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ABSTRACT

This paper studies transmission of sources over noisy channels by
a communication system subject to a power constraint at the trans-
mitter. We consider the transmission of continuous- or discrete-time
Gaussian sources and assume that the processing on the signals are
within the family of linear operations. For stationary signals, a con-
straint on the power at the output of the transmission filter results in
bandpass transmit and receive filters whose bandpass region include
the frequencies at which the source spectra is above some threshold.
This result shows similarities between the rate distortion arguments
and the minimum mean square error (MSE) attainable by the opti-
mum linear systems. Examples for frequently encountered source
statistics are also studied and it is shown that linear processing both
at the transmitter and at the receiver reduces the estimation errors
significantly compared to the standard Wiener filtering approach. It
is shown that for communication of a bandlimited source with arbi-
trary spectrum over a bandlimited channel with the same banswidth
as the source, using proposed linear processing approach attains the
same distortion exponent as the theoretically optimum system does.

1. INTRODUCTION

Consider the transmission of an analog Gaussian source over a noisy
channel where the aim is to attain as small distortion as possible
between the source and its decoded version. It is known that if
the source is Gaussian emitting independently and identically dis-
tributed samples and the channel is an additive white Gaussian noise
(AWGN) channel being used only once per source sample, the op-
timum system minimizing the square error distortion is achieved by
plugging the source output to the channel by an amplifier and recov-
ering it by attenuating the signal at the channel output [1,2]. This
sort of uncoded transmission is optimal also for an ideal bandlim-
ited continuous Gaussian source being transmitted over a bandlim-
ited channel with the same bandwidth as the source. While it is at-
tractive to realize optimum systems with such simplicity, in general,
it might be necessary to resort to more complex encoding/decoding
architectures to attain the optimum system performance [2, 3].

Two critical constraints in a communication system are (i) time
delay of coding/decoding, and (ii) transmission power/energy. In
many systems, such as sensor networks, these two constraints play
a fundamental role in the design. When the bandwidth is scarce, the
source contains delay sensitive information and the transmitter has a
small power source, it is not viable to wait for a long time to collect
data and apply very long source/channel codes (generally consist-
ing of a suitable quantizer followed by a suitable channel code) and
highly complex decoding schemes [2]. It might be more useful to
obtain timely information at the receiver even if the resulting accu-
racy may not be at the optimum level.

In this paper, we address the point-to-point communication of
a source under the two constraints mentioned above. First, we re-
strict the encoding and decoding processes to be in the class of lin-
ear operations (See Figure 1). Thus, the source stream is plugged
to the channel through just a transmit filter, and then at the receiver,
it is reconstructed from the noisy version of the transmitted signal
using another filter. Communication via linear systems has been
treated in the literature [4–10]. In [5–7], optimum transmitter and
receiver design is studied considering pulse amplitude modulation.
The transmission of discrete time memoryless vector source over
a vector channel are considered in [8–10]. Costas [4] studies mes-
sage transmission with linear pre- and post-filters, however, his work
lacks an information theoretic basis. Our motivation in this paper is
to develop optimum linear processing schemes for the transmission
of a more general class of analog or discrete sources over an arbitrary
linear filter channel. We cast the optimum encoding/decoding prob-
lem as a linear filter design problem subject to a power constraint at
the output of the transmitter. For stationary sources, the closed form
expressions for the frequency responses of the optimal filters indi-
cate that an optimal transmit filter is a bandpass filter which passes
the frequencies at which the power spectrum of the signal normal-
ized by the noise spectrum is above some threshold. This is con-
sistent with the optimum rate-distortion criterion which states that
an efficient representation of the source should ignore the frequency
components at which the power spectrum density is small [2, 3].
Similar results apply to the discrete-time case as well but due to the
limited space, they are omitted here.

The organization of the paper is as follows: In the next sec-
tion, we introduce the system model being considered and develop
the formulation for the optimal filter design. In Section 3, the opti-
mum filters that minimize the mean square error (MSE) are derived.
In this section, we also consider the theoretically optimum system
performance through rate-distorion function, and provide numerical
examples that support the use of optimal transmit and receive filters.
Finally, in Secton 4, we provide concluding remarks.

