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Abstract In this article, a new method for performance
evaluation of Turbo-like codes is presented. This is based on
estimating the Probability Density Function (pdf ) of the bit
Log-Likelihood-Ratio (LLR) using higher order statistics. We
do not restrict ourselves to any specific model for the pdf
and try to estimate it directly using a Cumulant matching
method. Numerical results show a close agreement between
the proposed method and simulations. The complexity of this
method is similar to the Monte-Carlo simulation with the
advantage of providing similar accuracy using significantly
fewer samples.

I. INTRODUCTION

For any arbitrary random variable, the logarithm of its
characteristics function may be approximated using a Taylor
series expansion. The coefficients of this series expansion are
known as Cumulants or higher order statistics. Cumulants have
been widely used in a variety of applications including analysis
of digital communications systems.

The problem of performance evaluation of coherent optical
communication systems is considered in [1], where a solution
based on estimating the Cumulants of the noise process is pre-
sented. A condition is derived to quantify under what system
conditions a Gaussian Probability Density Function (pdf ) is a
good approximation. A discrete-time method is proposed in [2]
for estimating the impulse response of a frequency selective
digital modulated communication channel. This method is
based on estimating the Cumulants up to the fourth order.
Parameters of a moving average model are estimated in [3],
using second and third order Cumulant matching. This estima-
tion is further improved in [4]. Cumulants of symmetric dis-
tributions like uniform, triangular, and Gaussian are estimated
in [5] using a robust estimation technique. The application of
Edgeworth series and higher-order statistics to the discrete-
time detection of a known constant signal in multivariate non-
Gaussian noise is considered in [6]. A numerical algorithm
based on knowledge of the noise Cumulants is presented in
order to analyze the finite-sample size performance of the sub-
optimum detectors.

Non-Gaussian sources are modeled in [7] using Gaussian
mixture densities. It is shown that in high Signal to Noise
Ratio (SNR) regions, this method outperforms the Cumulant

based algorithms for parameter estimation. The problem of
blind equalization and estimation of digital communication
finite impulse response channels is considered in [8]. The
channel parameters are estimated by nonlinear optimization of
a quadratic Cumulant matching criterion involving second and
fourth order Cumulants. This problem is later considered in [9]
for partial-response signals. A method for phase recovery
in Quadrature Amplitude Modulation (QAM) communication
systems based on higher order statistics is presented in [10].
A relation is derived between the phase error and the fourth
order Cumulant of the output.

Since the higher order Cumulant-based criteria can be multi-
modal, conventional gradient search techniques require a good
initial estimate to avoid converging to local minima. This
problem is solved in [11], where a novel scheme based on
genetic algorithms is employed to optimize the Cumulant
fitting cost function. A method based on higher order statistics
is proposed in [12] to mitigate the performance degradation
caused by multi-path propagation in a mobile radio commu-
nication system. It is shown that an over-determined system
of linear equations (involving only Cumulants of the received
baseband signal) can be obtained to perform non-iterative
deconvolution. The study of chaotic communication systems
with Additive White Gaussian Noise (AWGN) interference is
considered in [13] by employing suitable Cumulant analysis
tools.

In this paper we present a method based on using the
Cumulants of the bit Log-Likelihood-Ratio (LLR) versus its
moments as used in [14]. The first two Cumulants of the
normal density are its mean and variance and the higher order
Cumulants are zero. Since the pdf of the bit LLR is nearly
normal [15]–[17], it is expected that its higher order Cumulants
are fairly small. This allows for easy truncation of the series
expansion of the pdf in terms of its Cumulants.

This paper is organized as follows. The problem is modeled
in Section II. In Section III, the Cumulant matching method,
which is used to find the parameters of the proposed model,
is described. The accuracy of this method is investigated in
Section IV. The numerical results and conclusion are presented
in Section V and Section VI, respectively.
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II. PRELIMINARIES

A common tool to express the bit probabilities in bit
decoding algorithms is based on the so-called LLR. The LLR
of the kth bit position is defined by the following equation:

LLR(k) = log
P (ck = 1|x)
P (ck = 0|x)

, (1)

where ck is the value of the kth bit in the transmitted code-
word, x is the received vector, and log represents the natural
logarithm. Let us define the random variable Y = LLR(k)
and let its pdf be denoted as f(y). It is proved in [18] that
the pdf of the bit LLR is independent of the transmitted
code-word, as long as the value of the bit position under
consideration remains unchanged. By using this result and
without loss of generality, we consider the case of sending the
all-zero code-word. The received bit is decoded to 0 (or 1),
if the corresponding LLR is negative (or positive). Therefore,
the following integral simplifies the remaining Bit Error Rate
(BER) calculations:

