
1

A New Fast Density Evolution Method for LDPC
Codes Using Higher Order Statistics

Soroush Akhlaghi and Amir K. Khandani
Coding & Signal Transmission Laboratory (www.cst.uwaterloo.ca)

E&CE Department, Univ. of Waterloo, Waterloo, ON, Canada, N2L 3G1
{soroush,khandani}@cst.uwaterloo.ca, Tel: (519) 885-1211

Abolfazl Falahati
Department of Electrical Engineering,

Iran University of Science & Technology (IUST), Tehran, IRAN

afalahati@iust.ac.ir

Abstract— Density Evolution (DE) is a technique for tracking
the distribution of the Log Likelihood Ratio (LLR) messages
exchanged between the variable nodes and the check nodes
in a bipartite graph [1]. It is widely assumed that these
distributions are close to Gaussian. However, in many scenarios,
this assumption is not valid, e.g., the case that the Signal to
Noise Ratio (SNR) is low, or the degree of variable nodes
exceeds a certain threshold [2]. This article introduces a new
(suboptimal) method for DE algorithm in Low-Density Parity-
Check (LDPC) codes. We provide a more accurate model for the
distribution of message bits (as compared to Gaussian) through
matching the first n statistical moments. An iterative message
passing algorithm is proposed to compute these moments from
the graphical representation of the underlying code. We show
that the proposed algorithm results in an improved estimate of
the underlying EXIT chart as compared to using a Gaussian
assumption. In this respect, the proposed method achieves a
performance very close to that of the best earlier methods
reported in [2] and [3], while it offers a much lower complexity

I. INTRODUCTION

LDPC codes, invented by Gallager in 1963 [4], did not
receive much attention for more than three decades until turbo
codes were introduced by Berrou et al. [5]. LDPC codes were
rediscovered by MacKay et al. [6] and Spielman et al. [7].
Later, Luby in [8] introduced the Irregular LDPC codes. The
excellent performance of this type of LDPC codes for various
channels [1] has put them in the center of attention in the
field of capacity approaching codes.

LDPC codes are designed by optimizing the degree struc-
ture of the underlying Tanner graph. Density Evolution (DE)
is used as the cost function for this optimization problem [1].
In [3], the authors suggest an algorithm called Discretized
Density Evolution (DDE) to compute the pdf of exchange
messages in the corresponding Tanner graph. This algorithm

This work is financially supported by Communications and Information
Technology Ontario (CITO), Nortel Networks, and Natural Sciences and
Engineering Research Council of Canada (NSERC).

relies on Discretizing the exchange messages. The complex-
ity of this method for each iteration is of the order O(22k)
due to the calculation at the check nodes, where k is the
number of quantization bits [3]. This method is too complex
for being used as the cost function since the optimization
problem is not convex [9]. There are some sub-optimum DE
algorithms which reduce the complexity at the price of a
significant loss in the accuracy [10]–[12].

In this paper, we present a new sub-optimum method for
DE that has a low complexity, and at the same time, is more
accurate than the other known sub-optimum approaches.
Unlike the previous methods reported in [2], [3] which
try to estimate the output pdf of the check node message
(with a complexity of O(22k)), the proposed method utilizes
the corresponding moments of these messages in order to
estimate the output pdf of the variable nodes. This results
in a complexity order of O(n3) where n is the number
of required moments. We propose a nearly Gaussian model
for the Probability Density Function (PDF) of the variable
node messages that is consistent. Then, we force the first
n moments of this PDF to match the first n moments
of the exact messages generated from the message-passing
algorithm by applying the Newton-Raphson algorithm [13].
For computing the exact moments, we need to solve some
integrals that do not accept closed form solutions. With some
manipulations, these integrals can be written in the form of∫

f(x)e−x2

which can be computed using the m point Gauss-
Hermit quadrature formula, where m is the order of Hermit
polynomial [14]. Then, we present a closed-form expression
for computing the Message Error Probability (MEP) at each
iteration.

The article is organized as follows: Section II provides the
basic principles of LDPC codes. Section III contains a short
overview and some background information on Gaussian
approximation and consistency condition. Also, we study
the condition that Gaussian approximation is not a good
choice for modeling the distribution of the messages . In
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Sections IV, the proposed algorithm is introduced and applied
to both regular and irregular LDPC codes. Numerical results
are provided in Section V showing high accuracy and low
computational complexity for the proposed method. Finally,
Section VI concludes the paper.

