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Abstract— In this paper, a downlink scenario in which a single-
antenna base station communicates with K single antenna users,
over a time-correlated fading channel, is considered. It is assumed
that channel state information is perfectly known at each receiver,
while the statistical characteristics of the fading process and the
fading gain at the beginning of each frame are known to the
transmitter. By evaluating the random coding error exponent
of the time-correlated fading channel, we show that there is an
optimal codeword length which maximizes the throughput. We
examine the throughput of conventional scheduling that transmits
to the user with the maximum signal to noise ratio using both
fixed length codewords and variable length codewords. Although
optimizing the codeword length improves the performance, it
is shown that using the conventional scheduling, a gap of
Ω(

√
log log log K) exists between the achievable throughput and

the maximum possible throughput of the system. We propose a
simple scheduling that considers both the signal to noise ratio
and the channel time variation. In this case, among users which
their fading gain is above a threshold, user that has minimum
channel time variation is selected. We show that by using this
scheduling, the gap between the achievable throughput and
maximum throughput of the system approaches o(1).

I. INTRODUCTION

In wireless networks, diversity is a means to combat the

time varying nature of the communication link. Conventional

diversity techniques over point-to-point links, such as spatial

diversity and frequency diversity, offer performance improve-

ments. In multiuser wireless systems, there exists another

form of diversity, called multiuser diversity [1]. In a broadcast

channel where users have independent fading and feedback

their Signal to Noise Ratio (SNR) to the Base Station (BS),

system throughput is maximized by transmitting to the user

with the strongest SNR.

Multiuser diversity was introduced first by Knopp and

Humblet [2]. It is shown that the optimal transmission strategy

in the uplink of multiuser system using power control is to

only let the user with the largest SNR transmit. A similar

result is shown to be valid for the downlink [3]. Multiuser

diversity underlies much of the recent works for downlink

scheduling [4]–[7]. The opportunistic transmission is proposed

in Qualcomm’s High Data Rate (HDR) system [4]. In [5], [7],

the scheduling is based on the achievable data rate reported

by users to the BS. Distributed scheduling is proposed in an

uplink scenario, where full Channel State Information (CSI)

is not required at the transmitter [8], [9].

Multiuser diversity is extended as an opportunistic downlink

scheduling for multiple antenna systems [1]. Also, multiuser

diversity has been studied in the context of ad-hoc net-

works [10].

In wireless networks, the rate of channel variations is

characterized by maximum Doppler frequency which is pro-

portional to the velocity. Utilizing multiuser diversity in such

an environment needs to be revisited since the throughput

depends not only on the received SNR, but also on how fast

the channel varies over time.

In this paper, we consider a broadcast channel in which a BS

transmits data to a large number of users in a time correlated

flat fading environment. It is assumed that the Channel State

Information (CSI) is perfectly known to the receivers, while

BS only knows the statistical characteristics of the fading

process for all the users (which is assumed to be constant

during a long period). Moreover, each user feeds back its

channel gain to the BS at the beginning of each frame. Based

on this information, BS selects one user for transmission in

each frame, in order to maximize the throughput. For the

case of Additive White Gaussian Noise (AWGN) or block

fading, it is well known that increasing the codeword length

results in improving the achievable throughput. However, in

a time varying channel, it is not possible to obtain arbitrary

small error probabilities by increasing the codeword length. In

fact, increasing the codeword length also results in increasing

the fading fluctuations over the frame, and consequently, the

throughput will decrease. Therefore, it is of interest to find the

optimum codeword length which maximizes the throughput.

In this paper, a downlink scenario in which a single-antenna

base station communicates with K single antenna users, over

a time-correlated fading channel, is considered. We analyze

different user selection strategies; i) the BS transmits data to

the user with the strongest SNR using fixed length codewords

(conventional multiuser scheduling), ii) the BS transmits data

to the user with the strongest SNR using variable length code-

words, and iii) the BS transmits data to the user that achieves

the maximum throughput using variable length codewords.

We show that in all cases the achievable throughput scales as

log log K. Moreover, in cases (i) and (ii), the gap between the

achievable throughput and the maximum throughput scales as
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√
log log log K, while in case (iii), this gap behaves like o(1).
The rest of the paper is organized as follows. In Section

II, the model of time correlated fading channel is described.

