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Abstract

This paper presents a new method for the performance evaluation of bit decoding algorithms. The

method is based on estimating the probability density function (pdf) of the bit log likelihood ratio

(LLR) by using an exponential model. It is widely known that the pdf of the bit LLR is close to the

normal density. The proposed approach takes advantage of this property to present an efficient

algorithm for the pdf estimation. The moment matching method is combined with the maximum

entropy principle to estimate the underlying parameters. We present a simple method for computing

the probabilities of the point estimates for the estimated parameters, as well as for the bit error rate.

The corresponding results are used to compute the number of samples that are required for a given

precision of the estimated values. It is demonstrated that this method requires significantly fewer

samples as compared to the conventional Monte-Carlo simulation.
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1. Introduction

In the application of channel codes, one of the most important issues is to develop an
efficient method for performance evaluation, since the Monte-Carlo (MC) simulation is
extremely time consuming for low bit error rate (BER) values. In 1993, a new class of
channel codes, called turbo-codes, were announced [3]. They have an astonishing
performance, and at the same time, allow for a simple iterative decoding method by
using the reliability information produced by a bit decoding algorithm. Since then, there
have been numerous efforts devoted to the performance evaluation of turbo-codes, or
more generally, codes relying on iterative bit decoding algorithms (turbo-like codes). Most
of these approaches derive bounds on the average performance assuming maximum
likelihood (ML) decoding [4–6].

Performance evaluation of trellis codes is considered in [7] where the Bahl–
Cocke–Jelinek–Raviv (BCJR) [8] algorithm is adopted to find the APP values for
convolutional codes. Some researchers have considered simplified cases of analytical BER
calculations. An analytical method for computing the bit error probability of a two-state
convolutional code with maximum a posteriori probability (MAP) decoding is presented in
[9]. An analytic expression for the exact bit error probability of the ð7; 5Þ convolutional
code is derived in [10]. The Pearson system of distributions is adopted in [11] to compute
the error probability expectations, where moment matching is used to estimate the
parameters of the model. Estimating the parameters of the generalized Gaussian
probability density function (pdf) by using entropy matching is considered in [12].

Other researchers have employed the importance sampling (IS) method to improve the
performance of the MC simulation by increasing the weight of the rare error events. In this
method, the samples are selected from a modified distribution which concentrates the
points around the rare error events. This modified distribution is obtained from
the original distribution by the application of a biasing function. This ensures a variance
reduction if the biasing function is appropriately selected. The Gaussian tail (GT)
and Rayleigh tail (RT) biasing functions are investigated in [13]. The IS method is applied
to evaluate the performance of a digital communications system with inter-symbol
interference (ISI) in [14], and is extended to evaluate the performance of multi-hop
satellite links in [15]. A general formulation of the IS method in probability space
notation is introduced in [16]. The IS method is used in [17] to simulate the Viterbi decoder
by examining the trellis structure in relation to the rare error events. A comparison
between the mean translation (MT) technique and the variance scaling (VS) technique
is performed in [18], where it is shown that the structure of the error regions determines
the better method. Recently, Ref. [19] has revisited the IS method with the strategy
to increase the rate by which the variance approaches zero, instead of reducing the
variance itself.

Turbo-product codes of a small block length are simulated in [20] by partitioning
the error regions and by using MT for each sub-region independently. This method
becomes inefficient, as the complexity of the code increases. In the case of turbo-like
codes with a large block length, the search for the appropriate biasing function will be
lengthy, which renders this method even more complicated than the conventional MC
simulation.

