over AWGN
channel with two-level interference where the sequence of inter-
ference symbols is known causally at the transmitter is consid-
ered. Shannon’s theorem for channels with side information at the
transmitter is used to formulate the capacity of the channel. It is
shown that by using exactly M out of M2 inputs of the associated
channel the capacity is achievable. Based on this, the general
structure of a communication system with optimum precoding
for the channel under consideration is proposed.

I. INTRODUCTION

Information transmission over channels with known inter-
ference at the transmitter has recently found applications in
various communication problems such as digital watermarking
[1] and broadcast schemes [2]. A main result on such channels
was obtained by Costa who showed that the capacity of
AWGN channel with Gaussian i.i.d. interference, where the
sequence of interference symbols is known non-causally at
the transmitter, is the same as the capacity of AWGN channel
[3]. Therefore, the interference does not incur any loss in the
capacity. This result was extended to any type of interference
in [4]. The result obtained by Costa does not hold for the case
that the sequence of interference symbols is known causally
at the transmitter.

Channels with known interference at the transmitter are spe-
cial case of channels with side information at the transmitter
which were considered by Shannon [5] in causal knowledge
setting and by Gel’fand and Pinsker [6] in non-causal knowl-
edge setting. Shannon considered a discrete memoryless chan-
nel (DMC) whose transition matrix depends on the channel
state.

A state-dependent discrete memoryless channel (SD-DMC)
is defined by a finite input alphabet X , a finite output alphabet
Y , and transition probabilities p(y|x, s), where the state s takes
on values in a finite alphabet S. Shannon [5] showed that
the capacity of an SD-DMC where the i.i.d. state sequence is
known causally at the encoder is equal to the capacity of an
associated regular (without state) DMC with an extended input
alphabet T that indexes all functions from the state alphabet to
the input alphabet of the state-dependent channel and with the
same output alphabet as the state-dependent channel. There
are a total of |X ||S| of such functions, where |.| denotes the
cardinality of a set. Any of the functions can be represented
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Fig. 1. SD-DMC with state information at the encoder.
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Fig. 2. The associated regular DMC.

by a |S|-tuple (x1, x2, . . . , x|S|), implying that the value of
the function at state s is xs, s = 1, 2, . . . , |S|.

The transition probabilities for the associated channel are
given by

p(y|t) =
|S|∑

s=1

p(s)p(y|xs, s), (1)

where t denotes the index of the function represented by
(x1, x2, . . . , x|S|). The SD-DMC and its associated regular
DMC are shown in figs. 1 and 2, respectively.

In the next section, we introduce the channel model. In sec-
tion III, we investigate the capacity of the channel introduced
in section II. The general structure of a communication system
for the channel with known discrete interference is given in
section IV. We conclude this paper in section V.

II. THE CHANNEL MODEL

We consider M-ary Pulse Amplitude Modulation (M-PAM)
signaling over the channel

Y = X + S + N, (2)

where X is the channel input, which takes on values in
{x1 = −(M − 1), x2 = −(M − 3), . . . , xM = M − 1}, Y is
the channel output, N is additive white Gaussian noise with
power PN , and the interference S is a discrete random variable
that takes on values in {s,−s} with equal probabilities. The
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sequence of i.i.d. interference symbols is known causally at the
encoder. The above channel can be considered as a special case
of state-dependent channels considered by Shannon with one
exception that the channel output alphabet is continuous. In our
case, the likelihood function f(y|x, s) is used instead of the
transition probabilities. We denote the input to the associated
channel by T , which can also be represented as (X1, X2),
where X1 and X2 take value in M-PAM constellation.

The likelihood function for the associated channel is given
by

fY |T (y|t) =
1
2
fY |T,S(y|t, s) +

1
2
fY |T,S(y|t,−s)

=
1
2
fY |X,S(y|xi, s) +

1
2
fY |X,S(y|xj ,−s)

=
1
2
fN (y − xi − s) +

1
2
fN (y − xj + s), (3)

where fN denotes the pdf of noise N , and t represents (xi, xj).
The pdf of Y is then given by

fY (y) =
M∑

i=1

M∑

j=1

pij

(
1
2
fN (y − xi − s)

)
+

M∑

i=1

M∑

j=1

pij

(
1
2
fN (y − xj + s)

)

=
1
2

M∑

i=1

p
(1)
i fN(y − xi − s) +

1
2

M∑

j=1

p
(2)
j fN(y − xj + s), (4)

where pij = Pr{X1 = xi, X2 = xj}, p
(1)
i = Pr{X1 = xi},

and p
(2)
j = Pr{X2 = xj}, i, j = 1, 2, . . . , M .