Pe =
∫ ∞

0

f(y)dy. (2)

III. CUMULANTS MATCHING

The characteristic function of a random variable Y with its
pdf denoted as f(y) is defined as

Φ(t) =
∫ +∞

−∞
f(y)eitydy. (3)

The Cumulants of the random variable Y , denoted as km,
are the coefficients of the following series expansion:

log Φ(t) =
∞∑

m=0

km
(it)m

m!
. (4)

The first few Cumulants can be expressed in terms of the
raw moments as follows [19]:

k0 = 1, (5)

k1 = µ1, (6)

k2 = µ2 − µ2
1, (7)

k3 = 2µ3
1 − 3µ1µ2 + µ3, (8)

where µi is the ith raw moment of random variable Y with
n samples yj defined as

µi =
1
n

n∑
j=1

yi
j (9)

The K-statistics are the unique symmetric unbiased estima-
tors of the Cumulants [20]. Thus,

E[Km] = km, (10)

where the notation Km is used for the mth K-statistic of a
given density. In addition, the variance,

V [Km] = E[(Km − km)2], (11)

is a minimum compared to all other unbiased estimators [21],
[22]. In other words, the K-statistics are the Uniformly
Minimum Variance Unbiased Estimators (UMVUE) of the
Cumulants. The first few K-statistics are as follows:

K1 =
S1

n
, (12)

K2 =
nS2 − S2

1

n(n − 1)
, (13)

K3 =
2S3

1 − 3nS1S2 + n2S3

n(n − 1)(n − 2)
, (14)

where n is the number of samples (denoted by yi) used in
the estimation, and

Sr =
n∑

i=1

yr
i . (15)

A combinatorial method for computing higher orders of the K-
statistics is presented in [23]. Once the first few Cumulants are
estimated by using the K-statistics, the characteristic function
of the bit LLR can be approximated by using (4). Following
that, the pdf of the bit LLR can be approximated by taking
the Inverse Fourier Transform (IFT) of Φ(t).

f(y) =
∫ +∞

−∞
Φ(t)e−itydt (16)

IV. ACCURACY ANALYSIS

The cumulative distribution function (CDF ) of the bit LLR
is defined as

F (T ) =
∫ T

−∞
f(y)dy. (17)

We are interested in computing the error probability

Pe =
∫ ∞

0

f(y)dy = 1 −
∫ 0

−∞
f(y)dy = 1 − F (0). (18)

Taking the IFT of the characteristic function, f(y) =
IFT{Φ(t)}, noting (4), and using properties of IFT for integral
of a function, we have

F (T ) = IFT

{
1
it

exp[
∞∑

m=0

km
(it)m

m!
]

}
. (19)

A small error, ∆km in estimating each Cumulant, results in
an error, ∆F (T ) in CDF :

F (T ) + ∆F (T ) = IFT

{
1
it

exp[
∞∑

m=0

(km + ∆km)
(it)m

m!
]

}

(20)

= IFT

{
1
it

exp[
∞∑

m=0

km
(it)m

m!
] exp[

∞∑
n=0

∆kn
(it)n

n!
]

}
(21)

� IFT

{
1
it

exp[
∞∑

m=0

km
(it)m

m!
](1 +

∞∑
n=0

∆kn
(it)n

n!
)

}
(22)

= F (T ) + IFT

{
1
it

exp[
∞∑

m=1

km
(it)m

m!
]

∞∑
n=1

∆kn
(it)n

n!

}
,

(23)
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taking ∆k0 = 0. This means,

∆F (T ) � IFT

{
1
it

exp[
∞∑

m=1

km
(it)m

m!
]

∞∑
n=1

∆kn
(it)n

n!

}

(24)

=
∞∑

n=1

∆kn
in−1

n!
IFT

{
tn−1 exp[

∞∑
m=1

km
(it)m

m!
]

}

(25)

=
∞∑

n=1

∆kn
in−1

n!
f (n−1)(T ), (26)

where f (n)(T ) is the nth derivative of f(y) at point y = T
for n > 0. To have a consistent notation, we define f (0)(T ) =
f(T ). This results in the following relationship between the
error in computing Pe and the error in estimating Cumulants:

∆Pe �
∞∑

n=1

∆kn
in−1

n!
f (n−1)(0). (27)

In order to simplify (27), we assume that the derivatives,
f (n)(y), are similar to the derivatives of the normal density.
This is based on the fact that pdf of the bit LLR is close to
the normal density. Thus we suppose that

f (n)(y) � (−1)ne−y2/2Tn(y), (28)

where Tn(y) is the Hermite polynomial [14] of order n,
defined as

Tn(y) =
�n/2�∑
j=0

(−1)jn!
2j(n − 2j)!j!

yn−2j . (29)

This approximation results in the following equation:

∆Pe �
∞∑

l=0

∆k2l+1

(2l + 1)2ll!
(30)

Numerical values presented in Table-3, section V have been
calculated using (30).