In Section III, different user selection strategies are discussed

and the corresponding throughput of the system is derived for

each strategy, for K → ∞. Section ?? is devoted to the delay

analysis of the system for each strategy. Finally, in Section

IV, we conclude the paper.

Throughout this paper, E{.} and var{.}represents the ex-

pectation and variance, respectively, “log” is used for the

natural logarithm, rate is expressed in nats. For any func-

tions f(N) and g(N), f(N) = O(g(N)) is equivalent to

limN→∞
∣∣∣ f(N)

g(N)

∣∣∣ < ∞, f(N) = o(g(N)) is equivalent to

limN→∞
∣∣∣ f(N)

g(N)

∣∣∣ = 0, f(N) = ω(g(N)) is equivalent to

limN→∞
f(N)
g(N) = ∞, and f(N) = Ω(g(N)) is equivalent to

limN→∞
f(N)
g(N) = c, where 0 < c < ∞.

II. SYSTEM MODEL

The channel of any given user is modeled as a time-

correlated fading process. It is assumed that the channel gain

is constant over each channel use (symbol) and varies from

symbol to symbol, following a Markovian random process.

Assume the fading gain of user k is hk = [h1,k, . . . , hNk,k]T

where hi,k, 1 ≤ i ≤ Nk are complex Gaussian random

variables with zero mean and unit variance and Nk is the

codeword length of user k. The received signal for the kth

user is given by

rk = Skhk + nk, (1)

where Sk = diag(s1,k, s2,k, . . . , sNk,k) is the transmitted

codeword with the power constraint1 E{|si,k|2} ≤ P , nk is

AWGN with zero mean and covariance matrix I . Assume h0,k

is the fading gain at the time instant before Sk is transmitted.

The sequence ui,k = |hi,k|, 0 ≤ i ≤ Nk, is assumed to be a

stationary ergodic chain with the following probability density

function [11]:

fu0,k
(u) =

{
2ue−u2

u ≥ 0
0 otherwise

, (2)

f(u1,k, u2,k, · · · , uNk,k|u0,k) =
Nk∏
i=1

qk(ui,k|ui−1,k), (3)

where,

qk(u|v) =

{
2u

1−α2
k

exp
(
−u2+α2

kv2

1−α2
k

)
I0( 2αkuv

1−α2
k

) u ≥ 0
0 otherwise

in which 0 < αk < 1 describes the channel correlation

coefficient for user k. It is assumed that αk, 1 ≤ k ≤ K, are

i.i.d random variables which remain fixed during the whole

transmission, and I0(.) denotes the modified Bessel function

of order zero.

1Obviously, for maximizing throughput, the energy constraint translates to
E{|si,k|2} = P .

It is assumed that the CSI is perfectly known at each

receiver, while the statistical characteristics of the fading

process and u0,k, 1 ≤ k ≤ K are known to the transmitter.

III. THROUGHPUT ANALYSIS

In this section, we derive the achievable throughput of the

system in the asymptotic case of K → ∞. We define the user

k’s throughput per channel use, denoted by Tk, as

Tk � Rk(1 − pe(k)), (4)

where Rk is the transmitted rate per channel use and pe(k) is

the decoding error probability for this user. Using the concept

of random coding exponent [12], pe(k) can be upper-bounded

as

pe(k) ≤ inf
0≤ρ≤1

e−N(Ek(ρ)−ρRk). (5)

For simplicity of analysis, we use this upper-bound in evalu-

ating the throughput. This bound is tight for rates close to the

capacity as used in [13]–[15].

Assuming si,k, 1 ≤ i ≤ Nk, are Gaussian and i.i.d., it

is shown that the random coding error exponent for user k,

Ek(ρ), is given by [15],

Ek(ρ) = − 1
Nk

log Euk

{
Nk∏
i=1

(
1

1 + P
1+ρu2

i,k

)ρ}
. (6)

where uk = [u1,k, . . . , uNk,k].
In the following, we assume that u0,k � 1. Since in

strategies introduced in this work, a user is selected if the

corresponding initial fading gain is maximum or above a

certain threshold, this assumption is valid when the number

of users is large.