2. SYSTEM MODEL

A general linear time invariant communication system is depicted in
Figure 1. This figure assumes continuous-time signals and systems,
however, the case for discrete-time follows similarly and parallel
results can be obtained; therefore, our focus is on continuous-time
systems for the time being. The boxes A and B denote the linear
transmit and receive filters whose impulse responses at time τ to
an impulse at time 0 are denoted by A(τ) and B(τ), respectively.
The channel transfer matrix is denoted by H(τ). For the stationary
source and a time-invariant channel, the filters can be represented
in terms of frequency responses, A(w), H(w), and B(w). The re-
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AWGN channel model

x(t)s(t) ŝ(t)y(t)

n(t)

r(t)
H(τ) B(τ)A(τ)

Fig. 1. Block diagram for a linear communication system

sponse of the transmit filter, x(t), to a random signal, s(t) (which
is assumed to be output of a Gaussian source), can be expressed as
x(t) =

∫
s(τ)A(t − τ)dτ. The signal at the receiver, r(t), is a

corrupted version of x(t) by the channel H(t, τ) and the additive
Gaussian noise (AWGN), n(t): r(t) =

∫
x(τ)H(t − τ)dτ + n(t),

and passed through the filter B to obtain the estimate ŝ(t) for s(t),
ŝ(t) =

∫
r(τ)B(t − τ)dτ. The objective is to find the filters that

minimize the MSE ξ = E
{
|s(t) − ŝ(t)|2

}
, subject to the power

constraint E
{
|x(t)|2

}
≤ P.

If we remove the transmit filter and the power constraint (e.g.,
assuming A is the identity operation), this problem reduces to the
signal estimation problem [11]. For stationary sources, the solution
is given by a Wiener filter [12]. For non-stationary sources, the time-
varying filter response should satisfy an integral equation [13]. As
we will see later, a linear mapping at the transmitter side will be
useful since the transmitted signal can be optimized according to the
channel characteristics and the bandwidth and power requirements.

3. OPTIMUM LINEAR PROCESSING FOR CONTINUOUS
TIME SIGNALS

3.1. Optimum Linear Filters

For a wide-sense stationary signal s(t) with power spectral den-
sity S(w), the filtering processes by the the transmit, channel and
receive filters reduce to the well-known convolution integrals and
we have the power spectral density expressions for x(t) and ŝ(t) as
Sx(w) = |A(w)|2S(w), and Ŝ(w) = Sr(w)|B(w)|2, respectively,
where Sr(w) = Sx(w)|H(w)|2 + Sn(w). Hence, the optimization
problem for A(w) and B(w) can now be cast as

min 1
2π

∫
S(w)|(1 − A(w)H(w)B(w)|2dw + 1

2π

∫
Sn(w)|B(w)|2dw

s.t. 1
2π

∫
S(w)|A(w)|2dw ≤ P. (1)

Solving for A(w) and B(w) by Lagrange multiplier method (for
brevity, we omit the details), we can obtain

|A(w)|2 =





Sn(w)

S(w)|H(w)|2
[√

S(w)|H(w)|2
λSn(w)

− 1

]
,

S(w)|H(w)|2
Sn(w)

≥ λ

0, else
,

(2)
and

B(w) =

{ √
λS(w)

Sn(w)|H(w)|2 A∗(w)H∗(w), S(w)|H(w)|2
Sn(w)

≥ λ

0, else
(3)

where λ satisfies

√
λ =

∫
Ω

√
Sn(w)S(w)

|H(w)|2 dw

2πP +
∫
Ω

Sn(w)

|H(w)|2 dw
(4)

and Ω = {w : S(w)|H(w)|2 ≥ λSn(w)}. A graphical represen-
tation to determine the optimal filter is depicted in Figure 2. The

optimal transmission filter A passes the frequencies at which the
source spectral density normalized by the noise power are above
some threshold λ which is determined by (4). The minimum mean
square with the optimum filters is given by

ξi,o =
1

2π

∫

Ωc

S(w)dw +

√
λ

2π

∫

Ω

√
Sn(w)S(w)

|H(w)|2 dw (5)
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Fig. 2. The frequency of the optimal filters are nonzero for
S(w)|H(w)|2

Sn(w)
> λ

The optimum transmission filter defined by (2) can be imag-
ined as a cascade of two filters as depicted in Figure 3.a. The re-
sponse of the first filter is 1/T+(w) which is obtained by factoring

out T (w) = S(w)|H(w)|2
Sn(w)

such that T+(w) has the left-half plane
poles and zeros of T (w). Hence, the first filter is realizable. On the
other hand, the response of the second filter is given by

T2(w) =





[√
S(w)|H(w)|2

λSn(w)
− 1

]1/2

, S(w)|H(w)|2
Sn(w)

≥ λ

0, else
, (6)

which is not realizable since it does not satisfy the Paley-Wiener
criterion. However, one may approximate this filter with a real-
izable one. A similar design method can also be pursued for the
optimum receive filter, B(w) (See Figure 3.b.). From (3), we ob-
serve that B(w) can be viewed as a cascade of three filters: (i) a
standard wiener filter for the filtering problem r(t) = y(t) + n(t),
Ti(w) =

Sy(w)

Sr(w)
, (ii) the reciprocal of A(w), Tii(w) = 1/A(w), and

(iii) the channel inversion filter, Tiii(w) = 1/H(w).