Throughout this paper, random variables are uppercase,
a realization of random variables are lowercase, vectors
are boldfaced lowercase, matrices are boldfaced uppercase,
respectively, and (.) denote the expectation.

II. LOW DENSITY PARITY-CHECK CODES

An LDPC code is a linear block code with a sparse
parity-check matrix. Consider a low density parity check
matrix H composed of M rows and N columns (the code
rate is R = 1 − M

N
). This code can be represented with

a Tanner graph consisting of N variable nodes, M check
nodes, and a certain number of edges as shown in Fig. 1.
Generally, an irregular LDPC code ensemble is specified by a
degree distribution pair (λ, ρ) or its corresponding generating
function as follows,

Λ(x) =

lmax∑
i=2

λix
i−1

Ω(x) =

rmax∑
i=2

ρix
i−1 , (1)

where λi and ρi are the fractions of edges with left and right
degree i and lmax and rmax are the maximal left and right
degree of the edges, respectively. Also, the average left, l,
and right degree, r, of the graph are [1],

l =
1∑
i

λi

i

=
1∫ 1

0
Λ(x)dx

(2)

r =
1∑
i

ρi

i

=
1∫ 1

0
Ω(x)dx

. (3)

Therefore, the rate of the code is at least R = 1 − l
r

=

1 −
�

1
0

Ω(x)dx
�

1
0

Λ(x)dx
.

LDPC codes rely on the message passing algorithm for
decoding. This algorithm can be interpreted in terms of
passing messages throughout the Tanner graph as illustrated
in Fig. 1. At the first iteration, the message passed from the
n’th variable node to each of its participating check nodes
is the received LLR (initial message) of this variable node.
The m’th check node collects its incoming LLR messages
(variable node messages), and passes an outgoing message
(check node messages) which represents the LLR for the
parity of the bits involved in the m’th check node. Each
variable node receives the check node messages and produces
a new estimate for the variable LLR messages.

right−to−left messages

left−to−right messages

Variable nodes Check nodes

V3

V4

V6

V7

V8

C1

C2

C3

C4

C5

V2

V5

Lc

Lv
V1

Fig. 1. Tanner Graph

III. GAUSSIAN APPROXIMATION AND CONSISTENCY

CONDITION

A distribution p defined on the set of real numbers R
is called consistent if it satisfies p(−x) = e−xp(x) for all
x � 0 [9]. In [9], it is shown that the consistency condition
is preserved under DE. We consider an Additive White
Gaussian Noise (AWGN) channel with input x ∈ {−1, 1}.
We also assume that the bits zero and one are mapped to
1 and −1, respectively. As the code is linear, without loss
of generality, one can assume that the all zero codeword is
transmitted. For the received discrete-time signal, we have

y = x + z , (4)

where z is a zero-mean Gaussian random variable with
variance σ2

z . The conditional PDF of the received signal is,

p(y|x) =
1√

2πσ2
z

e
− (y−x)2

2σ2
z . (5)

The corresponding initial LLR of each received bit is calcu-
lated as,

Lm(y) = ln
( p(y|x = 1)

p(y|x = −1)

)
. (6)

We have,

Lm(y) =
2

σ2
z

y =
2

σ2
z

(x + z) , (7)

with the conditional PDF as follows,

pLm
(lm|x = 1) =

1√
4πµo

e−
(lm−µo)2

4µo , (8)

where µ0 = 2
σ2

z
. pLm

(lm|x = 1) has a Gaussian distribution
in the form of N(µ0, 2µ0) which is a consistent PDF. In
the DE method, the distribution of the initial messages,
pLm

(lm|x = 1), is applied as the input to the algorithm.
At each iteration, this PDF is updated via message passing
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algorithm. Throughout this paper, for the sake of simplicity
in notation, the conditional term in PDF is dropped, i.e,
pLm