Theorem 1 For the channel model described in the previous
section, and assuming u0,k is known, we have

Ek(ρ) =
1

Nk

Nk∑
i=1

ρ log

(
1 +

Pu2
0,kα2i

k

(1 + ρ)

)
+ O

(
1

√
u0,k

)
.

(7)

Proof: Refer to [16]

Minimizing (5) is equivalent to maximize Ek(ρ) − ρRk.

Noting (7), for large values of u0,k we have

Ek(ρ) − ρRk = ρ log(
Pu2

0

ρ + 1
)

+ ρ(Nk + 1) log(αk) − ρRk. (8)

It is easy to show that ρopt
k which maximizes (8) is

log(1 + ρopt
k ) + ρopt

k

1+ρopt
k

= βk, βk < log(2) + 1
2

ρopt
k = 1, βk ≥ log(2) + 1

2

(9)

where

βk = log(Pu2
0,k) + (Nk + 1) log(αk) − Rk. (10)
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Using (4), (5), and (7), we have

Tk = Rk

⎡
⎣1 − e

−ρopt
k Nk

„
log(

P u2
0,k

ρ
opt
k

+1
)+(Nk+1) log(αk)−Rk

«⎤
⎦ . (11)

It is easy to show that Tk is a convex function of variables Rk

and Nk, and the values of Rk and Nk which maximize the

throughput (Ropt
k and Nopt

k ) satisfy the following equations:

Ropt
k = log(

Pu2
0,k

ρopt
k + 1

) + (2Nopt
k + 1) log(αk), (12)

Nopt
k =

√
log

(
1 + ρopt

k Nopt
k Ropt

k

)
ρopt

k log(α−1
k )

. (13)

It follows that Nopt
k → ∞ and Ropt

k → ∞ as u0,k → ∞.

Substituting (12) in (10), we have

βk = Nopt
k log(α−1

k ) + log(ρopt
k + 1). (14)

From (9) and (14), it is concluded that

ρopt
k =

{
Nopt

k log(α−1
k )

1−Nopt
k log(α−1

k )
Nopt

k log(α−1
k ) < 1

2

1 Nopt
k log(α−1

k ) ≥ 1
2

(15)

Noting (12) and (15), for αk = 1, we have ρopt
k = 0 and

Ropt
k = log(Pu2

0,k) which corresponds to the capacity of

quasi-static fading channel.

We obtain the corresponding throughput of the system for

two cases. If αk is fixed and αk �= 1, Nopt
k log(α−1

k ) ≥ 1
2

for large values of u0,k. Consequently, noting (15), we have

ρopt
k = 1. In this case, the corresponding throughput is

obtained by substituting (12), (13) in (11) as follows:

Tk = log

(
Pu2

0,k

2

)
− 2

√√√√log(α−1
k ) log log

(
Pu2

0,k

2

)
×

(
1 + O

(
log log log(u0,k)

log log(u0,k)

))
. (16)

Assuming αk → 1 such that Nopt
k log(α−1

k ) � 1, we derive

the corresponding throughput as follows:

Tk = log(Pu2
0,k) − 2 3

√
log(α−1

k ) log log
(
Pu2

0,k

)
×(

1 + O

(
log log log(u0,k)

log log(u0,k)

))
− o(1). (17)

From the above equations, it is concluded that the throughput

not only depends on the initial fading gain, u0,k, but also on

the fading correlation coefficient. Moreover, throughput is an

increasing function of the channel correlation coefficient.

In the following, we introduce three scheduling strategies

in order to maximize the throughput; i) Traditional scheduling

in which the user with the largest channel gain (SNR-based

scheduling) is selected and the codeword length is assumed to

be fixed. ii) SNR-based scheduling with optimized codeword

length regarding the channel condition of the selected user,

and iii) Scheduling which exploits both the channel gain and

channel correlation coefficient of the users. The asymptotic

throughput of the system is derived under each strategy for

K → ∞.

A. Strategy I: SNR-based scheduling with fixed codeword
length

The BS transmits to the user with the maximum initial

fading gain and N1 = N2 = · · · = NK = N while selecting

the data rate to maximize the throughput of the selected user.

The following theorem gives the throughput of the system

under this scheduling.