3.2. Theoretically Optimum Performance

The optimal performance of the above communication system can
be evaluated by the rate-distortion bounds and the channel capacity
expressions [2,3]. The rate-distortion function, R(D), provides the
minimum rate required to attain some distoriton level D, whereas the
capacity function, C(ρ), gives the maximum information rate that
can be transferred across a noisy channel at a signal-to-noise ratio
of ρ. Hence, we have R(D) ≤ C(ρ), and the theoretical minimum
distortion Dmin satisfies R(Dmin) = C(ρ). Hence, we can obtain
the optimal performance of the system in Figure 1. To illustrate
the relation between the performance of optimal linear filtering and
the theoretical optimal system, let us consider the infinite bandwidth
AWGN channel with Sn(w) = N0/2. The theoretical minimum
mean square error distortion is obtained by solving

R(D) =
P

N0
=

1

2π

∫

S(w)> 1
2υ

1

2
log(2υS(w))dw (7)
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(b)

(a)

ŝ(t)r(t)

B(w)

Sy(w)
Sr(w)

1
A(w)

1
H(w)

s(t)

A(w)

T2(w)1
T+(w) x(t)

Fig. 3. Realization of optimum filters as a cascade of subfilters, (a)
transmit filter (b) receive filter

for υ, and substituting the solution to

D =
1

2π

∫

S(w)≤ 1
2υ

S(w)dw +
1

2υ2π

∫

S(w)> 1
2υ

dw (8)

After some manipulations, we can rewrite (7) as

P

N0
+

(
log

1

2υ

)
1

2π

∫

S(w)> 1
2υ

dw =
1

2π

∫

S(w)> 1
2υ

log S(w)dw.

(9)
Note that the Equalities (9) and (4) that ν should satisfy for the case
of optimum theoretical system and the optimal linear systems have
very similar forms (Set Sn(w) = N0/2 and H(w) = 1 in (4)). A
similar correspondence exists also between the theoretical minimum
MSE given by (8) and the minimum MSE attained by the optimal lin-
ear filtering given in (5). While an immediate insight is not possible
with these general expressions, the examples below will be useful
to understand how linear filtering performance and the theoretical
bounds compare to eachother.

It is worthwhile to emphasize an interesting point in optimal lin-
ear filtering. The optimal filters A(w) and B(w) are bandpass filters,
that is, only a certain portion of the channel bandwidth is required
for transmission. Furthermore, the spectrum of the transmitted sig-
nal is non zero only for frequencies at which the signal power is
larger than some threshold. This is very much consistent with the
theoretical rate-distortion arguments where, in order to attain some
distortion level, one needs to process only a certain part of the sig-
nal spectra for which the power is above some threshold. Another
consequence of optimal linear filtering is that one only needs a ban-
dlimited channel with an effective bandwidth lΩ where lΩ denotes
the length of Ω = {w : S(w) > 1

2ν
}.

3.3. Examples

We next study the linear filter design for important source statistics
and compare the distortion attained by linear filtering to the theoret-
ically attainable minimum distortion.

Example 1: Bandlimited message spectrum The power spectrum
S(w) > 0 for w ≤ Ws and zero otherwise. We first consider a mes-
sage with a flat spectrum and then study a colored source with an
arbitrary spectrum. We assume that the channel is an ideal bandlim-
ited channel with Wch ≥ Ws.

a) The source has a spectrum

S(w) =

{
π

Ws
, |w| < Ws

0, else
. (10)

In this case, it is easy to show that

A(w) =

{ √
P , |w| ≤ Ws

0, else,
(11)

and

B(w) =

{
2π

√
P

2πP+N0Ws
, |w| ≤ Ws

0, else,
, (12)

that is, both filters become ideal lowpass filters whose pass-bands
are the same as that of the message spectrum. The mean square error
resulting from the optimal filters follows as ξi,o = N0Ws

2πP+N0Ws
. We

note that this MSE is exactly the same as that would be attained by
the theoretically optimum performance given by the rate-distortion
function for a channel of bandwidth 2Ws that is equal to the message
bandwidth. Hence, we conclude that if a bandlimited signal with a
flat spectrum is transmitted across an AWGN channel with the same
bandwidth as the source, it sufficient to perform power scaling oper-
ation both at the transmitter and at the receiver to attain the minimum
MSE, that is, linear processing is optimum in this case. On the other
hand, if the bandwidth expansion is allowed, that is, the available
transmission bandwidth is larger than the message bandwidth, opti-
mum linear processing can not attain the theoretical minimum mean

square error distortion given by ξRD =
(

N0Wch
2πP+N0Wch

)Wch
Ws [11].

b) Non-flat Spectrum: We now assume an arbitrary spectrum
such that S(w) > ε for w ≤ Ws and zero otherwise and study the
asymptotic performance of linear filtering as P

N0
→ ∞. Here, ε > 0

is some arbitrary real number and similar results follows in the limit-
ing condition as ε → 0. For an asymptotic performance comparison,

let us compute the distortion exponent D = limP/N0→∞
log ξ−1(P/N0)

log P/N0
.