It is observed in [3,6,21] that the pdf of the bit log likelihood ratio (LLR) is nearly
Gaussian. There have been some efforts on estimating this pdf using Gaussian mixture
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model [22,23]. Two soft decision MC simulation techniques based on probabilities or LLR
values are introduced in [24], and later compared in [25]. In this article, we propose an
exponential model for the pdf of the bit LLR with a polynomial in the exponent. The
aforementioned model has the ability to efficiently capture the deviation of the pdf from
Gaussian. We use the moments of the bit LLR to estimate the parameters of the proposed
model.
This paper is organized as follows. We model the pdf of the bit LLR in Section 2. In

Section 3, the maximum entropy method is applied to find the parameters of the proposed
model. A method to compute the probabilities of the point estimates (PPEs) for the
estimated parameters, as well as the estimated BER, is detailed in Section 4. The numerical
results and conclusions are presented in Sections 5 and 6, respectively.
2. Modeling the pdf of the bit LLR

We consider binary input additive white Gaussian noise channels. The focus will be on
turbo-like codes,1 while the proposed method is applicable to a wide variety of codes and
channels as long as the symmetry properties defined in [26] are satisfied.
A common tool to express the bit probabilities in bit decoding algorithms is based on the

so-called LLR. The LLR of the kth bit position is defined by the following equation:

LLRðkÞ ¼ log
Pðck ¼ 1jxÞ

Pðck ¼ 0jxÞ
, (1)

where ck is the value of the kth bit in the transmitted code-word, x is the received vector,
and log represents the natural logarithm. Let us define the random variable Y ¼ LLRðkÞ

with its pdf denoted as f ðyÞ. It is proved in [26] that the pdf of the bit LLR is independent
of the transmitted code-word, as long as the value of the bit position under consideration
remains unchanged. Relying on this result, we consider the pdf of the bit LLR conditioned
on sending the all-zero code-word. For the simplicity of notation, we use the notation f ðyÞ

(instead of the conditional probability) to refer to this pdf. We propose the following
model for the pdf of the bit LLR:

f ðyÞ ’ exp �
XN

i¼0

aiy
i

 !
, (2)

where ai 2 R, the set of real numbers. This model can easily capture the deviation of the
pdf of the bit LLR from Gaussian density. Using the consistency condition [27], it can be
shown that all the odd ordered terms (except for the first term) in Eq. (2) are equal to zero
[28], i.e.,

f ðyÞ ’ exp �
y

2
�
XM
i¼0

biy
2i

 !
. (3)

However, we rely on the full expansion as given in Eq. (2) because the iterative turbo
decoding only generates an approximation of the actual LLR values.
1This refers to any code that can be decoded using iterative bit decoding, or in general, belief propagation

algorithm. This includes both turbo-codes and LDPC codes.
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The received bit is decoded to 0 (or 1), if the corresponding LLR is negative (or positive).
Therefore, the following integral simplifies the remaining BER calculation:

Pe ’

Z 1
0

f ðyÞdy. (4)

In the next section, we use the maximum entropy principle to find the parameters of the
proposed model by using the moments of the bit LLR.

3. Moment matching using the maximum entropy principle

There are various methods for parameter estimation. Typically, the unknown
parameters of a pdf can be found by adopting moment matching, entropy matching,
or ML. In this paper, we use the moment matching method with the maximum entropy
principle because it is mathematically tractable, and has been successfully implemented
in a variety of applications [29]. An attractive feature of the class of distributions with
the maximum entropy is that a simple iterative maximization technique can be employed
to compute their parameters. The maximum entropy principle was first introduced by
Jaynes [29] in 1982. Since then it has been widely used in various applications. In
this method, the search, while satisfying the constraints on the moments, is limited to the
pdf with the maximum entropy. For more recent discussions on this method, refer
to [30,31]. We follow an approach that is similar to the one introduced in [32]. The
maximum entropy density can be found by maximizing the following expression with
respect to f̂ ðyÞ:

Maximize �

Z þ1
�1

f̂ ðyÞ log½f̂ ðyÞ�dy (5)

Subject to m̂i ¼ mi; i ¼ 1; 2; . . . ;N, (6)

with

mi ¼

Z þ1
�1

yif ðyÞdy (7)

and

m̂i ¼

Z þ1
�1

yif̂ ðyÞdy, (8)

Z þ1
�1

f̂ ðyÞdy ¼ 1, (9)

where N is the number of moments used in the parameter estimation. This maximization
problem can be solved with the Lagrange multipliers ak, k ¼ 0; 1; . . . ;N, by following the
methods of the calculus of variations [33].