(lm) is used instead of pLm
(lm|x = 1) as the initial

messages and pLv(lv) and pLc(lc) represent the conditional
PDF of variable and check node messages, respectively.
Wiberg in his Ph.D. dissertation [15] observes that the PDF
of the LLR of the message bits is approximately Gaussian.
With this idea, Chung has studied the convergence behavior
of the sum-product decoding algorithm by relying on the
Gaussian approximation [10], showing that this approxima-
tion is accurate at Variable nodes, but not at the check nodes.
The method proposed by Chung has limitations in terms of
the accuracy in handling low coding rates, and/or variable
nodes with high degrees. Specifically, Chung in [10], designs
good LDPC codes for rates in the range of 0.5 to 0.9, with
a maximum variable node degree of 10. In [2], it is shown
that relying on the Gaussian approximation at the output of
the check nodes has two drawbacks. First, it is accurate only
in the high SNR region when the check nodes have small
degrees. In other words, the Gaussian approximation is not
accurate in the analysis of low rate codes. Second, Gaussian
approximation is inaccurate for large variable node degrees.
The authors in [2] propose a semi-Gaussian approximation
method which is based on applying DDE (introduced in [3])
at both check nodes and variable nodes. This is simplified
by fitting a Gaussian (or Gaussian mixture) model to the
output PDF of the variables nodes. The parameters of this
model are selected such that the error probabilities of the
message bits are equal to their true values (corresponding to
the PDF computed by DDE). The complexity of the algorithm
proposed in [2] is determined by the DDE for each point
of the EXIT chart. The extensive computational complexity
limits the application of the methods proposed in [2] and [3].
The primary motivation behind the current article is to reduce
this computational complexity, while providing an accurtate
estimate of the EXIT chart.

IV. PROPOSED DE METHOD FOR ASYMPTOTIC

ANALYSIS OF THE LDPC CODES

Gram-Charlier series is commonly used for expanding a
nearly Gaussian distribution function over an orthonormal
basis [16], [17]. A distribution, pY (y), can be expanded as
follows:

pY (y) � 1√
2πσ2

e−
(y−β)2

2σ2

∞∑
i=0

αiTi

(y − β

σ

)
, (9)

where,

Ti(y) =

� i
2 �∑

j=0

γ(i, j)yi−2j , (10)

is the Hermite Polynomial [17] of order i.
As mentioned earlier, the message distribution at the vari-

able nodes is nearly Gaussian and consistent. The consistency

condition makes it difficult to use the Gram-Charlier series.
On the other hand, it can be shown that a consistent PDF can
be decomposed as the product of another consistent PDF and
an even function. By eliminating the odd terms in (9), the
following consistent PDF (with N degrees of freedom) is
used for the message distribution at the variable nodes:

pLv
(lv) =

1√
4πβ

e−
(lv−β)2

4β

N−1∑
k=0

akl2k
v . (11)

As we will see later, this model lends itself to simplified
computations to find the underlying parameters. Let us as-
sume that the first N moments of the random variable Lv,
νi for i = 1, . . . , N , are given. We follow the same approach
in [13] to compute the corresponding N + 1 unknown para-
meters at each iteration by relying on the Moment Matching
Method. This method exploits the Newton-Raphson algo-
rithm for matching the first N statistical moments of the
underlaying PDF and the measured moments.

At each variable node, the random variable Lv (the variable
node message) is related to the initial message (Lm) and the
check node (Lc) messages as follows:

lv = lm +

i−1∑
k=1

lck
. (12)

Since the number of incoming check node messages, i, is
another random variable with probability mass function Λ(x)
as defined in (1), the Moment Generating Function (MGF)
of the random variable Lv can be computed as:

Gv(s) = eslv = eslm

lmax∑
i=2

λi

(
eslc

)i−1

= Gm(s)Λ(Gc(s)) , (13)

where Gm(s) and Gc(s) are the MGF of the initial messages
and the MGF of the check node messages, respectively, and
λi is defined in (1). As a result

νn =
dn

(
Gm(s)Λ(Gc(s)

)
dsn

|s=0

=

n∑
k=0

lmax∑
i=2

(
n

k

)
µkλi

dn−kGi−1
c (s)

dsn−k
|s=0 , (14)

where µk is the k’th moment of the initial Gaussian mes-
sages, and hence, can be computed by replacing m = 2

σ2
z

in

µk =
dk

dsk
e(s+s2)m|s=0 , (15)

where the right hand side of (15) is the k’th derivative of
MGF for a Gaussian random variable with PDF, N (m, 2m).