Theorem 2 The asymptotic throughput of the system under
Strategy I scales as

T1 ∼ log
(

P log K

2

)
−2

√
E{log(α−1)}

√
log log(

P log K

2
),

(18)

as K → ∞.

Proof: For simplicity of notation, we define υk � u2
0,k. Let

υ = max1≤k≤K υk and α be the corresponding correlation

coefficient of the selected user. Setting the derivative of (11)

to zero, we find the rate of the selected user as follows:

R = log
(

Pυ

1 + ρopt

)
+ (N + 1) log(α) − log(1 + ρoptNR)

ρoptN
.

(19)

It is easy to show that ρopt = 1 when K is large enough.

Substituting (19) in (11),

T1(υ, α) =
[
log

(
Pυ

2

)
+ (N + 1) log(α) − log(1 + NR)

N

]
×[

1 − 1
1 + NR

]
, (20)

where T1(υ, α) is the system throughput, conditioned on υ
and α. It is easy to see that pυ(x) = e−xu(x). Noting that

Pr{υ ∼ log(K) + O(log log K)} → 1 as K tends to infinity

[17], we compute the throughput of the system as follows:

T1 = E{T1(υ, α)}

= log
(

P log K

2

)
+ (N + 1)E{log(α)}

−
log log

(
P log K

2

)
N

− log N

N
+ O

(
log log log K

log log K

)
.(21)

The codeword length N is computed such that the system

throughput achieved in (21) is maximized. Setting the deriva-

tive of (21) with respect to N to zero, we show that the

maximizing value of N , namely Nopt, scales as

Nopt ∼

√√√√ log log
(

P log K
2

)
E{log(α−1)} . (22)

The proof is completed by substituting (22) in (21).

�
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B. Strategy II: SNR-based scheduling with adaptive codeword
length

In this scheme, the BS transmits to the user with the

maximum initial fading gain. The rate and codeword length

are selected to maximize the corresponding throughput.

Theorem 3 Assuming K → ∞, the asymptotic throughput of
the system under Strategy II scales as follows:

T2 ∼ log
(

P log K

2

)
−2E{

√
log(α−1)}

√
log log

(
P log K

2

)
.

(23)

Proof: The throughput of the system can be written as

T2 = T2,MPr{M} + T2,MC Pr{MC}, (24)

where M represents the event that ρopt = 1, T2,M denotes the

throughput conditioned on M, and T2,MC is the throughput

of system, conditioned on MC , the complement of M. Using

(16), we can write

T2,M = E{log
(

Pυ

2

)
− 2

√
log(α−1) log log

(
Pυ

2

)

×
(

1 + O

(
log log log(υ)

log log(υ)

))
|M}, (25)

where υ = max1≤k≤K υk, and α is the channel correlation

coefficient of the selected user. Noting that υ ∼ log K +
O(log log K), with probability one, and υ and α are inde-

pendent, we have

T2,M ∼ log
(P log K

2
)
− 2E

{√
log(α−1)

∣∣∣M}
×

√
log log log K

(
1 + O

(
log log log log K

log log log K

))
.(26)

Using (13) and (15), we can write

M ≡ Nopt log(α−1) ≥ 1
2

≡
√

log(α−1)
√

log(1 + NR) ≥ 1
2

∼=
√

log(α−1)
√

log log log K ≥ 1
2
. (27)

Assuming uniform distribution for α, X � log(α−1) follows

the exponential distribution, i.e., fX(x) = e−xu(x). Hence,

E

{√
log(α−1)

∣∣∣M}
=

∫
M

√
xe−xdx

Pr{M}

∼
∫∞

ε

√
xe−xdx

Pr{log(α−1) ≥ ε}
∼ E{

√
log(α−1)}(1 + O(ε)), (28)

where ε � 1
4 log log log K .

Using (13) and (15), T2,MC can be written as

T2,MC = E

{
log

(
Pυ[1 − Nopt log(α−1)]

)∣∣∣MC
}
−

2E

{√
[1 − Nopt log(α−1)] log(1 + ρoptNoptRopt)

Nopt

∣∣∣∣∣MC

}
.