Let us define the Lagrangian asZ þ1
�1

f̂ ðyÞ log½f̂ ðyÞ�dyþ c

Z þ1
�1

f̂ ðyÞdyþ
XN

k¼1

ak

Z þ1
�1

ykf̂ ðyÞdy. (10)
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Setting the variations of Eq. (10) with respect to f̂ ðyÞ to zero, we have

log½f̂ ðyÞ� þ a0 þ
XN

k¼1

akyk ¼ 0, (11)

where a0 ¼ cþ 1. Solving for f̂ ðyÞ results in

f̂ ðyÞ ¼ exp �
XN

k¼0

akyk

 !
. (12)

Using Eq. (9), we obtain

ea0 ¼

Z þ1
�1

exp �
XN

k¼1

akyk

 !
dy. (13)

If Eq. (13) is substituted for ea0 in (12), then

f̂ ðyÞ ¼ exp �
XN

k¼1

akyk � log

Z þ1
�1

exp �
XN

k¼1

akzk

 !
dz

" #( )
. (14)

The objective is to estimate the parameters ak, k ¼ 1; . . . ;N. As we will see later, one can
estimate the parameters ak, k ¼ 1; . . . ;N, using the first N moments of the bit LLR. In
practice, the statistical estimates of the moments are used instead of the true moments.
Using Eq. (8), we have

m̂iðaÞ ¼

Z þ1
�1

yi exp �
XN

k¼1

akyk � log

Z þ1
�1

exp �
XN

k¼1

akzk

 !
dz

" #( )
dy,

i ¼ 1; 2; . . . ;N, ð15Þ

where a ¼ fa1; a2; . . . ; aNg.
Setting m̂iðaÞ equal to the statistical estimates of the moments, we can find the unknown

parameters. Since there is no closed form solution for this problem, we continue with
numerical methods. Newton’s iterative method [32] is employed to iteratively solve the
following problem (starting from the initial point of zero):

GiðaÞ ¼ m̂iðaÞ � mi ð16Þ

¼

Z þ1
�1

ðyi � miÞ exp �
XN

k¼1

akyk � log

Z þ1
�1

exp �
XN

k¼1

akzk

 !
dz

" #( )
dy ¼ 0,

i ¼ 1; 2; . . . ;N. ð17Þ

Notation aðrÞ ¼ fa
ðrÞ
1 ; a

ðrÞ
2 ; . . . ; a

ðrÞ
N g is used to denote the result after r iterations of the

Newton–Raphson method. For the small changes DaðrÞ in the aðrÞ, we write

aðrþ1Þ ¼ aðrÞ þ DaðrÞ. (18)
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This signifies that

Giða
ðrÞ þ DaðrÞÞ ’ Giða

ðrÞÞ þ
XN

k¼1

qGiðaÞ

qak

����
a¼aðrÞ

Da
ðrÞ
k ; i ¼ 1; 2; . . . ;N. (19)

Therefore, DaðrÞ is a solution of the following linear equation:

Giða
ðrÞÞ ¼ m̂iða

ðrÞÞ � mi ¼ �
XN

k¼1

qGiðaÞ

qak

����
a¼aðrÞ

Da
ðrÞ
k ; i ¼ 1; 2; . . . ;N, (20)

where notation m̂iða
ðrÞÞ is employed to point out that the estimated moments are updated by

replacing aðrÞ in Eq. (15) after the rth iteration. Differentiating Eq. (17) with respect to ak yields

qGiðaÞ

qak

����
a¼aðrÞ

¼ m̂kða
ðrÞÞm̂iða

ðrÞÞ � m̂kþiða
ðrÞÞ. (21)

The algorithm (adopted from [32]) is summarized in the following steps:
Step 1: Start with an initial value of zero2 for að0Þ ¼ fa

ð0Þ
1 ; a

ð0Þ
2 ; . . . ; a

ð0Þ
N g.