Also, dkGn
c (s)

dsk |s=0 can be easily computed with respect to
the moments of the check node message distributions, i.e.,
ωi for i = 1 . . . n. Numerical simulations show that only
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the first four terms are needed to obtain an acceptable
approximation

dGn
c (s)

ds
|s=0 = nω1

d2Gn
c (s)

ds2
|s=0 = nω2 + n(n − 1)ω2

1

d3Gn
c (s)

ds3
|s=0 = nω3 + n(n − 1)(3ω1ω2)

+ n(n − 1)(n − 2)ω3
1

d4Gn
c (s)

ds4
|s=0 = nω4 + n(n − 1)(4ω1ω3 + 3ω2

2)

+ n(n − 1)(n − 2)(4ω2
1ω2)

+ n(n − 1)(n − 2)(n − 3)ω4
1 . (16)

As noted earlier, ωn is the n’th moment of the random
variable Lc which is the LLR of the check node messages.
For a check node of degree k, this random variable is
determined using the so-called “tanh rule” [1]:

tanh
( lc

(l)

2

)
=

k−1∏
i=1

tanh
( l

(l−1)
vi

2

)
, (17)

where l
(l−1)
v1 , l

(l−1)
v2 , . . . l

(l−1)
vk−1 are variable node messages

after (l − 1)’th iteration, each with MGF Gv(s). In what
follows, for the sake of simplicity, the superscript l is
dropped.

To compute ωn, we use the following two operations: First,
we compute ωn from the moments of the random variable u
which is related to lc using the following formula,

tanh
( lc

2

)
= u ⇒ lnc = fn(u)

=
(

ln
1 + u

1 − u

)n

. (18)

Second, we compute the moments of u from the moments
of variable node messages in the previous iteration. For the
first step, we use the Taylor series expansion of the function
lnc = fn(u), expanded around the mean of u as given in (18)

lnc = fn(u) + (u − u)f ′
n(u)

+ (u − u)2
f

′′

n (u)

2!
+ . . . . (19)

Taking expectation and noting that the right degree distribu-
tion of check nodes are as (1), we obtain,

ωn = E
[
lnc

] �
rmax∑
i=2

ρi

(
fn(ui) +

1

2
f

′′

n (ui)σ
2
ui

)
, (20)

To solve (20), we need to determine ui and σui
. At the second

step, these parameters are computed as follows:

ui =

(
tanh

(
lv
2

))i−1

, (21)

and,

σ2
ui

=

(
tanh2

(
lv
2

))i−1

− ui
2 . (22)

By using (11), tanh
(

lv
2

)
would be

tanh
( lv

2

)
=

∫ ∞

−∞
tanh

( lv
2

)
pLv

(lv)dlv

=

N−1∑
i=0

ai

∫ ∞

−∞
l2i
v tanh

( lv
2

) 1√
4πβ

e−
(lv−β)2

4β dlv.

=

N−1∑
i=0

aihi(β) , (23)

where,

hi(β) =

∫ ∞

−∞
l2i
v tanh

( lv
2

) 1√
4πβ

e−
(lv−β)2

4β dlv

=

∫ ∞

−∞
e−x2 1√

π
(β + 2

√
βx)2i tanh(

√
βx +

β

2
)dx

=

∫ ∞

−∞
e−x2

ϕ(x)dx . (24)

ϕ(x) =
1√
π

(β + 2
√

βx)2i tanh(
√

βx +
β

2
)dx . (25)

Using Gauss-Hermite quadrature method [14], we have,

∫ ∞

−∞
e−x2

ϕ(x)dx =

q∑
i=1

ηiϕ(xi) , (26)

where ηi = 2q−1q!
√

π

q2[Hq−1(xi)]2
, xi’s are the roots of the Hermite

polynomial of degree q, Hq(x), defined as,

Hq(x) = (−1)qex2 dq

dxq
(e−x2

) . (27)

The corresponding approximation error, ζ, is

ζ =
q!
√

π

2q(2q)!
ϕ2q(ξ) , 0 < ξ < 1 . (28)

As a result, the right hand side of (26) converges to the left
hand side as q → ∞, if ϕ2q(ξ) has a limit. One can easily
show that ϕ(x), defined in (25), has this property. As a result,
(24) is approximately equal to,

hi(β) �
q∑

i=1

ηiϕ(xi) . (29)