(29)

Having the fact that MC ≡ Nopt log(α−1) < 1
2 , we have

Nopt =

√
log(1 + ρoptNoptRopt)

ρopt log(α−1)

≥
√

2 log(1 + ρoptNoptRopt)Nopt

ρopt

≥
√

2 log(1 + ρoptNoptRopt)Nopt

⇒ Nopt ≥ 2 log(1 + ρoptNoptRopt). (30)

Substituting (30) in (29), and noting υ ∼ log K +
O(log log K), with probability one, yields,

T2,MC � log(P log K) − log(2) − 2. (31)

Moreover, we have

T2,MC � log(P log K). (32)

Combining (26), (28), (31), and (32), and substituting in (24),

yields the result of Theorem 3.

�
Remark 1- Since E{√x} ≤

√
E{x}, for x > 0, it is concluded

that the achievable rate of Strategy II is higher than that of

Strategy I. More precisely,

T2 − T1 ∼ 2
(√

E{log(α−1)} − E{
√

log(α−1)}
)

×
√

log log log K. (33)

For the case of uniform distribution for α, we have

T2 − T1 ∼ 0.228
√

log log log K. (34)

Remark 2- Although limK→∞
T1

Tmax
= limK→∞

T2
Tmax

= 1,

where Tmax ∼ log (P log K) is the maximum achievable

throughput for a quasi-static fading channel [17], there exists a

gap of Ω(
√

log log log K) between the achievable throughput

of Strategies I and II, and the maximum throughput. As

we show later, this gap is due to the fact that the channel

correlation coefficients of the users are not considered in the

scheduling. In fact, this gap approaches o(1) by exploiting the

channel correlation, which is discussed in Strategy III.

C. Strategy III: Scheduling based on both SNR and channel
correlation coefficient with adaptive codeword length

To maximize the throughput of the system, the user which

maximizes the expression in (16) should be serviced. Here, for

simplicity of analysis, we propose a sub-optimum scheduling

that considers the effect of both SNR and channel correlation

in the user selection. In this strategy, each user is required

to feed back its initial fading gain only if it is greater than
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a pre-determined threshold
√

Θ, where Θ is a function of

the number of users. Among these users, the BS selects the

one with the maximum channel correlation coefficient. The

data rate and codeword length are selected to maximize the

corresponding throughput. The following theorem gives the

system throughput under this strategy.

Theorem 4 Let αk, k = 1, · · · ,K, be i.i.d. random variables
with uniform distribution. Using Strategy III, with Θ satisfying

log K −o(log K) � Θ � log K − log log log K −ω(1), (35)

the throughput of the system scales as

T3 � log (P log K) − o(1) (36)

Proof- Define A � {k|υk ≥ Θ} and αmax � maxk∈A αk. Let

υ be the squared initial fading gain of the user corresponding

to αmax. We define the event G as follows:

G = Pr{Nopt log(α−1
max) ∼ o(1)}, (37)

where Nopt is the corresponding codeword length and com-

puted from (13). Using (17) and (37), we can write

T3 ≥ Pr{G}E{T3(υ, αmax)} (38)

where following (17),

T3(υ, αmax) = log(Pυ) − 2 3
√

log(αmax) log log (Pυ) ×(
1 + O

(
log log log(υ)

log log(υ)

))
− o(1). (39)

Noting that T3(υ, αmax) in (39) is an increasing function of

υ, we have

E{ T3(υ, αmax)} ≥ E

{
log (Pυ) − 2 3

√
log(α−1

max)

3
√

log log (Pυ)
[
1 + O

(
log log log(υ)

log log(υ)

)]}

≥log (PΘ) − 2E{ 3
√

log(α−1
max)}

3
√

log log (PΘ)
[
1 + O

(
log log log(Θ)

log log(Θ)

)]

≥log (PΘ) − 2 3
√

E{log(α−1
max)}

3
√

log log (PΘ)
[
1 + O

(
log log log(Θ)

log log(Θ)

)]
(40)

E{log(α−1
max)} can be derived as follows

E{log(α−1
max)} =

K∑
n=1

E{log(α−1
max)

∣∣ |A| = n}Pr{|A| = n} (41)

Since αk, k = 1, · · · ,K, are i.i.d. random variables with

uniform distribution over [0, 1], we can write

Fαmax(α ||A| = n) = αn

⇒ E{log(α−1
max)

∣∣ |A| = n} =
∫ 1

0

log(α−1)nαn−1dα

=
1
n

, (42)

where FX(.) denotes the cumulative density function of the

random variable X . Indeed, |A| is a binomial random variable

with parameters K and e−Θ. (Note that Pr(υk ≥ Θ) = e−Θ.)