Step 2: Compute the estimated moments by replacing aðrÞ into Eq. (15).
Step 3: Plug the estimated moments into Eqs. (20), (21) to find DaðrÞ.
Step 4: Compute the new parameters aðrþ1Þ ¼ aðrÞ þ DaðrÞ.
Step 5: Go to Step 2, if kDaðrÞk4�, where � is the desired precision and k:k denotes the

norm of a vector.
Using properties of the Hessian matrix, it can be shown that this is a convex maximization

problem [34]. The convexity of the problem guarantees that if a stationary point is found for
some finite values of a1; . . . ; aN , it must be a unique absolute minimum. However, the
convexity alone does not imply that such a minimum should exist. Imposing a set of
conditions on the moments can guarantee the existence of a stationary point. These
conditions are derived in [34] for a special case of Hausdorff moment problem. More
discussions on the convexity of the problem and existence of the solution can be found in [35].

4. Probabilities of the point estimates

In the following, we first present a method to compute the PPEs for the estimated
parameters in terms of the covariance matrix of the estimated moments. Subsequently, we
derive a relationship between the PPE on the BER and the PPE on the parameters.

4.1. PPE for the estimated parameters

If the moment estimator satisfies a set of mild conditions, it follows that the estimated
parameters are asymptotically normal with a derivable covariance matrix [36]. This allows
2Note that for ranges of interest (low BER), the LLR has large values, and, consequently, the moments have

large values. As the error probability reduces, the values of these moments increase; however, the rate of increase

in the first moment (mean value) is larger than the rest. This causes the parameters a ¼ fa1; a2; . . . ; aNg to have

small values.
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for the PPE statements to be made concerning f̂ ðyÞ. In the following, we present a method
to compute the covariance matrix of the estimated parameters in terms of the covariance
matrix of the moments. The covariance matrix of the moments can be computed by using
the method described in Appendix A.1.
Let us assume that the iterative algorithm has converged after rmax iterations, implying

that in Eq. (20), Da
ðrmaxÞ

k ’ 0, and m̂iða
ðrmaxÞÞ ¼ ~mi, where ~mi is the estimated moment.

Let us define uij as the covariance of the estimated moments. Referring to Appendix A.1,
we have

uij ¼ covð ~mi; ~mjÞ ¼
1

n
ðmiþj � mimjÞ ’

1

n
ð ~miþj � ~mi ~mjÞ. (22)

It is assumed that

mi ¼ E½ ~mi� ¼ E½m̂ðrmaxÞ

i �; 8i. (23)

From Eq. (21), we have

h
ðrmaxÞ

ik ¼ �
qGiðaÞ

qak

����
a¼aðrmax Þ

¼ m̂kþiða
ðrmaxÞÞ � m̂kða

ðrmaxÞÞm̂iða
ðrmaxÞÞ ¼ ~mkþi � ~mk ~mi. (24)

The random variations in the estimated moments, dmk, k ¼ 1; . . . ;N, result in random
variations dak, k ¼ 1; . . . ;N, in the computed parameters. In ranges of low BER
(large LLR values), the ak’s and dak’s are much smaller as compared to hik’s. This is
justified noting that: (i) from Eq. (24), the hik’s are of the same order as the moments of
LLR (large values for low BER), and (ii) a1 is rather insensitive to the scaling of LLR (this
statement would be exact if the pdf were Gaussian), while ai’s, i41, reduce as LLR
increases. Relying on this observation and applying first order approximation, from
Eq. (20) we obtain

dmi ’
XN

k¼1

h
ðrmaxÞ

ik dak. (25)

We have

u
ðrmaxÞ

ij ’ E
XN

k¼1

h
ðrmaxÞ

ik dak

 ! XN

m¼1

h
ðrmaxÞ

jm dam

 !" #
ð26Þ

’
XN

k¼1

XN

m¼1

h
ðrmaxÞ

ik h
ðrmaxÞ

jm E dakdam½ � ð27Þ

¼
XN

k¼1

h
ðrmaxÞ

ik

XN

m¼1

h
ðrmaxÞ

jm cmk. ð28Þ

In matrix notation, the following is defined:

H ¼ fh
ðrmaxÞ

ij g, (29)

U ¼ fu
ðrmaxÞ

ij g, (30)

and

C ¼ fcijg. (31)
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The following equations relate these matrices, where the superscript t denotes the
transpose of a matrix:

U ¼ HðHCÞt ¼ HCtHt, (32)

C ¼ ðH�1UðHtÞ
�1
Þ
t
¼ H�1UtðHtÞ

�1. (33)

We use the notation ~Uþ dU to specify the small random variation of U around its mean
value. Replacing ~Uþ dU, we obtain

C ’ H�1 ~U
t
ðHtÞ

�1, (34)

where ~U is computed using the method described in Appendix A.1. Noting Eqs. (24) and
(A.6), we have

~U ¼
1

n
H. (35)

This results in simplification of Eq. (34) as follows:

C ’
1

n
H�1, (36)

where n is the number of samples used in moment estimation as described in Appendix A.1.
It should be also noted that the matrix ~H with elements given in Eq. (24) is symmetric,

positive-definite. Consequently, from Eq. (25), a small error in the estimation of moments
results in a small error in the computation of DaðrÞ, and, consequently, in the final estimate
of the model parameters.
4.2. PPE for the estimated BER

In the following, we use the previous results to compute the PPE on the BER. Given the
threshold values a1; . . . ; aN on the error of parameters, the PPE is formulated as

pðjda1joa1; . . . ; jdaN joaN Þ ¼ c, (37)

where c 2 ½0; 1� and dai represents the error in the computation of the parameters. Using
this notation, we can rewrite the BER integral from Eq. (4) as follows:

Pe þ DPeðda1; . . . ; daNÞ

¼

Z 1
0

exp �
XN

i¼0

ðai þ daiÞy
i

" #
dy ð38Þ

¼

Z 1
0

exp �
XN

i¼0

aiy
i

 !
exp �

XN

i¼0

daiy
i

 !
dy ð39Þ

’

Z 1
0

exp �
XN

i¼0

aiy
i

 !
1�

XN

i¼0

daiy
i

 !
dy ð40Þ
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¼

Z 1
0

exp �
XN

i¼0

aiy
i

 !
dy�

Z 1
0

exp �
XN

i¼0

aiy
i

 !XN

i¼0

daiy
i dy ð41Þ

¼ Pe �
XN

i¼0

dai

Z 1
0

yi exp �
XN

i¼0

aiy
i

 !
dy ð42Þ

¼ Pe �
XN

i¼0

midai, ð43Þ

where

mi ¼

Z 1
0

yi exp �
XN

i¼0

aiy
i

 !
dy. (44)

The above approximation holds as j
PN

i¼0daiy
ij has small values in the range of interest of

the integration (where expð�
PN

i¼0aiy
iÞ has significant values) (note that, as already

mentioned, ai’s, and consequently dai’s, have small values). It can be seen that DPe, the
error in the BER estimation, may be approximated by a linear combination of mi’s, which
can be estimated during the procedure of the moment computation by considering the
positive samples only. Recalling the PPE statement (37) for the parameters, and noting
that DPe is a linear combination of dai’s, we can present a similar statement for the BER as
follows:

pðjDPeðda1; . . . ; daNÞjoDPeða1; . . . ; aN ÞÞ ¼ c. (45)

This analysis enables us to make PPE statements on the estimated BER in terms of the
PPEs for the model parameters.