III. THE CAPACITY

The capacity of the associated channel, which is the same
as the capacity of the original channel defined in section II, is
the maximum of I(T ; Y ) = I(X1X2; Y ) over the joint pmf
values pij = Pr{X1 = xi, X2 = xj}, where xi and xj belong
to M-PAM constellation, i.e.,

C = max
pij

I(X1X2; Y ). (5)

The mutual information between T and Y is the difference
between differential entropies h(Y ) and h(Y |T ). It can be
seen from (4) that fY (y), and hence h(Y ), are uniquely
determined by the marginal pmfs {p(1)

i }Mi=1 and {p(2)
j }Mj=1.

The conditional entropy h(Y |T ) is given by

h(Y |T ) = h(Y |X1X2)

=
M∑

i=1

M∑

j=1

pijh(Y |X1 = xi, X2 = xj)

=
M∑

i=1

M∑

j=1

pijhij , (6)

where hij = h(Y |X1 = xi, X2 = xj). Assuming that the
marginal pmfs for X1 and X2 are given, the maximization
problem in (5) reduces to the linear minimization problem

min
pij

M∑

i=1

M∑

j=1

hijpij

subject to
M∑

j=1

pij = p
(1)
i , i = 1, 2, . . . , M,

M∑

i=1

pij = p
(2)
j , j = 1, 2, . . . , M,

pij ≥ 0, i, j = 1, 2, . . . , M. (7)

In this paper, we are not going to find the actual capacity
C since it is a difficult problem. However, we will study
the optimal probability distribution {pij}i,j=1,2,...,M under the
constraint that X1 and X2 are uniformly distributed, i.e.,

p
(1)
i = p

(2)
i =

1
M

, i = 1, 2, . . . , M. (8)

This constraint makes the input to our channel defined in (2)
uniform.

There are M2 variables involved in the linear minimization
problem (7). Each variable represents the probability of an
input symbol of the associated channel. The following theorem
regards the number of nonzero variables required to achieve
the optimum value of (7).

Theorem 1: Denote by CU the maximum of I(X1X2; Y )
over pijs with uniform marginal pmfs for X1 and X2. Then
CU can be achieved by using only M inputs of the associated
channel with nonzero probabilities.

The maximization of CU is equivalent to the minimization
of (7) with marginal pmfs given in (8). Considering the
constraints in (7), theorem 1 implies that the capacity can be
achieved by some set of pijs, exactly M of them being 1

M
and the others being zero.

Proof: The equality constraints of (7) can be written in
matrix form as

Ap = 1, (9)

where A is a zero-one 2M × M2 matrix, p =
M
[
pT

1 pT
2 . . .pT

M

]T
, where pi = [pi1pi2 . . . piM ]T , i =

1, 2, . . . , M , and 1 is the all-one 2M × 1 vector. It is easy to
check that A is the vertex-edge incidence matrix of KM,M , the
complete bipartite graph with 2M vertices. Therefore, A is a
totally unimodular matrix [7]. Hence, the extreme points of the
feasible region F = {p : Ap = 1,p ≥ 0} are integer vectors.
Since the optimal value of a linear optimization problem is
attained at one of the extreme points of its feasible region,
the minimum in (7) is achieved at an all-integer vector p∗.
Considering that p∗ satisfies (9), it can only be a zero-one
vector with exactly M ones.

It turns out from the proof of theorem 1 that the optimum
solution of the linear optimization problem, p∗, is a zero-one
vector. So, if we add the integrality constraint to the set of
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Fig. 3. Optimal solution for 4-PAM input with parameters s = 2, PN =
1, PX = 5.

constraints in (9), we still obtain the same optimal solution.
The resulting integer linear optimization problem is called
the assignment problem [7], which can be solved using low-
complexity algorithms such as the Hungarian method [8].

According to theorem 1, to achieve CU , we need to use
only M out of M2 inputs of the associated channel with
equal probabilities 1

M . This result is independent of the
value of the coefficients {hij}. However, which probability
assignment with M nonzero elements is optimum depends on
the coefficients {hij}. The coefficient hij is determined by the
parameter s, the noise power PN , and the signal points xi, xj .

As example, the optimal solutions for two different scenar-
ios with 4-PAM constellation (X1, X2 ∈ {−3,−1, +1, +3})
are illustrated in figs. 3 and 4. The points circled in the array
correspond to the inputs to the associated channel that should
be chosen with probability 1

4 .
In the sequel, we further investigate the optimal solution

of (7). It can be easily shown that the conditional entropy
hij = h(Y |X1 = xi, X2 = xj) is a function of xi − xj , i.e.,

hij = g(xi − xj), (10)

where g(.) is a given function. The minimum of g(u) is the
differential entropy of the noise h(N), which occurs at u = 2s
and its supremum is 1 + h(N), which is approached when
u→ ±∞. The plot of g(.) for s = 2, PN = 1 is shown in fig.
5.