Hence,

Pr{|A| = n} =
(

K

n

)
e−nΘ(1 − e−Θ)K−n (43)

Substituting (42) and (43) in (41), we have

E{log(α−1
max)} =

K∑
n=1

(
K

n

)
1
n

e−nΘ(1 − e−Θ)K−n. (44)

After some manipulations, we obtain

E{log(α−1
max)} =

K∑
n=1

1
n

(1 − e−Θ)K−n − (1 − e−Θ)K
K∑

n=1

1
n

.

(45)

For large values of K, we can approximate (45) as

E{log(α−1
max)} � 1

Ke−Θ

(
1 + O

(
1

Ke−Θ

))
+ e−Ke−Θ

(Θ − log K). (46)

Noting (40) and (46), for values of Θ satisfying

log K −o(log K) � Θ � log K − log log log K −ω(1), (47)

we have

E{T3(υ, αmax)} ≥ log (P log K) − o(1). (48)

We use

Pr
{
|z − E{z}| <

√
log log log Kvar{z}

}
> 1 − 1

log log log K
(49)

to compute Pr{G} defined in (37), where z = Nopt log(α−1
max).

Noting (13) and (46), we have

E{Nopt log(α−1
max)} ≤ E{ 3

√
log(α−1

max) log log (Pυmax)}

= E{ 3
√

log(α−1
max)}E{ 3

√
log log (Pυmax)}

≤ 3
√

E{log(α−1
max)} 3

√
log log (P log K)

= o(1) (50)

We obtain var{log(α−1
max)} as follows:

var{log(α−1
max)||A| = n} =

1
n2

, (51)

and consequently, we have

var{log(α−1
max)} =

K∑
n=1

(
K

n

)
1
n2

e−nΘ(1 − e−Θ)K−n

= (1 − e−Θ)K
K∑

i=1

1
i
[(1 − e−Θ)−i − 1]

K∑
n=i

1
n

(52)

For large values of K, we can write

var{log(α−1
max)} � 1

K2e−2Θ
− e−Ke−Θ

2
(log(Ke−Θ))2 (53)
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Noting (53), we have

var{Nopt log(α−1
max)} = var{ 3

√
log(α−1

max) log log (Pυ)}

≤ var{ 3
√

log(α−1
max)}var{ 3

√
log log (Pυ)}

< O(
3
√

log log log K

(log log log K)2
) (54)

Substituting (50) and (54) in (49), we have

Pr

{
|Nopt log(α−1

max) − o(1)| < O

(
1

log log log K

)}

> 1 − 1
log log log K

(55)

Using (38), (48) and (55), the result of the theorem follows.

�
Remark 1- The uniform distribution of the correlation coef-

ficients is not a necessary condition for Theorem 4. In fact,

Theorem 4 is valid if Pr{G} → 1.

Pr{Nopt log(α−1
max) < g(K)} = Pr{αmax > e

−g(K)3

log log(P log K) }

= 1 − (Fα(e
−g(K)3

log log(P log K) ))K

(56)

where g(K) ∼ o(1). Noting (56), we must have

Fα(e
−g(K)3

log log(P log K) ) ∼ 1−ω( 1
K ) to satisfy Pr{G} → 1. Hence,

there exists a larger class of distributions that satisfy the

requirements for this theorem.

IV. CONCLUSION

A multiuser downlink communication over a time-correlated

fading channel has been considered. We have proposed three

scheduling schemes in order to maximize the throughput

of the system. Assuming a large number of users in the

system, we show that using SNR-based scheduling, a gap of

Ω(
√

log log log K) exists between the achievable throughput

and the maximum throughput of the system. We propose

a simple scheduling considering both the SNR and channel

correlation of the users. We show that the throughput of the

proposed scheme reaches the maximum throughput of the

system as the number of users tends to infinity.
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