5. Numerical results

A turbo-code of length 100 and rate 1
2
constructed by parallel concatenation of two

recursive convolutional encoders is employed to perform the simulations. The short code is
selected for simplicity of the numerical analysis. To demonstrate the possibility of applying
the proposed method to larger codes, another example for a code of length 12,000 is also
provided later in this section. In Table 1, variances of the BER estimations are computed
for both the proposed method and MC simulations. The number of samples and the
variance to the mean ratio of the BER are denoted as nð:Þ and vð:Þ, respectively. The
variance of the MC method can be computed analytically (refer to Appendix A.2),
although this analysis is very complex for the proposed method and we need to estimate
Table 1

Comparison of the proposed method and the MC simulation, where the variances are computed as described in

Section 5

Eb=N0 (dB) BER v(new) n(new) v(MC) n(MC) G

1 3:81� 10�2 6:78� 10�5 104 9:51� 10�5 104 1.4

2 4:95� 10�3 1:46� 10�5 104 9:90� 10�5 104 6.8

3 1:76� 10�4 4:95� 10�6 105 9:99� 10�6 106 20.2

4 3:51� 10�6 2:30� 10�8 106 1:00� 10�8 108 43.5
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Fig. 1. BER curves for turbo-code of the length 100 and rate 1
2
in comparison with the MC simulation.
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the variances with numerical methods. The variance of the proposed method can be
computed by repeating the experiment for J times (generating J independent sets of
moments), and computing the variance of the resulting sequence of the BER values,
denoted as pi, i ¼ 1; . . . ; J, as follows:

E½P̂e� ¼
1

J

XJ

i¼1

pi (46)

and

var½P̂e� ¼ �ðE½P̂e�Þ
2
þ

1

J

XJ

i¼1

p2
i . (47)

In the computations of Table 1, we set J ¼ 1000 to obtain a good approximation, and, at
the same time, render the analysis feasible in terms of the required time.

We use the relative gain G in Table 1 as a measure to compare the two methods. To
incorporate both the variance reduction and the sample reduction advantage of the new
method, and noting that vðMCÞ is inversely proportional3 to nðMCÞ, we define G as follows:

G ¼
vðMCÞ

vðnewÞ
:
nðMCÞ

nðnewÞ
. (48)

Simulation results are shown in Fig. 1, where we have used the same number of samples as
indicated in Table 1. It is evident that increasing the number of moments (the order of
approximation) from two to five significantly improves the approximation.
3Refer to Appendix A.2.
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Table 2

Relation between n and PPE at Eb=N0 ¼ 2 dB for the new method and the MC simulation where

y ¼ DPeðaja1j; . . . ; ajaN jÞ, and p1; p2 are equal to pðjDPejoyÞ for new method and MC, respectively

n a y p1 p2

104 0.742 0.0058 0.97 0.67

105 0.742 0.0058 ’ 1 0.70

106 0.742 0.0058 ’ 1 0.96

104 0.251 0.0020 0.95 0.66

105 0.251 0.0020 0.98 0.70

106 0.251 0.0020 ’ 1 0.96

104 0.075 0.0005 0.93 0.33

105 0.075 0.0005 0.94 0.68

106 0.075 0.0005 0.97 0.95

Note that ’ 1 means that the corresponding value is larger than 0.99.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10-1

B
E

R

Code length=12000, Bit position=9000

Proposed method with 4 terms

MC simulation

100

10-2

10-3

Eb/N0 (dB)

Fig. 2. BER curves for turbo-code of the length 12,000 and rate 1
2
in comparison with the MC simulation.

A. Abedi, A.K. Khandani / Journal of the Franklin Institute 345 (2008) 60–7470
In addition, we compute the PPEs by using the proposed method in Section 4 for this
example. This PPE is closely related to n, the number of samples used to compute it. In
Table 2, this relationship is presented for three different values of n at Eb=N0 ¼ 2 dB. We
compute4 pðjDPejoyÞ for the different values of n, where y ¼ DPeðaja1j; . . . ; ajaN jÞ. When
we compare the proposed method with the MC simulation in Tables 1 and 2, the number
of samples required for the BER calculations indicates a significant reduction for our
4Refer to Appendix A.3 for more details on the PPE for the MC simulation.
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method. It can be seen that the proposed method is more accurate than the MC simulation
even by using significantly fewer samples.