Using (10), it can be shown that if {pij}i,j=1,2,...,M

is an optimum solution to (7), then {qij}i,j=1,2,...,M with
qij = 1

2

(
pij + p(M+1−j)(M+1−i)

)
is also an optimum solu-

tion of (7) and has the following symmetry property

qij = q(M+1−j)(M+1−i). (11)
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Fig. 4. Optimal solution for 4-PAM input with parameters s = 2.5, PN =
9, PX = 5.
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Fig. 5. The plot of g(u) for s = 2, PN = 1.

The symmetry property (11) translates to the symmetry of the
array in figs. 3 and 4 with respect to the main diagonal. We
use the properties given in (10) and (11) to prove the following
theorem.

Theorem 2: If the function g is strictly concave in the inter-
val [2x1, 2xM ], then the optimal solution to (7) corresponds to
an array with probabilities 1

M on the main diagonal and zero
elsewhere.

Proof: Suppose that the optimum solution has a nonzero
entry p at position (xi, xj) which is not on the main diagonal,
i.e., i �= j . Then by the symmetry property (11), there must
be another entry at location (−xj ,−xi) with the same value
p. Now, if we add p to the main diagonal entries located
at (xi,−xi) and (−xj , xj) and turn the probabilities of the
two symmetric entries to zero, the constraints of (7) are not
violated. However, the change in the objective function will
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be proportional to

h(Y |X1 = xi, X2 = −xi) + h(Y |X1 = −xj , X2 = xj)
−h(Y |X1 = xi, X2 = xj)− h(Y |X1 = −xj , X2 = −xi),

which by property (10) is equal to g(2xi)+g(−2xj)−2g(xi−
xj) which is negative by concavity of g. This contradicts the
optimality of the solution with nonzero entries that are not
located on the main diagonal.

It can be shown that the function g is strictly concave in
the interval [2x1, 2xM ] if and only if

√
1 + 3PX ≤ 1 + s− 1

2
u∗√PN , (12)

where u∗
� 1.636 and PX = M2−1

3 is the transmitted signal
power.

Theorem 3: If the function g is convex in the interval
[2x1, 2xM ], then the optimal solution to (7) corresponds to
an array with probabilities 1

M on the main skew diagonal and
zero elsewhere.

Proof: Define random variable U = X1−X2. We denote
the pmf of U by pU . The objective function in (7) can be
written as

M∑

i=1

M∑

j=1

pijhij =
M∑

i=1

M∑

j=1

pijg(xi − xj)

=
∑

k

M∑

j=1

p(k+j)jg(xk+j − xj)

=
∑

k

M∑

j=1

p(k+j)jg(uk)

=
∑

k

pU (uk)g(uk)

= E[g(U)], (13)

where uk = xk+j − xj (uk does not depend on j) and
E[.] denotes the expectation operator. Now, considering the
convexity of g, apply the Jensen’s Inequality

E[g(U)] ≥ g (E[U ])
= g(0). (14)

Equality holds when U ≡ 0, or equivalently, X1 ≡ X2.
Therefore, for minimization of the objective function, only
the entries of the main skew diagonal must be nonzero.

It can be shown that the function g is convex in the interval
[2x1, 2xM ] if and only if

√
1 + 3PX ≤ 1− s +

1
2
u∗√PN . (15)

IV. OPTIMAL PRECODING

Any encoding and decoding scheme for the associated
channel can be translated to an encoding and decoding scheme
for the original channel (2) with the same probability of error
[5]. The general structure of a communication system for the
channel (2) is shown in fig. 6. Message w is encoded to
a block of length n of indices t ∼ (xi, xj). According to

Encoder Precoder
T X

S N

Y
Decoder

w ŵ

Fig. 6. General structure of the communication system for channels with
causally-known discrete interference.

theorem 1, only M of the indices are needed to achieve the
capacity. Those M indices are obtained by solving the linear
programming problem (7). For each t, the precoder sends
either xi (if S = s) or xj (if S = −s). Based on the received
signal Y , the receiver decodes ŵ as the transmitted message.

V. CONCLUSION

In this paper, we have investigated uniform M-PAM signal
transmission over AWGN channel with two-level interference
which is known causally at the transmitter. According to the
Shannon’s theorem for channels with side information at the
transmitter, the associated channel will be a channel with M2

inputs. We have proved that by choosing only M inputs with
probability 1

M the capacity (with uniform marginal pmfs for
X1 and X2) is achievable. The optimal M inputs can be
obtained by solving the linear optimization problem (7). In
some special cases where the function g(u) is concave or
convex in the interval [2x1, 2xM ], the optimal solution is given
by theorems 2 and 3. The optimal solution determines the
optimal precoding to be used in the general structure of the
communication system for the channel with causally-known
two-level interference.
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