V. NUMERICAL RESULTS

The proposed algorithm is compared with Monte-Carlo
(MC) simulation in this section. A Turbo-code of length 100
and rate 1/2 is used to perform the simulations as seen in
Figure 1. It is evident that increasing the number of Cumulants
(the order of approximation) that are involved from two to four
significantly improves the approximation. A short code is used
to assure the accuracy of MC simulation and hence provide
a reliable comparison benchmark. The relationship between
interval Probabilities of the Point Estimates (PPE) and the
number of samples n is computed using numerical methods
(complete description of these methods are available in the
Journal version of this paper [24]) and demonstrated in Table-
1 and Table-2. It is evident that the proposed method is still
accurate even by using fewer samples compared to the MC
simulations.
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Fig. 1. BER curves for Turbo-Code of length 100 and rate 1/2.

n θ pc pm

104 0.0060 0.95 0.67
105 0.0060 0.96 0.70
106 0.0060 0.97 0.96

104 0.0020 0.94 0.66
105 0.0020 0.95 0.70
106 0.0020 0.96 0.96

104 0.0005 0.93 0.33
105 0.0005 0.94 0.68
106 0.0005 0.95 0.95

Table 1 : The Relationship between n (number of samples) and the
PPEs (p(|∆Pe| < θ)) at Eb/N0=2dB for the Cumulant method pc

and the MC simulation pm.

n θ pc pm

106 10−6 0.98 0.27
107 10−6 0.99 0.96
108 10−6 ≈ 1 ≈ 1
106 5 × 10−7 0.94 0
107 5 × 10−7 0.96 0.68
108 5 × 10−7 ≈ 1 0.99

106 10−7 0.91 0
107 10−7 0.92 0.08
108 10−7 0.94 0.49

Table 2 : The Relationship between n (number of samples) and the
PPEs (p(|∆Pe| < θ)) at Eb/N0=4dB for the Cumulant method pc

and the MC simulation pm.

This method is similar to the one introduced in [25], where
a suitable model for the pdf of bit LLR is suggested. The
moment matching method with maximum entropy principle is
then used to estimate the parameters of the suggested model
for the pdf . In this case, a constrained maximization problem
is solved using iterative Newton-Raphson method. At each
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iteration, solving a system of linear equations (with the same
degree as the number of moments) as well as evaluating an
integral of the exponential form is required. This renders the
Cumulant method proposed here significantly less complex as
compared to the moment method of [25].

Table-3 provides an example on how to decide on the
required accuracy in estimating the Cumulants of different
orders. Numerical values presented have been calculated using
(30).

l 0 1 2 ∆Pe

2l + 1 1 3 5 -
∆k2l+1 10−4 10−3 10−2 5.17 × 10−4

Table 3 : The Relationship between error in Cumulant estimation and
the error in BER estimation.

VI. CONCLUDING REMARKS

The problem of performance evaluation of a coded com-
munication system with bit decoding algorithms in low BER
regions is considered. The main ingredient of a bit decoding
algorithm is the reliability information, i.e. the LLR. The
pdf of the bit LLR is estimated using Cumulant matching
technique. This method is based on estimating the charac-
teristic function of the bit LLR using its Cumulants. In
order to have an unbiased estimation of the Cumulants with
minimum variance, the best choices are the K-statistics. Once
the characteristic function of a random variable is known, the
rest of the pdf computation is straightforward using the IFT.
Numerical results demonstrate a close agreement between the
theory and simulations. It is also shown that the error in BER
estimation is bounded and may be reduced by increasing the
accuracy of Cumulant estimation or equivalently increasing
the number of samples. The complexity of this method is
similar to the Monte-Carlo simulation with the advantage of
providing similar accuracy using significantly fewer samples.
The time consuming part of performance analysis is sample
generation which is significantly decreased using the proposed
method. Processing the samples and estimating the BER can
be done very fast. Specifically in the provided example, 1
million samples are processed in less than a minute using
an ordinary PC with AMD-Athlon 64-bit 3 GHz Processor
running Windows XP.
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