One can compute tanh2
(

lv
2

)
in the same way as tanh

(
lv
2

)
.
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Now, we can compute the MEP at each iteration as follows:

pe =

∫ 0

−∞
pLv

(lv)dlv

=

∫ 0

−∞

1√
4πβ

e−
(x−β)2

4β

N−1∑
i=0

aix
2idx

=

N−1∑
i=0

ai

∫ ∞
√

β
2

(√
2βx − β

)2i 1√
2π

e−
x2

2 dx

=

N−1∑
i=0

aiT2i

(
β
)

, (30)

where Ti(β) obeys the following recursion:

Ti(β) =

∫ ∞
√

β
2

(
√

2βx − β)i 1√
2π

e−
x2

2 dx

=
√

2β

∫ ∞
√

β
2

(
√

2βx − β)i−1xe−
x2

2 dx

−βTi−1(β)

= 2β(i − 1)Ti−2(β) − βTi−1(β) , (31)

and

T0(β) = Q
(√β

2

)

T1(β) =
√

2βe−
β
4 − β Q

(√β

2

)
, (32)

Noting above, the MEP in (30) can be computed using (31)
and (32). Equation (30) results in a closed-form expression
for computing MEP at each iterations. The algorithm can be
summarized in the following steps:

1) Compute the initial messages from the received signal
and set ωi = 0 for i = 1, . . . , N , and K = Maximum
Number of Iterations.

2) Compute the moments νi for i = 1, . . . , N us-
ing (14), (16).

3) Update the unknown parameters [β,a] in (11) using the
Newton-Raphson Algorithm.

4) Compute the MEP using (30) and (31).
5) Compute tanh

(
lv
2

)
and tanh2

(
lv
2

)
for i = 1, . . . , N

using (23) and (24).
6) Compute ui and σui

using (21), (22).
7) Compute ωi for i = 1, . . . , N using (20).
8) If K > 0, K = K − 1 and go to the step 2, unless

otherwise stop.

V. SIMULATION RESULTS

In this section, we provide numerical results to demonstrate
the accuracy of the proposed method as compared to the
Gaussian approximation [10] and DDE [3]. In [3], it is
shown that the 11-bit quantization of messages in DDE
provides an accurate probability of error. However, to have
a more accurate result, we have used 13-bit quantization of

messages in DDE method to compare with the proposed
method. The EXIT chart based on Message Error Rate
reported in [2] is used in our simulation. Figs. 2 and 4
show the EXIT chart for (3,6) regular LDPC code with
Λ(x) = x2, Ω(x) = x5, R = 1/2 and irregular LDPC
code1 with Λ(x) = .267818x + .204657x2 + .0774591x5 +
.204181x7 + .245886x29, Ω(x) = x5, R = 1/3, respectively.
Table I shows the error in approximation of threshold for
both the regular and irregular codes using the Gaussian
approximation and the proposed method with respect
to the DDE. Figure 3 shows that the proposed method
outperforms the Gaussian approximation. Figures 4 and 5
show that there is a gap between the EXIT chart of the
proposed method as compared to DDE, while the proposed
method still outperforms the Gaussian approximation.
Unlike the Gaussian approximation, the proposed method is
not sensitive to the variable node degrees which makes it
suitable for analyzing capacity approaching codes.
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Fig. 2. Convergence behavior of Regular LDPC code, R = 1/2
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1this code approaches the Shannon limit within .079dB
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VI. CONCLUSIONS

An analytical low complex DE method with acceptable
accuracy is proposed. We provide a better model for the
distribution of message bits through matching the first n
statistical moments. These moments are update using an
iterative message passing algorithm based on the graphical
representation of the underlying code. Numerical results
show that the performance of the proposed method is close to
that of the DDE method, while it offers a lower complexity.
For low SNR values and high check node degrees, the PDF
of check node messages tends to have a narrow peak [3],
and thus, one needs more moments (Higher Order Statistics)

TABLE I

THE ERROR IN APPROXIMATION OF THRESHOLD

LDPC code Error of
Gaussian Approximation Error of proposed

method with 4 moments
regular(R=1/2) .06 dB .02 dB

irregular(R=1/3) .25 dB .082 dB

to get the better estimation of the final PDF. The number of
required moments depends on the SNR and the maximum
check node degree.
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