Another example for a code of length 12,000 is presented in Fig. 2 to demonstrate the
applicability of the proposed method to very long codes.

6. Concluding remarks

In this paper, we have proposed a new and low-complexity method for the performance
evaluation of turbo-like codes. This method is applicable to a wide variety of codes and
channels as long as a set of mild symmetry conditions, as defined in [26], are satisfied. The
problem of finding the BER in high-signal-to-noise-ratio regions can be solved with this
method, since the MC simulation may not be feasible. The moment matching method is
employed to find the density with the maximum entropy which satisfies the moment
constraints. A simple method is introduced to make PPE statements both for the
parameters of the model and the BER value. It is demonstrated that significantly fewer
samples, compared to those required in the MC simulation, are necessary to compute the
statistical moments that are accurate enough. The complexity of the method scales with the
block length of the code similar to the MC simulation with the difference that fewer
samples are required in our case. In other words, the proposed method does not reduce the
complexity of the iterative decoding algorithms, while it reduces the number of required
samples for accurate performance evaluation.

Appendix A

A.1. Covariance matrix of the moments

The covariance matrix of the sample moments can be computed as follows:

covð ~mk; ~mmÞ ¼ E½ð ~mk � mkÞð ~mm � mmÞ� ðA:1Þ

¼ E
1

n

Xn

i¼1

yk
i � mk

 !
1

n

Xn

j¼1

ym
j � mm

 !" #
ðA:2Þ

¼
1

n2

Xn

i¼1

Xn

j¼1

E½yk
i ym

j � � mkmm ðA:3Þ

¼
1

n2
½nmkþm þ ðn

2 � nÞmkmm� � mkmm ðA:4Þ

¼
1

n
ðmkþm � mkmmÞ ðA:5Þ

’
1

n
ð ~mkþm � ~mk ~mmÞ. ðA:6Þ

This is used as ~U in Eq. (34).

A.2. Variance of MC simulation

Let us consider the situation of transmitting a bit bi and decoding b̂i, for i ¼ 1; . . . ; n,
where n is the number of samples used for the MC simulation. Let us define the following
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random variable:

ei ¼
1; biab̂i;

0 otherwise:

(
(A.7)

An error event is represented by ei. We can find the BER by averaging the following
random variable, P̂e, i.e., Pe ¼ E½P̂e�:

P̂e ¼
1

n

Xn

i¼1

ei. (A.8)

To compute the variance of P̂e, we need to use the definition of variance as proved in [37]:

var½P̂e� ¼
Pe

n
ð1� PeÞ. (A.9)

In practice, an estimation of var½P̂e� is obtained by substituting Pe with P̂e in (A.9).
A.3. Computing PPEs on MC simulation

Let us define the c 2 ½0; 1� PPE for MC, denoted as a, as follows:

pðjPe � P̂ejoaÞ ¼ c, (A.10)

where Pe; P̂e are the true and the estimated values of the BER. Following the same
notation and definitions as in Appendix A.2, for a large n and some integers m and a, we
can represent Pe and a as m=n and a=n, respectively. We can find the PPE for the MC
simulation as follows:

p jPe � P̂ejo
a

n

� �
¼ p

m� a

n
o
1

n

Xn

i¼1

eio
mþ a

n

 !
ðA:11Þ

¼ p
Xn

i¼1

eiomþ a

 !
� p

Xn

i¼1

eipm� a

 !
ðA:12Þ

¼
Xmþa�1

j¼0

pðj errors among n bitsÞ

�
Xm�a

j¼0

pðj errors among n bitsÞ ðA:13Þ

¼
Xmþa�1

j¼0

n

j

� �
Pj

eð1� PeÞ
n�j
�
Xm�a

j¼0

n

j

� �
Pj

eð1� PeÞ
n�j

ðA:14Þ

¼
Xmþa�1

j¼m�aþ1

n

j

� �
Pj

eð1� PeÞ
n�j. ðA:15Þ

In practice, an estimation of Eq. (A.11) is obtained by substituting Pe with P̂e in
Eq. (A.15).
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