After some manipulations, we can show that the MSE at high SNR
can be expressed as

ξ =
Ws

π

[
1

Ws

∫ Ws

0

√
S(w)dw

]2 [
1 +

2πP

N0Ws

]−1

, (13)

thus, D = 1. Similarly, the theoretically optimum performance can
be found by solving R(D) = C. Again, for high P/N0, the theoret-
ically minimum MSE can be obtained as

D =
Ws

π
e

1
Ws

∫ Ws
0 log S(w)dw

[
1 +

2πP

N0Wch

]− Wch
Ws

(14)

Clearly, if Wch = Ws, the linear filtering attains the same distortion
exponent as the optimal system does.

Example 2: Message with Butterworth Spectra We assume that

S(w) =
2n sin(π/2n)

k(1 + (w/k)2n)
. (15)

Note that n = ∞ corresponds to an ideal band-limited message
spectrum like the one in Example 1. We also note that (15) is nor-
malized such that 1/2π

∫
S(w)dw = 1.

Substituting (15) into (4) and after some manipulations, we ob-
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tain

2πP
kN0

+ w∗
k√

1 + (w∗/k)2n
=

w∗

k
2F1(1/2n, 1/2; 1 + 1/2n,−(w∗/k)2n),

(16)
where 2F1(·) is the Hypergeometric function. Solving for w∗ and
substituting the result to (5) gives us the minimum MSE with optimal
linear filtering:

ξ =

[
1 − sinc(1/2n)w∗/k

[
2F1

(
1

2n
, 1; 1 +

1

2n
,−(w∗/k)2n

)
−

1√
1 + (w∗/k)2n

2F1

(
1

2n
, 1/2; 1 +

1

2n
,−(w∗/k)2n

)]]

(17)

The rate-distortion function for the source having Butterworth spec-
tra can be evaluated as

R(D) =
nwo

π

[
1 − 2F1(1/2n, 1; 1 + 1/2n,−(wo/k)2n)

]
(18)

where wo is obtained from

D =


1 − sinc(

1

2n
)

wo

k


 2F1

( 1

2n
, 1; 1 +

1

2n
, −(

wo

k
)2n

)
−

1

1 + ( wo
k

)2n




 (19)
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Fig. 4. MSE for the message with a single-pole Butterworth spec-
trum.

The resulting expressions are evaluated numerically for various
channel models and the resulting MSE curves are plotted in Figure
4 when n = 1 (a single-pole Butterworth spectrum). The plots indi-
cate that for this message spectrum, if the bandwidth of the channel
is high, e.g., Wch/k = 100 or 500, optimal RD performance is sig-
nificantly better than the linear filtering performance. On the other
hand, for transmission over low bandwith channels, linear filtering
performs close to the rate-distortion performance; for instance, we
are about only 2.2 dB away from the rate-distortion performance at
an MSE of 0.1 if Wch = 10k, and the difference gets less and less
as bandwidth is decreased. This result is promising for sensor net-
works where we have hardlimits on power and bandwidth since in
such cases, using liner processing (with the optimum filters) may be
sufficient to attain an acceptable estimation quality.

4. CONCLUSIONS

We studied the communication problem in the presence of a power
constraint on the transmitted signal. We restricted our attention to
the class of linear processing and derived the optimum transmit and
receive filters that minimize the mean square error subject to a trans-
mit power constraint. For the transmission of stationary signals over
linear time-invariant channels, explicit expressions for the frequency
responses of the filters and the mean square error that can be attained
with these filters are derived. The main result of these derivations
is that the optimum transmit and receive filters are bandlimited fil-
ters which pass certain frequency components of the signal at which
the spectral density is above some threshold. This result is agree-
ing with the optimum source coding criterion which says that it is
sufficient to represent the signal with its high-power frequency com-
ponents and ignore those frequency components at which the power
spectrum is small. Numerical examples indicate that the optimum
linear filtering attains less mean square error performance than those
attained by the optimum Wiener filtering where that transmit filter
is simply an amplify-and forward filter. The results can be readily
extended for the discrete time-systems. The journal version of this
paper will also include more general cases including the transmis-
sion of non-stationary and quasi-stationary sources, the optimality
of linear FIR filters for discrete-time signal transmission subject to
power constraints.
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